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A metaheuristic algorithm for global optimization called the collective animal behavior (CAB) is
introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of
wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around
a central locations, or migrating over large distances in aligned groups. These collective behaviors
are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow
better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed
algorithm, the searcher agents emulate a group of animals which interact with each other based
on the biological laws of collective motion. The proposed method has been compared to other
well-known optimization algorithms. The results show good performance of the proposedmethod
when searching for a global optimum of several benchmark functions.

1. Introduction

Global optimization (GO) is a field with applications in many areas of science, engineering,
economics, and others, where mathematical modelling is used [1]. In general, the goal is
to find a global optimum of an objective function defined in a given search space. Global
optimization algorithms are usually broadly divided into deterministic andmetaheuristic [2].
Since deterministic methods only provide a theoretical guarantee of locating a local minimum
of the objective function, they often face great difficulties in solving global optimization
problems [3]. On the other hand, metaheuristic methods are usually faster in locating a
global optimum than deterministic ones [4]. Moreover, metaheuristic methods adapt better to
black-box formulations and extremely ill-behaved functions whereas deterministic methods
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usually rest on at least some theoretical assumptions about the problem formulation and its
analytical properties (such as Lipschitz continuity) [5].

Several metaheuristic algorithms have been developed by a combination of rules
and randomness mimicking several phenomena. Such phenomena include evolutionary
processes, for example, the evolutionary algorithm proposed by Fogel et al. [6], De Jong [7],
and Koza [8], the genetic algorithm (GA) proposed by Holland [9] and Goldberg [10] and
the artificial immune systems proposed by de Castro and Von Zuben [11]. On the other hand,
physical processes consider the simulated annealing proposed by Kirkpatrick et al. [12], the
electromagnetism-like algorithm proposed by İlker et al. [13], the gravitational search algo-
rithm proposed by Rashedi et al. [14], and the musical process of searching for a perfect state
of harmony, which has been proposed byGeem et al. [15], Lee andGeem [16], and Geem [17].

Many studies have been inspired by animal behavior phenomena for developing
optimization techniques. For instance, the particle swarm optimization (PSO) algorithm
which models the social behavior of bird flocking or fish schooling [18]. PSO consists of a
swarm of particles which move towards best positions, seen so far, within a searchable space
of possible solutions. Another behavior-inspired approach is the ant colony optimization
(ACO) algorithm proposed by Dorigo et al. [19], which simulates the behavior of real ant
colonies. Main features of the ACO algorithm are the distributed computation, the positive
feedback, and the constructive greedy search. Recently, a new metaheuristic approach which
is based on the animal behavior while hunting has been proposed in [20]. Such algorithm
considers hunters as search positions and preys as potential solutions.

Just recently, the concept of individual-organization [21, 22] has been widely
referenced to understand collective behavior of animals. The central principle of individual-
organization is that simple repeating interactions between individuals can produce complex
behavioral patterns at group level [21, 23, 24]. Such inspiration comes from behavioral
patterns previously seen in several animal groups. Examples include ant pheromone trail
networks, aggregation of cockroaches, and the migration of fish schools, all of which can
be accurately described in terms of individuals following simple sets of rules [25]. Some
examples of these rules [24, 26] are keeping the current position (or location) for best
individuals, local attraction or repulsion, random movements, and competition for the space
within a determined distance.

On the other hand, new studies [27–29] have also shown the existence of collective
memory in animal groups. The presence of such memory establishes that the previous
history of the group structure influences the collective behavior exhibited in future stages.
According to such principle, it is possible to model complex collective behaviors by using
simple individual rules and configuring a general memory.

In this paper, a new optimization algorithm inspired by the collective animal behavior
is proposed. In this algorithm, the searcher agents emulate a group of animals that interact
with each other based on simple behavioral rules which are modeled as mathematical
operators. Such operations are applied to each agent considering that the complete group
has a memory storing their own best positions seen so far, by using a competition principle.
The proposed approach has been compared to other well-known optimization methods. The
results confirm a high performance of the proposed method for solving various benchmark
functions.

This paper is organized as follows. In Section 2, we introduce basic biological aspects
of the algorithm. In Section 3, the novel CAB algorithm and its characteristics are both
described. Section 4 presents the experimental results and the comparative study. Finally, in
Section 5, conclusions are given.
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2. Biologic Fundamentals

The remarkable collective behavior of organisms such as swarming ants, schooling fish, and
flocking birds has long captivated the attention of naturalists and scientists. Despite a long
history of scientific research, the relationship between individuals and group-level properties
has just recently begun to be deciphered [30].

Grouping individuals often have to make rapid decisions about where to move
or what behavior to perform in uncertain and dangerous environments. However, each
individual typically has only a relatively local sensing ability [31]. Groups are, therefore, often
composed of individuals that differ with respect to their informational status and individuals
are usually not aware of the informational state of others [32], such as whether they are
knowledgeable about a pertinent resource or about a threat.

Animal groups are based on a hierarchic structure [33] which considers different
individuals according to a fitness principle called dominance [34] which is the domain
of some individuals within a group that occurs when competition for resources leads to
confrontation. Several studies [35, 36] have found that such animal behavior lead to more
stable groups with better cohesion properties among individuals.

Recent studies have begun to elucidate how repeated interactions among grouping
animals scale to collective behavior. They have remarkably revealed that collective decision-
making mechanisms across a wide range of animal group types, from insects to birds
(and even among humans in certain circumstances) seem to share similar functional
characteristics [21, 25, 37]. Furthermore, at a certain level of description, collective decision-
making by organisms shares essential common features such as a general memory. Although
some differences may arise, there are good reasons to increase communication between
researchers working in collective animal behavior and those involved in cognitive science
[24].

Despite the variety of behaviors and motions of animal groups, it is possible that
many of the different collective behavioral patterns are generated by simple rules followed
by individual group members. Some authors have developed different models, one of them,
known as the self-propelled particle (SPP)model, attempts to capture the collective behavior
of animal groups in terms of interactions between group members which follow a diffusion
process [38–41].

On the other hand, following a biological approach, Couzin and krauze [24, 25] have
proposed a model in which individual animals follow simple rules of thumb: (1) keep the
current position (or location) for best individuals, (2) move from or to nearby neighbors
(local attraction or repulsion), (3) move randomly, and (4) compete for the space within of
a determined distance. Each individual thus admits three different movements: attraction,
repulsión, or random and holds two kinds of states: preserve the position or compete for a
determined position. In the model, the movement, which is executed by each individual, is
decided randomly (according to an internal motivation). On the other hand, the states follow
a fixed criteria set.

The dynamical spatial structure of an animal group can be explained in terms of
its history [36]. Despite such a fact, the majority of studies have failed in considering the
existence of memory in behavioral models. However, recent research [27, 42] have also
shown the existence of collective memory in animal groups. The presence of such memory
establishes that the previous history of the group structure influences the collective behavior
which is exhibited in future stages. Such memory can contain the location of special group
members (the dominant individuals) or the averaged movements produced by the group.
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According to these new developments, it is possible to model complex collective
behaviors by using simple individual rules and setting a general memory. In this work, the
behavioral model of animal groups inspires the definition of novel evolutionary operators
which outline the CAB algorithm. A memory is incorporated to store best animal positions
(best solutions) considering a competition-dominance mechanism.

3. Collective Animal Behavior Algorithm (CAB)

The CAB algorithm assumes the existence of a set of operations that resembles the interaction
rules that model the collective animal behavior. In the approach, each solution within the
search space represents an animal position. The “fitness value” refers to the animal domi-
nance with respect to the group. The complete process mimics the collective animal behavior.

The approach in this paper implements a memory for storing best solutions (animal
positions)mimicking the aforementioned biologic process. Such memory is divided into two
different elements, one for maintaining the best locations at each generation (Mg) and the
other for storing the best historical positions during the complete evolutionary process (Mh).

3.1. Description of the CAB Algorithm

Following other metaheuristic approaches, the CAB algorithm is an iterative process that
starts by initializing the population randomly (generated random solutions or animal
positions). Then, the following four operations are applied until a termination criterion is
met (i.e., the iteration number NI).

(1) Keep the position of the best individuals.

(2) Move from or to nearby neighbors (local attraction and repulsion).

(3) Move randomly.

(4) Compete for the space within a determined distance (update the memory).

3.1.1. Initializing the Population

The algorithm begins by initializing a set A of Np animal positions (A = {a1, a2, . . . , aNp}).
Each animal position ai is a D-dimensional vector containing parameter values to be
optimized. Such values are randomly and uniformly distributed between the prespecified
lower initial parameter bound alow

j and the upper initial parameter bound a
high
j ,

aj,i = alow
j + rand(0, 1) ·

(
a
high
j − alow

j

)
; j = 1, 2, . . . , D; i = 1, 2, . . . ,Np, (3.1)

with j and i being the parameter and individual indexes, respectively. Hence, aj,i is the jth
parameter of the ith individual.

All the initial positions A are sorted according to the fitness function (dominance) to
form a new individual set X = {x1, x2, . . . , xNp}, so that we can choose the best B positions
and store them in the memory Mg and Mh. The fact that both memories share the same
information is only allowed at this initial stage.
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3.1.2. Keep the Position of the Best Individuals

Analogous to the biological metaphor, this behavioral rule, typical from animal groups, is
implemented as an evolutionary operation in our approach. In this operation, the first B
elements ({a1, a2, . . . , aB}), of the new animal position set A, are generated. Such positions
are computed by the values contained inside the historical memory Mh, considering a slight
random perturbation around them. This operation can be modeled as follows:

al = ml
h + v, (3.2)

where l ∈ {1, 2, . . . , B} while ml
h
represents the l-element of the historical memory Mh. v is a

random vector with a small enough length.

3.1.3. Move from or to Nearby Neighbors

From the biological inspiration, animals experiment a random local attraction or repulsion
according to an internal motivation. Therefore, we have implemented new evolutionary
operators that mimic such biological pattern. For this operation, a uniform random number
rm is generated within the range [0, 1]. If rm is less than a threshold H, a determined
individual position is attracted/repelled considering the nearest best historical position
within the group (i.e., the nearest position in Mh); otherwise, it is attracted/repelled to/from
the nearest best location within the group for the current generation (i.e., the nearest position
in Mg). Therefore such operation can be modeled as follows:

ai =

⎧
⎨
⎩
xi ± r · (mnearest

h − xi
)

with probability H

xi ± r ·
(
mnearest

g − xi
)

with probability (1 −H),
(3.3)

where i ∈ {B+1, B+2, . . . ,Np},mnearest
h andmnearest

g represent the nearest elements ofMh and
Mg to xi, while r is a random number between [−1, 1]. Therefore, if r > 0, the individual
position xi is attracted to the position mnearest

h
or mnearest

g , otherwise such movement is
considered as a repulsion.

3.1.4. Move Randomly

Following the biological model, under some probability P , one animal randomly changes its
position. Such behavioral rule is implemented considering the next expression:

ai =

⎧
⎨
⎩
r with probability P

xi with probability (1 − P),
(3.4)

with i ∈ {B+1, B+2, . . . ,Np}and r a random vector defined in the search space. This operator
is similar to reinitializing the particle in a random position, as it is done by (3.1).



6 Discrete Dynamics in Nature and Society

ρ

Figure 1:Dominance concept as it is presentedwhen two animals confront each other inside of a ρ distance.

3.1.5. Compete for the Space within a Determined Distance (Update the Memory)

Once the operations to keep the position of the best individuals, such as moving from or
to nearby neighbors and moving randomly, have been applied to all Np animal positions,
generating Np new positions, it is necessary to update the memory Mh.

In order to update memory Mh, the concept of dominance is used. Animals that
interact within the group maintain a minimum distance among them. Such distance, which
is defined as ρ in the context of the CAB algorithm, depends on how aggressive the animal
behaves [34, 42]. Hence, when two animals confront each other inside such distance, the most
dominant individual prevails meanwhile other withdraw. Figure 1 depicts the process.

In the proposed algorithm, the historical memory Mh is updated considering the
following procedure.

(1) The elements of Mh and Mg are merged into MU (MU = Mh ∪Mg).

(2) Each element mi
U of the memory MU is compared pairwise to the remaining

memory elements ({m1
U,m

2
U, . . . ,m

2B−1
U }). If the distance between both elements is

less than ρ, the element getting a better performance in the fitness function prevails
meanwhile the other is removed.

(3) From the resulting elements of MU (from Step 2), it is selected the B best value to
build the new Mh.

The use of the dominance principle in CAB allows considering as memory elements
those solutions that hold the best fitness value within the region which has been defined by
the ρ distance.

The procedure improves the exploration ability by incorporating information regard-
ing previously found potential solutions during the algorithm’s evolution. In general, the
value of ρ depends on the size of the search space. A big value of ρ improves the exploration
ability of the algorithm although it yields a lower convergence rate.

In order to calculate the ρ value, an empirical model has been developed after
considering several conducted experiments. Such model is defined by following equation:

ρ =

∏D
j=1

(
a
high
j − alow

j

)

10 ·D , (3.5)
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where alow
j and a

high
j represent the prespecified lower and upper bound of the j-parameter

respectively, within an D-dimensional space.

3.1.6. Computational Procedure

The computational procedure for the proposed algorithm can be summarized as follows:

Step 1. Set the parameters Np, B, H, P , and NI.

Step 2. Generate randomly the position set A = {a1, a2, . . . , aNp} using (3.1).

Step 3. Sort A according to the objective function (dominance) to build X = {x1, x2, . . . , xNp}.

Step 4. Choose the first B positions of X and store them into the memory Mg .

Step 5. Update Mh according to Section 3.1.5 (during the first iteration: Mh = Mg).

Step 6. Generate the first B positions of the new solution setA({a1, a2, . . . , aB}).Such positions
correspond to the elements of Mh making a slight random perturbation around them,

al = ml
h + v, (3.6)

being v a random vector of a small enough length.

Step 7. Generate the rest of the A elements using the attraction, repulsion, and random
movements.

for i = B + 1 :Np

{if (r1 < P) then

attraction and repulsion movement

if (r2 < H) then

ai = xi ± r · (mnearest
h − xi)

else if

ai = xi ± r · (mnearest
g − xi)

}
else

random movement
{
ai = r

}

end

where r1, r2 ∈ r and (0, 1) and r ∈ [−1, 1]

Step 8. IfNI is completed, the process is finished; otherwise, go back to Step 3.

The best value inMh represents the global solution for the optimization problem.
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Table 1: Results of CAB with variant values of parameter P over 5 typical functions, withH = 0.8.

Function n P = 0.5, μ(σ2) P = 0.6, μ(σ2) P = 0.7, μ(σ2) P = 0.8, μ(σ2) P = 0.9, μ(σ2)

f1 30 2.63 × 10−11

(2.13 × 10−12)
1.98 × 10−17

(6.51 × 10−18)
1.28 × 10−23

(3.54 × 10−24)
2.33 × 10−29

(4.41 × 10−30)
4.53 × 10−23

(5.12 × 10−24)

f3 30 5.71 × 10−13

(1.11 × 10−14)
7.78 × 10−19

(1.52 × 10−20)
4.47 × 10−27

(3.6 × 10−28)
7.62 × 10−31

(4.23 × 10−32)
3.42 × 10−26

(3.54 × 10−27)

f5 30 5.68 × 10−11

(2.21 × 10−12)
1.54 × 10−17

(1.68 × 10−18)
5.11 × 10−22

(4.42 × 10−23)
9.02 × 10−28

(6.77 × 10−29)
4.77 × 10−20

(1.94 × 10−21)

f10 30 3.50 × 10−5

(3.22 × 10−6)
2.88 × 10−9

(3.28 × 10−10)
2.22 × 10−12

(4.21 × 10−13)
8.88 × 10−16

(3.49 × 10−17)
1.68 × 10−11

(5.31 × 10−12)

f11 30 1.57 × 10−2

(1.25 × 10−3)
1.14 × 10−6

(3.71 × 10−7)
2.81 × 10−8

(5.21 × 10−9)
4.21 × 10−10

(4.87 × 10−11)
4.58 × 10−4

(6.92 × 10−5)

Table 2: Results of CAB with variant values of parameter H over 5 typical functions, with P = 0.8.

Function n H = 0.5, μ(σ2) H = 0.6, μ(σ2) H = 0.7, μ(σ2) H = 0.8, μ(σ2) H = 0.9, μ(σ2)

f1 30 2.23 × 10−10

(8.92 × 10−11)
3.35 × 10−18

(3.21 × 10−19)
3.85 × 10−22

(6.78 × 10−23)
2.33 × 10−29

(4.41 × 10−30)
4.72 × 10−21

(6.29 × 10−22)

f3 30 5.71 × 10−10

(5.12 × 10−11)
3.24 × 10−18

(1.32 × 10−19)
6.29 × 10−27

(8.26 × 10−23)
7.62 × 10−31

(4.23 × 10−32)
5.41 × 10−22

(5.28 × 10−23)

f5 30 8.80 × 10−9

(5.55 × 10−10)
6.72 × 10−21

(1.11 × 10−22)
1.69 × 10−23

(1.34 × 10−24)
9.02 × 10−28

(6.77 × 10−29)
7.39 × 10−21

(4.41 × 10−22)

f10 30 2.88 × 10−4

(3.11 × 10−5)
3.22 × 10−10

(2.18 × 10−12)
1.23 × 10−14

(4.65 × 10−15)
8.88 × 10−16

(3.49 × 10−17)
5.92 × 10−7

(3.17 × 10−9)

f11 30 1.81 × 10−4

(2.16 × 10−5)
2.89 × 10−6

(6.43 × 10−7)
2.36 × 10−7

(3.75 × 10−4)
4.21 × 10−10

(4.87 × 10−11)
3.02 × 10−4

(4.37 × 10−6)

4. Experimental Results

4.1. Test Suite and Experimental Setup

A comprehensive set of 31 functions that have been collected from [43–54], they are used
to test the performance of the proposed approach. Tables 12–17 in the appendix present the
benchmark functions used in our experimental study. Such functions are classified into four
different categories: unimodal test functions (Table 12), multimodal test functions (Table 13),
multimodal test functions with fixed dimensions (Tables 14 and 15), and GKLS test functions
(Tables 16 and 17). In such tables, n is the dimension of function, fopt is the minimum value
of the function, and S is a subset of Rn. The optimum location (xopt) for functions in Tables 12
and 13 fall into [0]n, except for f5, f12 and f13 with xopt falling into [1]n and f8 in [420.96]n. A
detailed description of all functions is given in the appendix.

To study the impact of parameters P and H (described in Sections 3.1.3 and 3.1.4)
over the performance of CAB, different values have been tested on 5 typical functions. The
maximum number of iterations is set to 1000. Np and B are fixed to 50 and 10, respectively.
The mean best function values (μ) and the standard deviations (σ2) of CAB, averaged over
30 runs, for the different values of P and H are listed in Tables 1 and 2, respectively. The
results suggest that a proper combination of different parameter values can improve the
performance of CAB and the quality of solutions. Table 1 shows the results of an experiment
which consist in fixing H = 0.8 and varying P from 0.5 to 0.9. On a second test, the
experimental setup is swapped, that is, P = 0.8 and H varies from 0.5 to 0.9. The best results
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in the experiments are highlighted in both tables. After the best value in parameters P andH
has been experimentally determined (with a value of 0.8), it is kept for all tests throughout
the paper.

In order to demonstrate that the CAB algorithm provides a better performance, it
has been compared to other optimization approaches such as metaheuristic algorithms
(Section 4.2) and continuous methods (Section 4.3). The results of such comparisons are
explained in the following sections.

4.2. Performance Comparison with Other Metaheuristic Approaches

We have applied CAB to 31 test functions in order to compare its performance to other well-
knownmetaheuristic algorithms such as the real genetic algorithm (RGA) [55], the PSO [18],
the gravitational search algorithm (GSA) [56], and the differential evolution method (DE)
[57]. In all cases, population size is set to 50. The maximum iteration number is 1000 for
functions in Tables 12 and 13, and 500 for functions in Table 14 and 16. Such stop criteria have
been chosen as to keep compatibility to similar works which are reported in [14] and [58].

Parameter settings for each algorithm in the comparison are described as follows.

(1) RGA: according to [55], the approach uses arithmetic crossover, Gaussianmutation,
and roulette wheel selection. The crossover and mutation probabilities have been
set to 0.3 and 0.1, respectively.

(2) PSO: In the algorithm, c1 = c2 = 2 while the inertia factor (ω) is decreasing linearly
from 0.9 to 0.2.

(3) In GSA, G0 is set to 100 and α is set to 20; T is the total number of iterations (set
to 1000 for functions f1–f13 and to 500 for functions f14–f31). Besides, K0 is set to
50 (total number of agents) and is decreased linearly to 1. Such values have been
found as the best configuration set according to [56].

(4) DE: the DE/Rand/1 scheme is employed. The parameter settings follow the
instructions in [57]. The crossover probability is CR = 0.9 and the weighting factor
is F = 0.8.

Several experimental tests have been developed for comparing the performance of
the CAB algorithm against other metaheuristic algorithms. The experiments have been
developed considering the following function types.

(1) Unimodal test functions (Table 12).

(2) Multimodal test functions (Table 13).

(3) Multimodal test functions with fixed dimensions (Tables 14 and 15).

(4) GKLS test functions (Tables 16 and 17).

4.2.1. Unimodal Test Functions

In this test, the performance of the CAB algorithm is compared to RGA, PSO, GSA and DE,
considering functions with only one minimum/maximum. Such function type is represented
by functions f1 to f7 in Table 12. The results, over 30 runs, are reported in Table 3 considering
the following performance indexes: the average best-so-far solution, the average mean fitness
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Figure 2: Performance comparison of RGA, PSO, GSA, DE, and CAB for minimization of (a) f1 and (b) f7
considering n = 30.

Table 3: Minimization result of benchmark functions in Table 12 with n = 30. Maximum number of
iterations = 1000.

RGA PSO GSA DE CAB

f1

Average best sofar 23.13 1.8 × 10−3 7.3 × 10−11 11.21 2.3 × 10−29

Median best sofar 21.87 1.2 × 10−3 7.1 × 10−11 13.21 1.1 × 10−20

Average mean fitness 23.45 1.2 × 10−2 2.1 × 10−10 11.78 1.2 × 10−10

f2

Average best sofar 1.07 2.0 4.03 × 10−5 0.95 5.28 × 10−20

Median best sofar 1.13 1.9 × 10−3 4.07 × 10−5 1.05 2.88 × 10−11

Average mean fitness 1.07 2.0 6.9 × 10−5 0.90 1.43 × 10−9

f3

Average best sofar 5.6 × 103 4.1 × 103 0.16 × 103 0.12 7.62 × 10−31

Median best sofar 5.6 × 103 2.2 × 103 0.15 × 103 0.09 1.28 × 10−19

Average mean fitness 5.6 × 103 2.9 × 103 0.16 × 103 0.11 3.51 × 10−12

f4

Average best sofar 11.78 8.1 3.7 × 10−6 0.012 2.17 × 10−17

Median best sofar 11.94 7.4 3.7 × 10−6 0.058 5.65 × 10−12

Average mean fitness 11.78 23.6 8.5 × 10−6 0.013 4.96 × 10−10

f5

Average best sofar 1.1 × 103 3.6 × 104 25.16 0.25 9.025 × 10−28

Median best sofar 1.0 × 103 1.7 × 103 25.18 0.31 3.10 × 10−18

Average mean fitness 1.1 × 103 3.7 × 104 25.16 0.24 6.04 × 10−14

f6

Average best sofar 24.01 1.0 × 10−3 8.3 × 10−11 1.25 × 10−3 4.47 × 10−29

Median best sofar 24.55 6.6 × 10−3 7.7 × 10−11 3.33 × 10−3 4.26 × 10−21

Average mean fitness 24.52 0.02 2.6 × 10−10 1.27 × 10−3 1.03 × 10−12

f7

Average best sofar 0.06 0.04 0.018 6.87 × 10−3 3.45 × 10−5

Median best sofar 0.06 0.04 0.015 4.72 × 10−3 7.39 × 10−4

Average mean fitness 0.56 1.04 0.533 1.28 × 10−2 8.75 × 10−4

function, and the median of the best solution in the last iteration. The best result for
each function is boldfaced. According to this table, CAB provides better results than RGA,
PSO, GSA, and DE for all functions. In particular, the results show considerable precision
differences which are directly related to different local operators at each metaheuristic
algorithm. Moreover, the good convergence rate of CAB can be observed from Figure 2.
According to this figure, CAB tends to find the global optimum faster than other algorithms
and yet offer the highest convergence rate.
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Table 4: P values produced by Wilcoxon’s test comparing CAB versus RGA, PSO, GSA, and DE over the
“average best-so-far” values from Table 3.

CAB versus RGA PSO GSA DE

f1 1.21 × 10−6 3.94 × 10−5 7.39 × 10−4 1.04 × 10−6

f2 2.53 × 10−6 5.62 × 10−5 4.92 × 10−4 2.21 × 10−6

f3 8.34 × 10−8 6.42 × 10−8 7.11 × 10−7 1.02 × 10−4

f4 3.81 × 10−8 1.91 × 10−8 7.39 × 10−4 1.27 × 10−6

f5 4.58 × 10−8 9.77 × 10−9 4.75 × 10−7 0.23 × 10−4

f6 8.11 × 10−8 1.98 × 10−6 5.92 × 10−4 2.88 × 10−5

f7 5.12 × 10−7 4.77 × 10−7 8.93 × 10−6 1.01 × 10−4

In order to statistically analyze the results in Table 3, a non-parametric significance
proof known as the Wilcoxon’s rank test has been conducted [59, 60], which allows assessing
result differences among two related methods. The analysis is performed considering a 5%
significance level over the “average best-so-far” data. Table 4 reports the P values produced
by Wilcoxon’s test for the pairwise comparison of the “average best so-far” of four groups.
Such groups are formed by CAB versus RGA, CAB versus PSO, CAB versus GSA, and CAB
versus DE. As a null hypothesis, it is assumed that there is no significant difference between
mean values of the two algorithms. The alternative hypothesis considers a significant
difference between the “average best-so-far” values of both approaches. All P values reported
in the table are less than 0.05 (5% significance level) which is a strong evidence against the
null hypothesis, indicating that the CAB results are statistically significant and that it has not
occurred by coincidence (i.e., due to the normal noise contained in the process).

4.2.2. Multimodal Test Functions

Multimodal functions, in contrast to unimodal, have many local minima/maxima which
are, in general, more difficult to optimize. In this section the performance of the CAB
algorithm is compared to other metaheuristic algorithms considering multimodal functions.
Such comparison reflects the algorithm’s ability to escape from poor local optima and to
locate a near-global optimum. We have done experiments on f8 to f13 of Table 13 where the
number of local minima increases exponentially as the dimension of the function increases.
The dimension of these functions is set to 30. The results are averaged over 30 runs, reporting
the performance indexes in Table 5 as follows: the average best-so-far solution, the average
mean fitness function and, the median of the best solution in the last iteration (the best result
for each function is highlighted). Likewise, P values of the Wilcoxon signed-rank test of 30
independent runs are listed in Table 6.

For f9, f10, f11, and f12, CAB yields a much better solution than the others. However,
for functions f8 and f13, CAB produces similar results to RGA and GSA, respectively. The
Wilcoxon rank test results, presented in Table 6, show that CAB performed better than
RGA, PSO, GSA, and DE considering the four problems f9–f12, whereas, from a statistical
viewpoint, there is not difference in results between CAB and RGA for f8 and between CAB
and GSA for f13. Evolutions of the “average best-so-far” solutions over 30 runs for functions
f10 and f12 are shown in Figure 3.
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Table 5: Minimization of benchmark functions in Table 13 with n = 30. Maximum number of iterations =
1000.

RGA PSO GSA DE CAB

f8

Average best sofar −1.26 × 104 −9.8 × 103 −2.8 × 103 −4.1 × 103 −1.2 × 104

Median best sofar −1.26 × 104 −9.8 × 103 −2.6 × 103 −4.1 × 103 −1.2 × 104

Average mean fitness −1.26 × 104 −9.8 × 103 −1.1 × 103 −4.1 × 103 −1.2 × 104

f9

Average best sofar 5.90 55.1 15.32 30.12 1.0 × 10−3

Median best sofar 5.71 56.6 14.42 31.43 7.6 × 10−4

Average mean fitness 5.92 72.8 15.32 30.12 1.0 × 10−3

f10

Average best sofar 2.13 9.0 × 10−3 6.9 × 10−6 3.1 × 10−3 8.88 × 10−16

Median best sofar 2.16 6.0 × 10−3 6.9 × 10−6 2.3 × 10−3 2.97 × 10−11

Average mean fitness 2.15 0.02 1.1 × 10−5 3.1 × 10−3 9.0 × 10−10

f11

Average best sofar 1.16 0.01 0.29 1.0 × 10−3 1.14 × 10−13

Median best sofar 1.14 0.0081 0.04 1.0 × 10−3 1.14 × 10−13

Average mean fitness 1.16 0.055 0.29 1.0 × 10−3 1.14 × 10−13

f12

Average best sofar 0.051 0.29 0.01 0.12 2.32 × 10−30

Median best sofar 0.039 0.11 4.2 × 10−13 0.01 5.22 × 10−22

Average mean fitness 0.053 9.3 × 103 0.01 0.12 4.63 × 10−17

f13

Average best sofar 0.081 3.1 × 10−18 3.2 × 10−32 1.77 × 10−25 1.35 × 10−32

Median best sofar 0.032 2.2 × 10−23 2.3 × 10−32 1.77 × 10−25 2.20 × 10−21

Average mean fitness 0.081 4.8 × 105 3.2 × 10−32 1.77 × 10−25 3.53 × 10−17

Table 6: P values produced by Wilcoxon’s test comparing CAB versus RGA, PSO, GSA, and DE over the
“average best-so-far” values from Table 5.

CAB versus RGA PSO GSA DE
f8 0.89 8.38 × 10−4 1.21 × 10−4 4.61 × 10−4

f9 7.23 × 10−7 1.92 × 10−9 5.29 × 10−8 9.97 × 10−8

f10 6.21 × 10−9 4.21 × 10−5 1.02 × 10−4 3.34 × 10−4

f11 7.74 × 10−9 3.68 × 10−7 4.10 × 10−7 8.12 × 10−5

f12 1.12 × 10−8 8.80 × 10−9 2.93 × 10−7 4.02 × 10−8

f13 4.72 × 10−9 3.92 × 10−5 0.93 2.20 × 10−4
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Figure 3: Performance comparison of RGA, PSO, GSA, DE, and CAB for minimization of (a) f10 and (b)
f12 considering n = 30.
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Figure 4: Performance comparison of RGA, PSO, GSA, DE, and CAB for minimization of (a) f15 and
(b) f22.

4.2.3. Multimodal Test Functions with Fixed Dimensions

In the following experiments the performance of the CAB algorithm is compared to RGA,
PSO, GSA, andDE considering functions which are extensively reported in themetaheuristic-
based optimization literature [49–54]. Such functions, represented by f14 to f23 in Tables 14
and 15, are all multimodal with fixed dimensions. Table 7 shows the outcome of such process.
Results, presented in Table 7, show howmetaheuristic algorithms maintain a similar average
performance when they are applied to low-dimensional functions [58]. The results show that
RGA, PSO, and GSA have similar solutions and performances that are nearly the same as it
can be seen in Figure 4.

4.2.4. GKLS Test Functions

This section considers GKLS functions which are built using the GKLS-generator described
in [54]. In the construction, the generator uses a set of user-defined parameters for building
a multimodal function with known local and global minima. For conducting the numerical
experiments, eight GKLS functions been employed which are defined by f24 to f31. Details
of their characteristics and parameters for their construction are listed in Tables 16 and
17. Results, over 30 runs, are reported in Table 8 (the best result for each function test is
boldfaced). According to this table, CAB provides better results than RGA, PSO, GSA, and
DE for all GKLS functions, in particular for functions holding bigger dimensions (f28–f31).
Such performance is directly related to a better tradeoff between exploration and exploitation
which is produced by CAB operators. Likewise, as it can be observed from Figure 5, the
CAB algorithm possesses better convergence rates in comparison to other metaheuristic
algorithms.

In order to statistically validate the results of Table 8, the Wilcoxon’s test has been
conducted. Table 9 shows the P values obtained after applying such analysis over 30
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Figure 5: Performance comparison of RGA, PSO, GSA, DE and CAB for minimization of the GKLS-
functions: (a) f28 and (b) f31.

Table 8: Minimization result of GKLSfunctions in Table 16. Maximum number of iterations = 500.

RGA PSO GSA DE CAB

f24

Average best sofar −0.942004 −0.932011 −0.899812 −0.951937 −1
Median best sofar −0.908521 −0.910058 −0.882597 −0.909844 −0.999924

Average mean fitness −0.907354 −0.909058 −0.882597 −0.903981 −0.999865

f25

Average best sofar −0.931281 −0.941281 −0.813412 −0.968839 −1
Median best sofar −0.900889 −0.899011 −0.803482 −0.909983 −0.999961

Average mean fitness −0.900115 −0.898545 −0.801143 −0.901101 −0.999732

f26

Average best sofar −0.939845 −0.924521 −0.798799 −0.944561 −1
Median best sofar −0.808034 −0.872132 −0.701174 −0.836621 −0.999081

Average mean fitness −0.801618 −0.864321 −0.698722 −0.816695 −0.963632

f27

Average best sofar −0.948823 −0.939799 −0.778588 −0.948977 −1
Median best sofar −0.818891 −0.798812 −0.668721 −0.812237 −0.999552

Average mean fitness −0.803487 −0.758892 −0.601179 −0.808721 0.990978

f28

Average best sofar −0.888821 −0.858814 −0.618791 −0.871471 −0.99907
Median best sofar −0.695712 −0.662715 −0.550711 −0.773419 −0.889712

Average mean fitness −0.599871 −0.500784 −0.443982 −0.612876 −0.787712

f29

Average best sofar −0.872291 −0.880139 −0.642839 −0.885412 −0.998681
Median best sofar −0.618732 −0.602568 −0.452974 −0.702591 −0.857517

Average mean fitness −0.552374 −0.459871 −0.400781 −0.610887 −0.800181

f30

Average best sofar −0.798712 −0.779521 −0.607894 −0.807127 −0.985712
Median best sofar −0.684521 −0.645828 −0.401896 −0.534519 −0.882378

Average mean fitness −0.551411 −0.497812 −0.400874 −0.458717 −0.819784

f31

Average best sofar −0.788952 −0.792231 −0.613691 −0.798827 −0.998712
Median best sofar −0.692354 −0.702387 −0.596711 −0.672895 −0.842397

Average mean fitness −0.601008 −0.652394 −0.482337 −0.604732 −0.808897
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Table 9: P values produced by Wilcoxon’s test comparing CAB versus RGA, PSO, GSA, and DE over the
“average best-so-far” values from Table 8.

CAB versus RGA PSO GSA DE
f24 0.0352 0.0312 0.0121 0.0389
f25 0.0211 0.0237 0.0118 0.0311
f26 0.0224 0.0238 0.0081 0.0301
f27 0.0273 0.0231 0.0023 0.0308
f28 0.0208 0.0198 0.0011 0.0210
f29 0.0202 0.0219 0.0009 0.0258
f30 0.0175 0.0165 0.0004 0.0221
f31 0.0159 0.0166 0.0002 0.0208

independent executions. Since all P values, presented in Table 9, are less than 0.05, it indicates
that the CAB results are statistically better.

4.3. Comparison to Continuous Optimization Methods

Finally, the CAB algorithm is also compared to continuous optimization methods by
considering some functions of the appendix. Since the BFSG algorithm [61] is one of the
most effective continuous methods for solving unconstrained optimization problems, it has
been considered as a basis for the algorithms used in the comparison.

In order to compare the performance of CAB to continuous optimization approaches,
two different tests have been conducted. The first one tests the ability of BFGS and CAB
to face unimodal optimization tasks (see Section 4.3.1) is evaluated. The second experiment
analyzes the performance of CAB and one BFGS-based approach, when they are both applied
to multimodal functions (review Section 4.3.2).

4.3.1. Local Optimization

In the first experiment, the performance of algorithms BFGS and CAB over unimodal
functions is compared. In unimodal functions, the global minimum matches the local
minimum. Quasi-Newton methods, such as the BFGS, have a fast rate of local convergence
although it depends on the problem’s dimension [62, 63]. Considering that not all unimodal
functions of Table 12 fulfill the requirements imposed by the gradient-based approaches (i.e.,
f2 and f4 are not differentiable meanwhile f7 is nonsmooth), we have chosen the Rosenbrock
function (f5) as a benchmark.

In the test, both algorithms (BFGS and CAB) are employed to minimizef5, considering
different dimensions. For the BFGS implementation, B0 = I is considered as initial
matrix. Likewise, parameters δ and σ are set to 0.1 and 0.9 respectively. Although several
performance criteria may define a comparison index, most can be applied to only onemethod
timely (such as the number of gradient evaluations). Therefore, this paper considers the
elapsed time and the iteration number (once the minimum has been reached) as performance
indexes in the comparison. In the case of BFGS, the termination condition is assumed
as ‖g5(x)‖ ≤ 1 × 10−6, with g5(x) being the gradient of f5(x). On the other hand, the stopping
criterion of CAB considers when no more changes to the best element in memory Mh are
registered. Table 10 presents the results of both algorithms considering several dimensions
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Table 10: Performance comparison between the BFGS and the CAB algorithm, considering different
dimensions over the Rosenbrock function. The averaged elapsed time (AET) is referred in seconds.

f5 AET AIN
n BFGS CAB BFGS CAB
2 0.15 4.21 6 89
10 0.55 5.28 22 98
30 1.35 5.44 41 108
50 2.77 5.88 68 112
70 4.23 6.11 93 115
100 5.55 6.22 105 121
120 6.64 6.71 125 129

Table 11: Performance comparison between the ADAPT and the CAB algorithm considering different
multimodal functions. The averaged elapsed time (AET) is referred in the format M’s (Minute’second).

Function n ADAPT CAB
ALS AET AIN ABS AET AIN ABS

f9 30 3705 45.4 23,327 1.2 × 10−2 10.2 633 1.0 × 10−3

f10 30 4054 1′05.7 38,341 6.21 × 10−12 12.1 723 8.88 × 10−16

f11 30 32,452 2′12.1 102,321 4.51 × 10−10 15.8 884 1.14 × 10−13

f17 2 1532 33.2 20,202 0.3976 7.3 332 0.3979
f18 2 1233 31.6 18,845 −3.8611 6.6 295 −3.8628

(n ∈ {2, 10, 30, 50, 70, 100, 120}) of f5. In order to assure consistency, such results represent
the averaged elapsed time (AET) and the averaged iteration number (AIN) over 30 different
executions. It is additionally considered that at each execution both methods are initialized
in a random point (inside the search space).

From Table 10, we can observe that the BFGS algorithm produces shorter elapsed
times and fewer iterations than the CAB method. However, from n = 70, the CAB algorithm
contendwith similar results. The fact that the BFGS algorithm outperforms the CAB approach
cannot be deemed as a negative feature considering the restrictions imposed to the functions
by the BFGS method.

4.3.2. Global Optimization

Since the BFGS algorithm exploits only local information, it may easily get trapped into local
optima restricting its use for global optimization. Thus, several methods based on continuous
optimization approaches have been proposed. One of the most widely used techniques is the
so-called multistart [64] (MS). In MS a point is randomly chosen from a feasible region as
initial solution and subsequently a continuous optimization algorithm (local search) starts
from it. Then, the process is repeated until a near global optimum is reached. The weakness of
MS is that the same local minima may be found over and over again, wasting computational
resources [65].

In order to compare the performance of the CAB approach to continuous optimization
methods in the context of global optimization, the MS algorithm ADAPT [66] has been
chosen. ADAPT uses as local search method the BFGS algorithm, which is iteratively
executed. Thus, ADAPT possess two different stop criteria, one for the local procedure BFGS
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Table 12: Unimodal test functions.

Test function S fopt

f1(x) =
∑n

i=1 x
2
i [−100, 100]n 0

f2(x) =
∑n

i=1 |xi| +
∏n

i=1|xi| [−10, 10]n 0
f3(x) =

∑n
i=1(
∑i

j=1 xj)
2

[−100, 100]n 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100]n 0
f5(x) =

∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] [−30, 30]n 0

f6(x) =
∑n

i=1 (xi + 0.5)2 [−100, 100]n 0
f7(x) =

∑n
i=1 ix

4
i + rand(0, 1) [−1.28, 1.28]n 0

Table 13: Multimodal test functions.

Test function S fopt

f8(x) =
∑n

i=1 −xi sin(
√
|xi|) [−500, 500]n −418.98∗n

f9(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2
√
(1/n)

∑n
i=1 x

2
i )−exp((1/n)

∑n
i=1 cos(2πxi))+20 [−32, 32]n 0

f11(x) = (1/4000)
∑n

i=1 x
2
i −
∏n

i=1 cos(xi/
√
i) + 1 [−600, 600]n 0

f12(x) = (π/n){10 sin(πy1)

+
∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2}
+
∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + (xi + 1)/4

u(xi, a, k,m) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

[−50, 50]n 0

f13(x) = 0.1{sin2(3πx1)

+
∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]}
+
∑n

i=1 u(xi, 5, 100, 4)

[−50, 50]n 0

and other for the complete MS approach. For the comparison, the ADAPT algorithm has been
implemented as suggested in [66].

In the second experiment, the performance of the ADAPT and the CAB algorithms
is compared over several multimodal functions described in Tables 13 and 14. The study
considers the following performance indexes: the elapsed time, the iteration number, and
the average best so-far solution. In case of the ADAPT algorithm, the iteration number is
computed as the total iteration number produced by all the local search procedures as the MS
method operates. The termination condition of the ADAPT local search algorithm (BFGS) is
assumed when ‖gk(x)‖ ≤ 1 × 10−5, gk(x) being the gradient of fk(x). On the other hand,
the stopping criterion for the CAB and the ADAPT algorithms is considered when no more
changes in the best solution are registered. Table 11 presents results from both algorithms
considering several multimodal functions. In order to assure consistency, results ponder
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Table 15: Optimum locations of Table 14.

Test function xopt Test function xopt
f14 (−32, 32) f19 (0.114, 0.556, 0.852)
f15 (0.1928, 0.1908, 0.1231, 0.1358) f20 (0.201, 0.15, 0.477, 0.275, 0.311, 0.657)
f16 (0.089,−0.71), (−0.0089, 0.712) f21 5 local minima in aij , i = 1, . . . , 5
f17 (−3.14, 12.27), (3.14, 2.275), (9.42, 2.42) f22 7 local minima in aij , i = 1, . . . , 7
f18 (0,−1) f23 10 local minima in aij , i = 1, . . . , 10

Table 16: Used GKLSfunctions.

Test function n (N) r∗ ρ∗ Function class Function number M S fopt

f24 2 0.9 0.1 D 87 10 [−1, 1]2 −1
f25 2 0.7 0.3 ND 20 10 [−1, 1]2 −1
f26 3 0.9 0.1 D 87 10 [−1, 1]3 −1
f27 3 0.7 0.3 ND 20 10 [−1, 1]3 −1
f28 6 0.9 0.1 D 87 10 [−1, 1]6 −1
f29 6 0.7 0.3 ND 20 10 [−1, 1]6 −1
f30 10 0.9 0.1 D 87 10 [−1, 1]10 −1
f31 10 0.7 0.3 ND 20 10 [−1, 1]10 −1

Table 17: Optimum locations of the used GKLS functions.

Test function xopt
f24 (−0.767, −0.076)
f25 (0.172, 0.174)
f26 (−0.262, 0.253, −0.161)
f27 (−0.168, −0.859, −0.727)
f28 (−0.361, −0.562, −0.650, 0.857, −0.070, 0.906)
f29 (−0.286, 0.227, −0.692, −0.388, −0.299, 0.732)
f30 (0.392, −0.139, −0.667, 0.899, 0.654, −0.609, −0.087, −0.700, −0.287, 0.893)
f31 (0.723, 0.413, 0.473, −0.746, 0.054, −0.412, −0.332, −0.677, 0.996, 0.239)

the averaged elapsed time (AET), the averaged iteration number (AIN) and the average best-
so-far solution (ABS) over 30 different executions. In Table 11, the averaged number of local
searches (ALS) executed by ADAPT during the optimization is additionally considered.

Table 11 provides a summarized performance comparison between the ADAPT and
the CAB algorithms. although both algorithms are able to acceptably locate the global
minimum for both cases, there exist significant differences in the required time for reaching
it. When comparing the averaged elapsed time (AET) and the averaged iteration number
(AIN) in Table 11, CAB uses significantly less time and fewer iterations to reach the global
minimum than the ADAPT algorithm.

5. Conclusions

This article proposes a novel metaheuristic optimization algorithm that is called the collective
animal behavior algorithm (CAB). In CAB, the searcher agents emulates a group of animals
that interact with each other considering simple behavioral rules which are modeled as math-
ematical operators. Such operations are applied to each agent considering that the complete
group has a memory storing the best positions seen so far by using a competition principle.
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The CAB algorithm presents two important characteristics: (1) CAB operators allow
a better tradeoff between exploration and exploitation of the search space; (2) the use of
its embedded memory incorporates information regarding previously found local minima
(potential solutions) during the evolution process.

CAB has been experimentally tested considering a challenging test suite gathering 31
benchmark functions. In order to analyze the performance of the CAB algorithm, it has been
compared to other well-known metaheuristic approaches. The experiments, statistically val-
idated, have demonstrated that CAB generally outperforms other metaheuristic algorithms
for most of the benchmark functions regarding the solution quality. In this study, the CAB
algorithm has also been compared to algorithms based on continuous optimization methods.
The results have shown that althogh continuous-based approaches outperform CAB for local
optimization tasks, they face great difficulties in solving global optimization problems.

Appendix

List of Benchmark Functions

For more details see Tables 12, 13, 14, 15, 16, and 17.
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[13] B. İlker, Ş. Birbil, and S.-C. Fang, “An electromagnetism-like mechanism for global optimization,”
Journal of Global Optimization, vol. 25, no. 3, pp. 263–282, 2003.

[14] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Filter modeling using gravitational search
algorithm,” Engineering Applications of Artificial Intelligence, vol. 24, no. 1, pp. 117–122, 2011.

[15] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization algorithm: harmony
search,” Simulation, vol. 76, no. 2, pp. 60–68, 2001.



Discrete Dynamics in Nature and Society 23

[16] K. S. Lee and Z. W. Geem, “A newmeta-heuristic algorithm for continuous engineering optimization:
harmony search theory and practice,” Computer Methods in Applied Mechanics and Engineering, vol. 194,
no. 36–38, pp. 3902–3933, 2005.

[17] Z. W. Geem, “Novel derivative of harmony search algorithm for discrete design variables,” Applied
Mathematics and Computation, vol. 199, no. 1, pp. 223–230, 2008.

[18] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 IEEE Interna-
tional Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995.

[19] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search strategy,” Tech. Rep. 91-016,
Politecnico di Milano, 1991.

[20] R. Oftadeh, M. J. Mahjoob, and M. Shariatpanahi, “A novel meta-heuristic optimization algorithm
inspired by group hunting of animals: hunting search,” Computers and Mathematics with Applications,
vol. 60, no. 7, pp. 2087–2098, 2010.

[21] D. J. T. Sumpter, “The principles of collective animal behaviour,” Philosophical Transactions of the Royal
Society B, vol. 361, no. 1465, pp. 5–22, 2006.

[22] O. Petit and R. Bon, “Decision-making processes: the case of collective movements,” Behavioural
Processes, vol. 84, no. 3, pp. 635–647, 2010.

[23] A. Kolpas, J. Moehlis, T. A. Frewen, and I. G. Kevrekidis, “Coarse analysis of collective motion with
different communication mechanisms,” Mathematical Biosciences, vol. 214, no. 1-2, pp. 49–57, 2008.

[24] I. D. Couzin, “Collective cognition in animal groups,” Trends in Cognitive Sciences, vol. 13, no. 1, pp.
36–43, 2009.

[25] I. D. Couzin and J. Krause, “Self-organization and collective behavior in vertebrates,” Advances in the
Study of Behavior, vol. 32, pp. 1–75, 2003.

[26] N. W. F. Bode, D. W. Franks, and A. Jamie Wood, “Making noise: emergent stochasticity in collective
motion,” Journal of Theoretical Biology, vol. 267, no. 3, pp. 292–299, 2010.

[27] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective memory and spatial
sorting in animal groups,” Journal of Theoretical Biology, vol. 218, no. 1, pp. 1–11, 2002.

[28] I. Couzin, “Collective minds,” Nature, vol. 445, no. 7129, p. 715, 2007.
[29] S. Bazazi, J. Buhl, J. J. Hale et al., “Collective motion and cannibalism in locust migratory bands,”

Current Biology, vol. 18, no. 10, pp. 735–739, 2008.
[30] N. W. F. Bode, A. J. Wood, and D. W. Franks, “The impact of social networks on animal collective

motion,” Animal Behaviour, vol. 82, no. 1, pp. 29–38, 2011.
[31] B. H. Lemasson, J. J. Anderson, and R. A. Goodwin, “Collective motion in animal groups from a

neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention,”
Journal of Theoretical Biology, vol. 261, no. 4, pp. 501–510, 2009.

[32] M. Bourjade, B. Thierry, M. Maumy, and O. Petit, “Decision-making processes in the collective
movements of Przewalski horses families Equus ferus Przewalskii: influences of the environment,”
Ethology, vol. 115, pp. 321–330, 2009.

[33] A. Bang, S. Deshpande, A. Sumana, and R. Gadagkar, “Choosing an appropriate index to construct
dominance hierarchies in animal societies: a comparison of three indices,” Animal Behaviour, vol. 79,
no. 3, pp. 631–636, 2010.

[34] Y. Hsu, R. L. Earley, and L. L. Wolf, “Modulation of aggressive behaviour by fighting experience:
mechanisms and contest outcomes,” Biological Reviews, vol. 81, no. 1, pp. 33–74, 2006.

[35] M. Broom, A. Koenig, and C. Borries, “Variation in dominance hierarchies among group-living
animals: modeling stability and the likelihood of coalitions,” Behavioral Ecology, vol. 20, no. 4, pp.
844–855, 2009.

[36] K. L. Bayly, C. S. Evans, and A. Taylor, “Measuring social structure: a comparison of eight dominance
indices,” Behavioural Processes, vol. 73, no. 1, pp. 1–12, 2006.

[37] L. Conradt and T. J. Roper, “Consensus decision making in animals,” Trends in Ecology and Evolution,
vol. 20, no. 8, pp. 449–456, 2005.

[38] A. Okubo, “Dynamical aspects of animal grouping: swarms, schools, flocks, and herds,” Advances in
Biophysics, vol. 22, pp. 1–94, 1986.

[39] C.W. Reynolds, “Flocks, herds and schools: a distributed behavioural model,” Computer Graphics, vol.
21, no. 4, pp. 25–34, 1987.

[40] S. Gueron, S. A. Levin, and D. I. Rubenstein, “The dynamics of herds: from individuals to
aggregations,” Journal of Theoretical Biology, vol. 182, no. 1, pp. 85–98, 1996.
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