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We find an interesting phenomenon that the discrete system appearing in a reference can be
reduced to the old integrable system given by Merola, Ragnisco, and Tu in another reference.
Differing from the works appearing in the above two references, a new discrete integrable system
is obtained by the generalized Ablowitz-Ladik hierarchy; the Darboux transformation of this new
discrete integrable system is established further. As applications of this Darboux transformation,
different kinds of exact solutions of this new system are explicitly given. Investigatingthe
properties of these exact solutions, we find that these exact solutions are not pure soliton solutions,
but their dynamic characteristics are very interesting.

1. Introduction

It is well known that the nonlinear integrable lattice systems have been intensively
investigated in many scientific fields such as physics, chemistry, and biology. The scientific
researchers are not only interested in their rich mathematical structures, but also their
applications in science, such as mathematical physics, numerical analysis, computer science,
statistical physics, and quantum physics. Various integrable lattice systems have been studied
extensively, such as the Toda lattice and the relativistic Toda lattice, the Ablowitz-Ladik
lattice, the Volterra lattice, the Suris lattice, and some discrete classic equation such as discrete
KdV equation, discrete Schrödinger equation, [1–18].

Recently, some new lattice hierarchies and their integrability, Darboux transformation,
conversation law, exact solution, and dynamic characteristics have been holding more
and more attention. In addition, the scheme for constructing nonlinear discrete integrable
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couplings [19] and new transformation methods which are used to directly solve discrete
integrable systems [20] are also worth paying attention to. Among the multitudinous new
integrable hierarchies, we will discuss the so-called new discrete lattice systemwhich is given
by [21, equation (2.12)]

qn,t = q2nrn+1 − qn−1, rn,t = −r2nqn−1 + rn+1, (1.1)

which is derived by Qin. It is very interesting that this equation can be reduced to the old
integrable lattice system under a series of local coordinate transformation, which is given by
Merola et al. [22]. To see this, we give the whole transformation procedure as follows.

Taking the local coordinate transformation rn+1 → r̃n, (1.1) can be rewritten as

qn,t = q2nr̃n − qn−1, r̃n,t = −r̃2nqn + r̃n+1. (1.2)

Taking another local coordinate transformation n → −n, (1.2) can be rewritten as

q −n,t= q
2
−n r̃ −n − q −n−1 , r̃ −n,t = −r̃2−nq −n + r̃ −n+1 . (1.3)

Taking the third coordinate transformation −n → n̂ and −(n + 1) → n̂ + 1, −(n − 1) → n̂ − 1,
(1.3) can be rewritten as

qn̂,t = q2n̂r̃n̂ − qn̂+1, r̃n̂,t = −r̃2n̂qn̂ + r̃n̂−1. (1.4)

To simplify notation, we still use n and rn to take the place of n̂ and r̃n. Thus, (1.4) can be
rewritten as

qn,t = q2nrn − qn+1, rn,t = −qnr2n + rn−1. (1.5)

Equation (1.5) is equivalent to the following Equation:

(
∣

∣q
〉

|r〉

)

t1

=

( (〈

q | r〉 − E)∣∣q〉
(

E−1 − 〈q | r〉)|r〉

)

, (1.6)

where E is a shift operator and |q〉 ↔ qn, |r〉 ↔ rn, t1 ↔ t. Equation (1.6) was given in [22]
as the 44th equation. The results investigated by Qin in [21] are different from those given in
[22]; however, these two systems are equivalent under the above coordinate transformations,
noting that the coordinate scales of these two systems are different, and both work are
interesting and very useful.

The rest of this paper is organized as follows. In Section 2, based on Qin’s work, we
will derive an indeed new lattice system from the generalized Ablowitz-Ladik hierarchy and
establish its Darboux transformation. In Section 3, under the Darboux transformation, using
nonzero or zero constant as seeds, we will obtain different kinds of exact solutions of this new
system and discuss their dynamic characteristics. It is worthy of mentioning that the exact
solutions of this new lattice system which we will obtain have many particular phenomena;
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they are not pure soliton solutions and their waveforms are very interesting. In Section 4,
brief conclusions are given.

2. New Discrete Lattice System and Its Darboux Transformation

As in [21], we introduce the following discrete spectral problem:

Eψn = Un

(

qn, rn, λ
)

ψn, (2.1)

where

Un =

(

1 + θqnrn λqn

λrn λ2

)

, θ = 0, 1. (2.2)

This is a generalization of the Ablowitz-Ladik spectral problem; its corresponding auxiliary
problem is shown as follows:

ψn,t = Vn
(

qn, rn, λ
)

ψn. (2.3)

First, we consider the stationary discrete zero curvature equation

(EVn)Un −UnVn = O, (2.4)

where

Vn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∞
∑

j=0

a
(j)
n λ−2j

∞
∑

j=0

b
(j)
n λ−2j+1

∞
∑

j=0

c
(j)
n λ−2j+1 −

∞
∑

j=0

a
(j)
n λ−2j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, O =

⎛

⎜

⎝

0 0

0 0

⎞

⎟

⎠. (2.5)

Substituting (2.2) and (2.5) into (2.4), we obtain a series of recursive formulas as follows:

(

1 + θqnrn
)

[

(E − 1)a(j)n
]

+ rnb
(j+1)
n+1 − qnc(j+1)n = 0,

b
(j+1)
n+1 + qn

[

(E + 1)a(j)n
]

− (1 + θqnrn
)

b
(j)
n = 0,

−c(j+1)n − rn
[

(E + 1)a(j)n
]

+
(

1 + θqnrn
)

c
(j)
n+1 = 0,

qnc
(j)
n+1 − rnb

(j)
n − (E − 1)a(j)n = 0,

b
(0)
n+1 = c

(0)
n = 0.

(2.6)

Second, we consider the discrete zero curvature equation

Un,t =
(

EV
(m)
n

)

Un −UnV
(m)
n (2.7)
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with

V
(m)
n =

(

λ2mV +
n

)

+ Δ(m)
n , (2.8)

where the positive power term V +
n and modification term Δ(m)

n are, respectively, given by

V +
n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m
∑

j=0

a
(j)
n λ−2j

m
∑

j=0

b
(j)
n λ−2j+1

m
∑

j=0

c
(j)
n λ−2j+1 −

m
∑

j=0

a
(j)
n λ−2j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Δ(m)
n =

(−(1 − θ)a(m)
n 0

0 0

)

. (2.9)

Substituting Un, V
(m)
n into the discrete zero curvature equation (2.7) and recurring to

the stationary discrete zero curvature equation (2.3) yield

Un,t =
(

EΔ(m)
n

)

Un −UnΔ
(m)
n . (2.10)

Thus, we obtain

qn,tm = −b(m+1)
n+1 − (1 − θ)qna(m)

n+1,

rn,tm = c(m+1)
n + (1 − θ)rna(m)

n ,

θ
(

qnrn
)

tm
= θ
(

1 + θqnrn
)

(

a
(m)
n+1 − a

(m)
n

)

, m = 0, 1, 2, . . . .

(2.11)

Obviously, when θ = 0 and θ = 1, all equations in (2.11) satisfy compatibility condition
between (2.1) and the following auxiliary spectral problem:

ψn,t = V
(m)
n ψn. (2.12)

When j = 0, 1 and θ = 1, m = 1, letting a(0)n = −1/2 and considering the integral constant as
zero, by using (2.6) and (2.11), Qin derived (1.1). Moreover, when j = 0, 1, 2 and θ = 1, m = 2,
letting a(0)n = −1/2 and considering the integral constant as zero, by using (2.6) and (2.11)
again, we successfully obtain an indeed new lattice system as follows:

qn,t = qn−1
(

qn−1rn + 2qnrn+1
) − q2n

(

qnr
2
n+1 − rn+2

)

− qn−2,

rn,t = −rn+1
(

qnrn+1 + 2qn−1rn
)

+ r2n
(

q2n−1rn − qn−2
)

+ rn+2.
(2.13)

Obviously, (2.13) is different from equation (2.12) appearing in [21], and their dynamic
properties are very different, see the below discussion.
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The Lax pairs of (2.13) are given by Un in (2.1) and V (2)
n in (2.12) when θ = 1, m = 2.

The V (2)
n is given by

V
(2)
n =

⎛

⎝

a
(0)
n λ4 + a(1)n λ2 + a(2)n b

(0)
n λ5 + b(1)n λ3 + b(2)n λ

c
(0)
n λ5 + c(1)n λ3 + c(2)n λ −a(0)n λ4 − a(1)n λ2 − a(2)n

⎞

⎠. (2.14)

By using (2.6), when j = 0, 1, 2, substituting the values a(j)n , b
(j)
n , c

(j)
n into the above matrix and

comparing the coefficients of the different power of λ, we rewrite the matrix V (2)
n as

V
(2)
n = V4nλ

4 + V3nλ
3 + V2nλ

2 + V1nλ + V0n, (2.15)

where

V4n =

⎛

⎜

⎝

−1
2

0

0
1
2

⎞

⎟

⎠, V3n =

(

0 qn−1

rn 0

)

, V2n =

(

qn−1rn 0

0 −qn−1rn

)

,

V1n =

(

0 qn−2
(

1 + qn−1rn−1
) − qn−1

(

qn−1rn + qn−2rn−1
)

rn+1
(

1 + qnrn
) − rn

(

qnrn+1 + qn−1rn
)

0

)

,

V0n =

(−q2n−1r2n + qn−1rn+1 + qn−2rn 0

0 q2n−1r
2
n − qn−1rn+1 − qn−2rn

)

.

(2.16)

Next, we establish the Darboux transformation of this new discrete lattice system
(2.13). Actually, the Darboux transformation is a special gauge transformation

ψ̃n = Tnψn (2.17)

of the solutions of the Lax pairs (2.1) and (2.12)whenm = 2, where ψ̃n must satisfy Lax pairs
(2.1) and (2.12)with some ˜Un and ˜V

(2)
n , that is,

Eψ̃n = ˜Unψ̃n, Tn+1Un = ˜UnTn, (2.18)

ψ̃n,t = ˜V
(2)
n ψ̃n, Tn,t + TnV

(2)
n = ˜V (2)

n Tn. (2.19)

Meanwhile, it is required that ˜Un and ˜V
(2)
n have the same forms as Un and V

(2)
n , respectively.

Thus, the old potentials qn, rn inUn and V
(2)
n are mapped into new potentials q̃n, r̃n in ˜Un and

˜V
(2)
n . We assume Tn has the following form:

Tn =

(

λ2 +An Bnλ

Cnλ λ2 +Dn

)

, (2.20)

where An, Bn, Cn,Dn are unknown functions which will be determined later.
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Let yn = (y1
n, y

2
n)
T and zn = (z1n, z

2
n)
T be two linear independent solutions of Lax pairs

(2.1) and (2.12), and suppose that

ψn =

(

y1
n z1n

y2
n z2n

)

. (2.21)

Substituting (2.21) into (2.17), we obtain

ψ̃n =

((

λ2 +An

)

y1
n + Bnλy

2
n

(

λ2 +An

)

z1n + Bnλz
2
n

Cnλy
1
n +
(

λ2 +Dn

)

y2
n Cnλz

1
n +
(

λ2 +Dn

)

z2n

)

. (2.22)

We assume that λ1 and λ2 are two roots of det Tn(λ) = 0. Therefore, when λ = λi(i = 1, 2), the
two columns of Tn and ψ̃n are linear dependent, respectively. Thus, there exist two group of
nonzero parameters αi = αi(n) and γi = γi(n) (i = 1, 2) which satisfy the following equations:

λ2i +An + αiBnλi = 0,

Cnλi + αi
(

λ2i +Dn

)

= 0,

(

λ2i +An

)

y1
n + Bnλiy

2
n = γi

[(

λ2i +An

)

z1n + Bnλiz
2
n

]

,

Cnλiy
1
n +
(

λ2i +Dn

)

y2
n = γi

[

Cnλiz
1
n +
(

λ2i +Dn

)

z2n

]

.

(2.23)

Solving the above equations, it follows that

An =
λ1λ2(λ1α2 − λ2α1)

λ1α1 − λ2α2 , Bn =
λ22 − λ21

λ1α1 − λ2α2 ,

Cn =
α1α2

(

λ22 − λ21
)

λ1α2 − λ2α1 , Dn =
λ1λ2(λ1α1 − λ2α2)

λ1α2 − λ2α1 ,

(2.24)

αi= αi(n) =
γiz

2
n − y2

n

γiz
1
n − y1

n

, i = 1, 2, (2.25)

where parameters λi and γi (note: λ1 /=λ2, γ1 /= γ2) are suitably chosen such that all the
denominators in (2.24) and (2.25) are nonzero.

When θ = 1, substituting (2.21) into (2.1), it follows,

y1
n+1 =

(

1 + qnrn
)

y1
n + qny

2
nλi, z1n+1 =

(

1 + qnrn
)

z1n + qnz
2
nλi,

y2
n+1 = rny

1
nλi + y

2
nλ

2
i , z2n+1 = rnz

1
nλi + z

2
nλ

2
i .

(2.26)
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Applying the shift operator E to all expressions in (2.26) once, it follows

y1
n =
(

1 + qn−1rn−1
)

y1
n−1 + qn−1y

2
n−1λi, z1n =

(

1 + qn−1rn−1
)

z1n−1 + qn−1z
2
n−1λi

y2
n = rn−1y1

n−1λi + y
2
n−1λ

2
i , z2n = rn−1z1n−1λi + z

2
n−1λ

2
i .

(2.27)

Solving (2.27) yields

y1
n−1 = λ

−1
i

(

y1
nλi − qn−1y2

n

)

, z1n−1 = λ
−1
i

(

z1nλi − qn−1z2n
)

,

y2
n−1 = λ

−2
i

[

(

1 + qn−1rn−1
)

y2
n − rn−1y1

nλi
]

, z2n−1 = λ
−2
i

[

(

1 + qn−1rn−1
)

z2n − rn−1z1nλi
]

.

(2.28)

By using (2.26)–(2.28), from (2.25), we get

αi(n + 1) =
μi
νi
, αi(n − 1) =

βi
ωi
, i = 1, 2, (2.29)

where

μi = μi(n) = rnλi + αiλ2i , νi = νi(n) = 1 + qnrn + αiqnλi,

βi = βi(n) =
(

1 + qn−1rn−1
)

αi − rn−1λi, ωi = ωi(n) = λ2i − αiqn−1λi.
(2.30)

According to the above analysis, we derive some useful functions in forthcoming com-
putation process as follows:

An+1 =
λ1λ2

(

λ1μ2ν1 − λ2μ1ν2
)

λ1μ1ν2 − λ2μ2ν1
, Bn+1 =

ν1ν2
(

λ22 − λ21
)

λ1μ1ν2 − λ2μ2ν1
,

Cn+1 =
μ1μ2

(

λ22 − λ21
)

λ1μ2ν1 − λ2μ1ν2
, Dn+1 =

λ1λ2
(

λ1μ1ν2 − λ2μ2ν1
)

λ1μ2ν1 − λ2μ1ν2
,

(2.31)

An−1 =
λ1λ2

(

λ1β2ω1 − λ2β1ω2
)

λ1β1ω2 − λ2β2ω1
, Bn−1 =

ω1ω2
(

λ22 − λ21
)

λ1β1ω2 − λ2β2ω1
,

Cn−1 =
β1β2

(

λ22 − λ21
)

λ1β2ω1 − λ2β1ω2
, Dn−1 =

λ1λ2
(

λ1β1ω2 − λ2β2ω1
)

λ1β2ω1 − λ2β1ω2
.

(2.32)

We know that the matrix ˜Un keeps the same form as Un in the procedure of mapping
the old potentials qn, rn inUn into new potentials q̃n, r̃n in ˜Un. We can suppose that

˜Un =

(

1 + q̃nr̃n λq̃n

λr̃n λ2

)

. (2.33)
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Substituting Tn+1, Un, Tn, ˜Un into the second formula in (2.18) and comparing the co-
efficients of the same power of λ, it follows that

1 + q̃nr̃n + q̃nCn = 1 + qnrn + rnBn+1, (2.34)

An

(

1 + q̃nr̃n
)

= An+1
(

1 + qnrn
)

, (2.35)

q̃n = qn + Bn+1, (2.36)
(

1 + q̃nr̃n
)

Bn + q̃nDn = qnAn+1, (2.37)

r̃n + Cn = rn, (2.38)

r̃nAn =
(

1 + qnrn
)

Cn+1 + rnDn+1, (2.39)

r̃nBn +Dn = qnCn+1 +Dn+1. (2.40)

From (2.36) and (2.38), it is easy to find that there exists a transformation which maps the old
potentials qn, rn into new ones q̃n, r̃n as follows:

q̃n = qn + Bn+1, r̃n = rn − Cn. (2.41)

Respectively, substituting (2.41) into (2.34), (2.35), (2.37), (2.39), and (2.40), we obtain five
conditional equations as follows:

(

qn + Bn+1
)

(rn − Cn) +
(

qn + Bn+1
)

Cn − qnrn − rnBn+1 = 0,

An

[

1 +
(

qn + Bn+1
)

(rn − Cn)
] −An+1

(

1 + qnrn
)

= 0,

Bn
[

1 +
(

qn + Bn+1
)

(rn − Cn)
]

+
(

qn + Bn+1
)

Dn − qnAn = 0,

(rn − Cn)An − Cn+1
(

1 + qnrn
) − rnDn+1 = 0,

(rn − Cn)Bn − qnCn+1 +Dn −Dn+1 = 0.

(2.42)

Substituting (2.24)-(2.25), (2.29)-(2.30), and (2.31)-(2.32) into the above five conditional
equations, taking a tedious direct computation or using the software Maple, we can verify
all the above five equations are identities.

In fact, we have directly verified that the (2.41) is the Darboux transformation of the
spectral problem (2.1) under the gauge transformation (2.17). Thus, the proof process such as
those in [21] can be simplified. Next, we need to verify that the matrix ˜V (2)

n defined by (2.19)
has the same form as V (2)

n , that is,

˜V
(2)
n = ˜V4nλ

4 + ˜V3nλ
3 + ˜V2nλ

2 + ˜V1nλ + ˜V0n, (2.43)

where all the forms of ˜V4n, ˜V3n, ˜V2n, ˜V1n, ˜V0n are the same as the forms of V4n, V3n, V2n, V1n,
V0n. The matrices ˜V4n, ˜V3n, ˜V2n, ˜V1n, ˜V0n can be obtained as long as we use the q̃ and r̃ to take
the place of q and r in the matrices V4n, V3n, V2n, V1n, V0n, respectively.
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To simplify computation, according to the coefficients of the different power of λ, we
also rewrite the matrices Tn, Tn,t as

Tn =

(

λ2 +An Bnλ

Cnλ λ2 +Dn

)

= Iλ2 + T1nλ + T0n, (2.44)

where

I =

(

1 0

0 1

)

, T1n =

(

0 Bn

Cn 0

)

, T0n =

(

An 0

0 Dn

)

,

Tn,t =

(

An,t Bn,tλ

Cn,tλ Dn,t

)

= T1n,tλ + T0n,t,

(2.45)

T1n,t =

(

0 Bn,t

Cn,t 0

)

, T0n,t =

(

An,t 0

0 Dn,t

)

. (2.46)

Substituting Tn,t, V
(2)
n , ˜V

(2)
n into the second formula in (2.19) yields

(T1n,tλ + T0n,t) +
(

Iλ2 + T1nλ + T0n
)(

V4nλ
4 + V3nλ

3 + V2nλ
2 + V1nλ + V0n

)

−
(

˜V4nλ
4 + ˜V3nλ

3 + ˜V2nλ
2 + ˜V1nλ + ˜V0n

)(

Iλ2 + T1nλ + T0n
)

= O.

(2.47)

Letting the coefficients of the λ6, λ5, λ4, λ3, λ2, λ1, λ0 be zero, it follows that

V4n − ˜V4n = O, (2.48)
(

T1nV4n − ˜V4nT1n
)

+
(

V3n − ˜V3n

)

= O, (2.49)

(

T0nV4n − ˜V4nT0n
)

+
(

T1nV3n − ˜V3nT1n
)

+
(

V2n − ˜V2n

)

= O, (2.50)

(

T0nV3n − ˜V3nT0n
)

+
(

T1nV2n − ˜V2nT1n
)

+
(

Vn − ˜V1n

)

= O, (2.51)

(

T0nV2n − ˜V2nT0n
)

+
(

T1nV1n − ˜V1nT1n
)

+
(

V0n − ˜V0n

)

= O, (2.52)

T1n,t +
(

T0nV1n − ˜V1nT0n
)

+
(

T1nV0n − ˜V0nT1n
)

= O, (2.53)

T0n,t +
(

T0nV0n − ˜V0nT0n
)

= O. (2.54)

So (2.48) holds. By dint of (2.41), we can easily verify that (2.49) and (2.50) hold. Under
the transformation (2.41), substituting (2.24), (2.30), (2.31), and (2.32) into (2.51) and (2.52),
taking a tedious direct computation or using the software Maple, we can verify that (2.51)
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and (2.52) hold. To simplify computation to verify (2.53) and (2.54), we need some other
auxiliary conditions:

An,t =
λ1λ2

(

λ21 − λ22
)

(α2,tα1 − α2α1,t)
(λ1α1 − λ2α2)2

, Bn,t =

(

λ21 − λ22
)

(λ1α1,t − λ2α2,t)
(λ1α1 − λ2α2)2

,

Cn,t =

(

λ21 − λ22
)(−λ1α22α1,t + λ2α21α2,t

)

(−λ1α2 + λ2α1)2
, Dn,t =

λ1λ2
(

λ21 − λ22
)

(α2α1,t − α1α2,t)
(−λ1α2 + λ2α1)2

,

(2.55)

αi,t = v21(λi) − 2v11(λi)αi + v12(λi)α2i , (2.56)

where

v11(λi) = −1
2
λ4i + qn−1rnλ

2
i − q2n−1r2n + qn−1rn+1 + qn−2rn,

v12(λi) = qn−1λ3i +
[

qn−2
(

1 + qn−1rn−1
) − qn−1

(

qn−1rn + qn−2rn−1
)]

λi,

v21(λi) = rnλ3i +
[

rn+1
(

1 + qnrn
) − rn

(

qnrn+1 + qn−1rn
)]

λi, i = 1, 2.

(2.57)

On the other hand,

det Tn =
(

λ2
)2 + (An +Dn − BnCn)λ2 +AnDn. (2.58)

Thus, we obtain

An +Dn − BnCn = −
(

λ21 + λ
2
2

)

, AnDn = λ21λ
2
2, (2.59)

and their differentiation with respect to time t

An,t +Dn,t = Bn,tCn + BnCn,t, An,tDn +AnDn,t = 0. (2.60)

Applying (2.24), (2.30), (2.31), (2.32), (2.41), and (2.55)–(2.60), we can verify that (2.53) and
(2.54) hold. Hence, the following theorem holds.

Theorem 2.1. The solutions (qn, rn) of the discrete lattice system (2.13) are mapped into their new
solutions (q̃n, r̃n) under the Darboux transformation (2.41).

3. New Exact Solutions and Their Properties

In this section, we will construct exact solutions of discrete system (2.13) by using the
Darboux transformation (2.41). Obviously, the qn = rn = 0 are a couple of seed solutions
of system (2.13). In addition, all the constants that satisfy conditional equation qnrn = 2 ± √

3
are seed solutions of system (2.13). Without loss of generality, we only consider two kinds of
seed solutions, that is, qn = rn = 0 and qn = 1, rn = 2 +

√
3.
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3.1. The Exact Solution Obtained by Nonzero Seed and Its Properties

When θ = 1 and m = 2, substituting the seed solutions qn = 1, rn = 2 +
√
3 into the Lax pairs

(2.1) and (2.12), it follows that

Eψn =

⎛

⎝

3 +
√
3 λ

(

2 +
√
3
)

λ λ2

⎞

⎠ψn, ψn,t =

(

a11 a12

a21 a22

)

ψn, (3.1)

where

a11 = a11(λ) = −1
2
λ4 +

(

2 +
√
3
)

λ2 −
(

3 + 2
√
3
)

, a12 = a12(λ) = λ3 −
(

1 +
√
3
)

λ,

a21 = a21(λ) =
(

2 +
√
3
)

λ3 −
(

5 + 3
√
3
)

λ, a22 = a22(λ) =
1
2
λ4 −

(

2 +
√
3
)

λ2 +
(

3 + 2
√
3
)

.

(3.2)

Equation (3.1) has two real linear independent basic solutions as follows:

yn = τn1 exp

(

a22 + a11 +
√
Δ

2
t

)(

a22 − a11 +
√
Δ

2a12

)

,

zn = τn2 exp

(

a22 + a11 −
√
Δ

2
t

)(

a22 − a11 −
√
Δ

2a12

)

,

(3.3)

where

τ1 =

(

2 +
√
3
)(

a22 − a11 +
√
Δ
)

λ + 2a12λ2

2a12
, τ2 =

(

2 +
√
3
)(

a22 − a11 −
√
Δ
)

λ + 2a12λ2

2a12
,

(3.4)

Δ = (a22 − a11)2 + 4a12a21 =
(

1 +
√
3 − λ2i

)2[

(λi − 1)2 + 2 +
√
3
][

(λi + 1)2 + 2 +
√
3
]

> 0. (3.5)

By using (2.25), we obtain

αi =
2
[

λ3i −
(

1 +
√
3
)

λi
]

(

γi − δni eξit
)

γi
[(

1 +
√
3 − λ2i

)(

3 +
√
3 − λ2i

)

− ξi
]

− δni
[(

1 +
√
3 − λ2i

)(

3 +
√
3 − λ2i

)

+ ξi
]

eξit
, (3.6)

where

δi =
τ1(λi)
τ2(λi)

=

(

2 +
√
3
)[(

1 +
√
3 − λ2i

)(

3 +
√
3 − λ2i

)

+ ξi
]

λi + 2
[

λ3i −
(

1 +
√
3
)

λi
]

λ2i
(

2 +
√
3
)[(

1 +
√
3 − λ2i

)(

3 +
√
3 − λ2i

)

− ξi
]

λi + 2
[

λ3i −
(

1 +
√
3
)

λi
]

λ2i

,

ξi =

√

(

1 +
√
3 − λ2i

)2[

(λi − 1)2 + 2 +
√
3
][

(λi + 1)2 + 2 +
√
3
]

, i = 1, 2.

(3.7)
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Therefore, by using the Darboux transformation (2.41), (2.24), and (2.31), we obtain the new
explicit solution of (2.13) as follows:

q̃n = 1 + Bn+1 = 1 +
ν1ν2

(

λ22 − λ21
)

λ1μ1ν2 − λ2μ2ν1
,

r̃n = 2 +
√
3 − Cn = 2 +

√
3 − α1α2

(

λ22 − λ21
)

λ1α2 − λ2α1 ,

(3.8)

where

μi =
(

2 +
√
3
)

λi + αiλ2i , νi = 3 +
√
3 + αiλi (3.9)

which are reduced from (2.30); the parameters αi, i = 1, 2 are defined by (3.6) and λi /= ±
√

1 +
√
3, λ1 /= ± λ2.
Equation (3.8) is a very complicated solution due to (3.6), and it is hard to analyze its

dynamical behavior. Same as Xu, we did not know whether the 26thsolution given in [23]
was a soliton solution. We also do not know whether the solution (3.8) is a soliton solution if
we only estimate the type of solution from its expression. By the further detailed analysis,
we know that the solution (3.8) is not a pure soliton solution, its properties and profiles
vary accordingly while the parameters vary. In other words, under the different values
of parameters, it contains different waveform. However, in [21], treating n as continuous
variable, Qin showed that solution (4.4) possesses properties of one-soliton solutions and
two-soliton solutions when γ1, γ2, λ1, and λ2 are taken as different parameters, respectively. In
fact, the n is a discrete variable, we cannot regard it as a continuous variable. The dynamic
properties and profiles of solution would be distortion if we regard the discrete variable n
as a continuous variable. Therefore, regarding n as a discrete variable, we will plot graphs of
solution (3.8), some new properties and interesting phenomena will be produced. This shows
that our analytic work on dynamic properties of exact solution obtained by the Darboux
transformation is very different from the Qin’s work.

As an example, when γi(i = 1, 2) are restricted in the region 0 < γi < 1, we investigate
the dynamical behavior of solution (3.8). The term δni e

ξit in (3.6) can be rewritten as δni e
ξit =

en ln(δi)+ξit when δi > 0, but it cannot be rewritten as this form when δi < 0. It is for this reason
that solution (3.8) has variety of properties. For example, when δ1 > 0 and δ2 > 0 are both
held, solution (3.8) has no oscillation behavior. This can be seen in Figure 1.

Figure 1 shows the properties of double-kink soliton and single-kink soliton with
singularity for solutions p̃n, r̃n, respectively. Figures 1(a)–1(c) show a procedure of leftwards
moving for discrete double kink soliton. The waveform gradually changes from Figure 1(a)
to Figure 1(c). Particulary, when t = 0, the waveform becomes a static singular kink soliton,
which can be seen in Figure 1(b). Figures 1(d)–1(f) also show a procedure of waveform
gradually changes for discrete kink wave. The waveform is a discrete single kink soliton
when the time t < 0, which can be seen in Figure 1(d). Particulary, when the time t = 0, the
waveform also becomes a static singular kink soliton, which can be seen in Figure 1(e). When
the time t > 0, the waveform becomes a moving singular kink wave, which can be seen in
Figure 1(f).
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Figure 1: The profiles of p̃n, r̃n in (3.8) for λ1 = 5, λ2 = 12, γ1 = 0.5, γ2 = 0.6, δ1 > 0, δ2 > 0.

When both δ1 < 0 and δ2 < 0 hold, the solution (3.8) is discrete breather solution; it
has breather oscillation behavior shown in Figure 2. In fact, Figure 2 shows the properties of
breather soliton with double-kink characteristic for solutions p̃n, r̃n.

Figures 2(a)–2(c) show a procedure of breather oscillation which moves from the right
to the left as the time t increases from −2 to 2. The waveform and amplitude gradually change
from Figure 2(a) to Figure 2(c). Figures 2(d)–2(f) also show a procedure of another breather
oscillation which moves from the right to the left; the properties and profiles are very similar
to those shown in Figures 2(a)–2(c).

However, when δ1 > 0, δ2 < 0 (or δ1 < 0, δ2 > 0), solution (3.8) has no breather
oscillation behavior anymore. In fact, Figure 3 shows some shapes of singular kink and anti-
kink soliton for solutions p̃n, r̃n.

Figures 3(a)–3(c) show a procedure of singular antikink soliton which moves from the
right to the left as the time t increases from −2 to 3. The waveform and amplitude gradually
change from the form in Figure 3(a) to that in Figure 3(c). Figures 3(d)–3(f) also show a
procedure of singular kink soliton which moves from the right to the left; the other properties
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Figure 2: The profiles of p̃n, r̃n in (3.8) for λ1 = 1.8, λ2 = 2, γ1 = 0.5, γ2 = 0.6, δ1 < 0, δ2 < 0.

and profiles are very similar to those shown in Figures 3(a)–3(c) except for the static case at
the time t = 0. The waveform in Figure 3(b) has singularity; however, this is not the case in
Figure 3(e).

3.2. The Exact Solution Obtained by Zero Seed and Its Properties

When θ = 1 andm = 2, substituting the seed solutions qn = rn = 0 into the Lax pairs (2.1) and
(2.12), it follows that

Eψn =

(

1 0

0 λ2

)

ψn, ψn,t =

⎛

⎜

⎝

−1
2
λ4 0

0
1
2
λ4

⎞

⎟

⎠ψn. (3.10)



Discrete Dynamics in Nature and Society 15

−10 0 10 20 30

0.3778
0.378
0.3782
0.3784
0.3786
0.3788
0.379
0.3792

n

q̃n

(a) t=−2

−20 −10 0 10 20 30
−0.8
−0.6
−0.4
−0.2

0

0.2

0.4

n

q̃n

(b) t= 0

−40 −30 −20 −10 0 10
−0.211
−0.21
−0.209
−0.208
−0.207
−0.206
−0.205

n

q̃n

(c) t= 3

−10 0 10 20 30

0

20

40

60

80

n

r̃n

(d) t=−2

−20 −10 0 10 20 30

−1
0

1

2

3

4

n

r̃n

(e) t= 0

−40 −30 −20 −10 0 10

4.5
4.55
4.6
4.65
4.7
4.75
4.8

n

r̃n

(f) t= 3

Figure 3: The profiles of p̃n, r̃n in (3.8) for λ1 = 5, λ2 = 1, γ1 = 0.5, γ2 = 0.6, δ1 > 0, δ2 < 0.

Equation (3.10) has two real linear independent basic solutions as follows:

yn = exp
(

−1
2
λ4t

)

(

1

0

)

,

zn = λ2n exp
(

1
2
λ4t

)

(

0

1

)

.

(3.11)

From (3.11), let y1
n = exp((−1/2) λ4t), y2

n = 0, z1n = 0, z2n = exp((1/2) λ4t); by using (2.25)
and (2.30), we obtain

αi = −γiλ2ni eλ
4
i t, μi = αiλ2i , νi = 1. (3.12)
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Figure 4: The solutions of p̃n, r̃n in (3.13) show a shape of discrete bright or dark soliton for fixed parametric
values. Take (a) and (c) parameters as λ1 = 2, λ2 = 0.9, γ1 = 0.5, γ2 = 0.6, and take (b) and (d) parameters
as λ1 = 0.8, λ2 = −1.2, γ1 = 0.5, γ2 = 1.6.

Similarly, by using the Darboux transformation (2.41) and (2.24), (2.31), and (3.12), we obtain
another explicit solution of (2.13) as follows:

q̃n = Bn+1 =
ν1ν2

(

λ22 − λ21
)

λ1μ1ν2 − λ2μ2ν1
=

λ21 − λ22
γ1λ

2n+3
1 eλ

4
1t − γ2λ2n+32 eλ

4
2t
,

r̃n = −Cn = −α1α2
(

λ22 − λ21
)

λ1α2 − λ2α1 =
γ1γ2(λ1λ2)

2n(λ22 − λ21
)

e(λ
4
1+λ

4
2)t

λ1γ2λ
2n
2 e

λ42t − λ2γ1λ2n1 eλ
4
1t

.

(3.13)

In fact, solution (3.13) is not a pure soliton solution for arbitrary parametric values. By
the further detailed analysis, we know that solution (3.13) becomes a soliton solution if one
of the following parametric conditions holds:

(i) λ1 > 1, 0 < λ2 < 1 or 0 < λ1 < 1, λ2 > 1, and γ1γ2 < 0;

(ii) λ1 < −1, 0 < λ2 < 1 or 0 < λ1 < 1, λ2 < −1 and γ1γ2 > 0;

(iii) |λ1| = 1, |λ2|/= 1,λ1λ2 < 0, and γ1γ2 > 0;

(iv) |λ1|/= 1, |λ2| = 1, λ1λ2 > 0, and γ1γ2 < 0.

Under the above parametric conditions (i) or (ii), the solutions p̃n, r̃n in (3.13) show
discrete bright or dark soliton, which are shown in Figure 4. Under the above parametric
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Figure 5: The solutions of p̃n, r̃n in (3.13) show a shape of discrete kink or antikink soliton for fixed
parametric values. Take (a) and (c) parameters as λ1 = 1, λ2 = 2, γ1 = −0.5, γ2 = 0.6, and take (a) and
(c) parameters as λ1 = −1, λ2 = 0.9, γ1 = −0.5, γ2 = −0.6.

conditions (iii) or (iv), the solutions p̃n, r̃n in (3.13) show discrete kink or anti-kink soliton,
which are shown in Figure 5.

Under the other parametric conditions, solution (3.13) is not soliton, therefore, we omit
those parts of graphs and discussions on dynamic properties.

4. Conclusions

In this paper, we show that the discrete system (1.1) which is given by Qin in [21] can be
reduced to the old integrable lattice system which is given by Merola et al. [22]. Based on
the Qin’s work, we present an indeed new discrete integrable system (2.13). Its Darboux
transformation is established, and two complex exact solutions (3.8) and (3.13) are obtained
by this transformation. By the further detailed analysis, we know that neither of these
two exact solutions is pure soliton solutions. Their waveforms vary accordingly while the
parameters vary. In other words, under different parametric conditions, these kinds of exact
solutions show different dynamic behavior and profiles. In addition, by using different seeds,
the obtained solutions are different, so are their properties and waveforms. The solutions
obtained by nonzero constant seed mainly show the breather oscillation or singular behavior,
but the solutions obtained by zero seed mainly show the profiles of discrete bright or
dark soliton and kink or antikink soliton. These show that some exact solutions of discrete
integrable systems obtained by the Darboux transformation are it is hard to know whether
soliton solutions if we estimate only the types of solution from their expression. It is just
because this reason that Xu did not know whether the solution obtained in [23]was a soliton
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solution. Perhaps, as in [24, 25], we call these kinds of solutions N-wave solutions or com-
plexitons which is more accurate. Now, under what kind of parametric conditions, can the
exact solutions of discrete integrable systems obtained by Darboux transformation show
properties of soliton? This is a very interesting problem. We wish more and more researchers
pay attention to this enthralling problem in the future works.
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