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This paper deals with the convergence and stability of linear multistep methods for impulsive
differential equations. Numerical experiments demonstrate that both the mid-point rule and two-
step BDFmethod are of order p = 0when applied to impulsive differential equations. An improved
linear multistep method is proposed. Convergence and stability conditions of the improved
methods are given in the paper. Numerical experiments are given in the end to illustrate the
conclusion.

1. Introduction

Impulsive differential equations provide a natural framework for mathematical modeling in
ecology, population dynamic, optimal control, and so on. The studies focus on the theory
of impulsive differential equations initiated in [1, 2]. In recent years many researches on
the theory of impulsive differential equations are published (see [3–7]). And the numerical
properties of impulsive differential equations begin to attract the authors’ interest (see [8, 9]).
But there are still few papers focus on the numerical properties of linear multistep methods
for impulsive differential equations. In this paper, wewill study the convergence and stability
of linear multistep methods.

This paper focuses on the numerical solutions of impulsive differential equations as
follows

x′(t) = f(t, x), t > 0, t /= τd, d ∈ N,

Δx = Ik(x), t = τd,

x
(
t+0
)
= x0,

(1.1)
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where f : R+×C
n → C

n and τd < τd+1 with limk→+∞τk = +∞. We assumeΔx = x(t+0)−x(t),
where x(t + 0) is the right limit of x(t).

In this paper, we consider the following equation:

x′(t) = ax, t > 0, t /=d,

Δx = bx, t = d,

x(0+) = x0,

(1.2)

where a, b, x0 ∈ C, b /= − 1, d ∈ N.

Remark 1.1. If b = −1, then we obtain that x(t) ≡ 0 for t > 1. Therefore we omit this case in the
paper.

Definition 1.2 (see [4]). x(t) is said to be the solution of (1.2), if

(1) limt→ 0+x(t) = x0;

(2) x(t) is differentiable and x′(t) = ax(t) for t ∈ (0,+∞), t /=d, d ∈ N;

(3) x(t) is left continuous in (0,+∞) and x(d+) = (1 + b)x(d), d ∈ N.

Theorem 1.3 (see [8]). Equation (1.2) has a unique solution in (0,+∞)

x(t) =

{
x0e

at(1 + b)[t], t > 0, t /=d, d ∈ N,

x0e
ad(1 + b)d−1, t = d,

(1.3)

where [·] denotes the greatest integer function towards minus infinity.

2. Linear Multistep Methods

2.1. Linear Multistep Methods for ODEs

The standard form of linear multistep methods can be defined by

k∑

i=0

αixn+i = h
k∑

i=0

βifn+i, (2.1)

where αi and βi are constants subject to the conditions:

αk = 1, |α0| +
∣∣β0

∣∣/= 0, (2.2)

and fn+i := f(tn+i, xn+i), i = 0, 1, . . . , k.
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Theorem 2.1 (see [10]). The linear multistep methods (2.1) are convergent of order p for ODEs if
and only if the following conditions are satisfied:

k∑

i=0

αi = 0,

k∑

i=0

αii
q = q

k∑

i=0

βii
q−1 for q = 1, . . . , p,

k∑

i=0

αii
p+1

/=
(
p + 1

) k∑

i=0

βii
p.

(2.3)

2.2. Linear Multistep Methods for Impulsive Differential Equations

Let h = 1/m be a given stepsize with integerm. In this subsection, we consider the case when
m ≥ k. The application of the linear multistep methods (2.1) in case of (1.2) yields

x0,0 = x0,

xwm,l = −
k−1∑

i=0

αi − haβi
αk − haβk

xwm,l+i−k, w = 0, 1, . . . , l = k, . . . ,m,

x(w+1)m,0 = (1 + b)xwm,m,

x(w+1)m,l = −
k−l−1∑

i=0

αi − haβi
αk − haβk

xwm,m+l+i−k

−
k−1∑

i=k−l

αi − haβi
αk − haβk

x(w+1)m,l+i−k, l = 1, . . . , k − 1,

(2.4)

where xwm,l is an approximation of x(twm+l), and xwm,0 denotes an approximation of x(w+).
Here, we assume that the other starting value besides x0, that is, x0,1, . . . , x0,k−1, has been
calculated by a one-step method of order 2.

Remark 2.2. As a special case, when k = 1 the corresponding consistent process (2.4) takes the
form:

x0,0 = x0,

xwm,l =
(
1 +

ha

1 − haβ1

)
xwm,l−1, l = 1, . . . , m, w = 0, 1, . . . ,

x(w+1)m,0 = (1 + b)xwm,m,

(2.5)

which is consistent with process (2.2) in [9].
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Table 1: The explicit Euler method for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 5.025613608106683e + 003 1.283179151329931e − 001
20 2.739728003516164e + 003 6.621084007886913e − 002
40 1.433580942834451e + 003 3.361075658131119e − 002
80 7.337102544190930e + 002 1.693073363701148e − 002
160 3.712172178908295e + 002 8.496581963094774e − 003
320 1.867162056329107e + 002 4.256079227844101e − 003
Ratio 1.988136041178199e + 000 1.996340177952628e + 000

Remark 2.3. When k = 2, the corresponding process (2.4) takes the form:

x0,0 = x0,

xwm,l = −α0 − haβ0
α2 − haβ2

xwm,l−2 −
α1 − haβ1
α2 − haβ2

xwm,l−1, w = 0, 1, . . . , l = 2, . . . , m,

x(w+1)m,0 = (1 + b)xwm,m,

x(w+1)m,1 = −α0 − haβ0
α2 − haβ2

xwm,m−1 −
α1 − haβ1
α2 − haβ2

x(w+1)m,0,

(2.6)

where we assume that x0,1 has been calculated by a one-step method of order p ≥ 2.

In order to test the convergence, we consider the following equations:

x′(t) = x, t > 0, t /=d,

Δx = 2x, t = d,

x(0+) = 2,
(2.7)

x′(t) = −x, t > 0, t /=d,

Δx = 2x, t = d,

x(0+) = 1.
(2.8)

We use the process (2.5) in case of β1 = 0 (i.e., the explicit Euler method) and the process
(2.6) in case of the mid-point rule and 2-step BDFmethods to get numerical solutions at t = 5,
where the corresponding analytic solution can be calculated by Theorem 1.3. We have listed
the absolute errors and the ratio of the errors of the case m = 160 over that m = 320 in the
following tables.

We can conclude from Table 1 that the explicit Euler method is of order 1 which means
that the process (2.4) is defined reasonable. Tables 2 and 3 imply that both methods are of
order 0, when applied to the given impulsive differential equations.



Discrete Dynamics in Nature and Society 5

Table 2: The mid-point rule for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 1.734606333614340e + 004 2.611636966771883e + 002
20 1.785542792421782e + 004 2.362243809005279e + 002
40 1.811021056819620e + 004 2.241871891262895e + 002
80 1.823713002067653e + 004 2.182840114478902e + 002
160 1.830041179075918e + 004 2.153620314650900e + 002
320 1.833200086044313e + 004 2.139085286186221e + 002
Ratio 9.982768345951743e − 001 1.006794973794894e + 000

Table 3: The 2-step BDF methods for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 4.051557443305367e + 004 1.585857685173612e + 000
20 4.538988757794288e + 004 1.365280016628375e + 000
40 4.842123370314762e + 004 1.268609538412996e + 000
80 5.011596302177681e + 004 1.223047705616427e + 000
160 5.101279019662662e + 004 1.200895589468623e + 000
320 5.147422493980224e + 004 1.189969480734175e + 000
Ratio 9.910356155198985e − 001 1.009181839460040e + 000

3. The Improved Linear Multistep Methods

In this section, we will consider the improved linear multistep methods:

k∑

i=0

α̂n
i xn+i−k = h

k∑

i=0

β̂ni f(tn+i−k, xn+i−k), (3.1)

where α̂n
i = α̂n

i (n, i), β̂
n
i = β̂ni (n, i) and h = 1/m. The application of method (3.1) in case of

(1.2), yields

k∑

i=0

α̂n
i xn+i−k = h

k∑

i=0

aβ̂ni xn+i−k. (3.2)

In the rest section of this section, we will propose a convergence condition of the method (3.1)
for (1.2). Firstly we give a definition about the residual of (3.2), which is essentially the local
truncation error.

Definition 3.1. Assume that x(t) is the analytic solution of (1.2). Then the residual of process
(3.2) is defined by

Rn =
k∑

i=0

α̂n
i x(tn+i−k) − h

k∑

i=0

aβ̂ni x(tn+i−k). (3.3)

Definition 3.2. The improved linear multistep methods (3.2) is said to be of order p for (1.2),
if the residual defined by (3.3) satisfies Rn = O(hp+1) for arbitrary n.
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The following theorem gives a condition under which the improved linear multistep
methods can preserve their original order for ODEs when applied to (1.2). Without loss of
generality, we assume {tn+i−k} = 0 for i = i0, i1, . . . , ic, 0 ≤ ic < k, where {t} denotes the
fractional part of t.

Theorem 3.3. Assume (2.3) holds, and there exists a function μn = μ(n) together with a constant λ
such that α̂n

i and β̂ni in (3.2) satisfy

k∑

i=0,i /= i1,...,ic

(
α̂n
i − haβ̂ni

)
eatn+i−k(1 + b)[tn+i−k]

+
c∑

j=1

(
α̂n
ij
− haβ̂nij

)
e
atn+ij−k(1 + b)[tn+ij−k]−1

= μn

k∑

i=0

(
αi − hλβi

)
eλtn+i−k .

(3.4)

Then, the improved linear multistep methods (3.2) are of order p for (1.2).

Proof. It follows from Definition 3.1 that

Rn =
k∑

i=0

α̂n
i x(tn+i−k) − h

k∑

i=0

β̂ni ax(tn+i−k) =
k∑

i=0

(
α̂n
i − haβ̂ni

)
x(tn+i−k). (3.5)

By Theorem 1.3, we have

x(tn+i−k) =

{
x0e

atn+i−k(1 + b)[tn+i−k], {tn+i−k}/= 0,
x0e

atn+i−k(1 + b)tn+i−k−1, {tn+i−k} = 0.
(3.6)

Therefore,

Rn = x0

k∑

i=0,i /= i1,...,ic

(
α̂n
i − haβ̂ni

)
eatn+i−k(1 + b)[tn+i−k]

+ x0

c∑

j=1

(
α̂n
ij
− haβ̂nij

)
e
atn+ij−k(1 + b)tn+ij−k−1

= μnx0

k∑

i=0

(
αi − hλβi

)
eλtn+i−k

= μnx0

k∑

i=0

(
αi − hλβi

)
eλh(n+i−k).

(3.7)

We can express the residual as a power series in h: collecting terms in Rn to obtain

Rn = μnx0
(
r0 + r1h + · · · + rqh

q + · · · ). (3.8)
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Then,

rq =
k∑

i=0

αi
λq(n + i − k)q

q!
−

k∑

i=0

λβi
λq−1(n + i − k)q−1

(
q − 1

)
!

=
k∑

i=0

αi
λq(n + i − k)q

q!
−

k∑

i=0

βi
λq(n + i − k)q−1

(
q − 1

)
!

=
k∑

i=0

αi
λq

q!

q∑

j=0

q!
j!
(
q − j

)
!
ij(n − k)q−j −

k∑

i=0

βi
λq

(
q − 1

)
!

q−1∑

j=0

(
q − 1

)
!

j!
(
q − 1 − j

)
!
ij(n − k)q−1−j

=
k∑

i=0

αiλ
q

⎛

⎝ (n − k)q

q!
+

q−1∑

j=0

ij+1(n − k)q−j−1
(
j + 1

)
!
(
q − 1 − j

)
!

⎞

⎠ −
k∑

i=0

βiλ
q
q−1∑

j=0

ij(n − k)q−j−1

j!
(
q − 1 − j

)
!

=
λq(n − k)q

q!

k∑

i=0

αi + λq
q−1∑

j=0

(n − k)q−j−1

j!
(
q − 1 − j

)
!

k∑

i=0

ij
(

iαi

j + 1
− βi

)
.

(3.9)

By (2.3),

rq = 0, q = 0, 1, . . . , p, rp+1 /= 0. (3.10)

Therefore, Rn+k = O(hp+1). The proof is complete.

3.1. An Example

Denote l = m{n/m}, then we can define the coefficients of (3.2) as follows:

α̂n
i = (1 + b)[(k−l−i)/m]+1αi,

β̂ni = (1 + b)[(k−l−i)/m]+1βi.
(3.11)

Theorem 3.4. Assume that (2.3) holds. Then the improved linear multistep methods formed by (3.11)
are of order p for (1.2).

Proof. We only need to verify that the condition in Theorem 3.3 holds. Note that

tn+i−k =
n + i − k

m
=
[
n

m

]
+
m{n/m} + i − k

m
=
[
n

m

]
+
l + i − k

m
. (3.12)

Thus, {tn+i−k} = 0 if and only if [(k − i − l)/m] = (k − i − l)/m, that is, i = i1, . . . , ic, 0 ≤ ic < k.
Therefore,

[tn+i−k] +
[
k − i − l

m

]
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
n

m

]
, if

[
k − i − l

m

]
=

k − i − l

m
,

[
n

m

]
− 1 if

[
k − i − l

m

]

/=
k − i − l

m
.

(3.13)
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Hence,
k∑

i=0,i /= i1,...,ic

(
α̂n
i − haβ̂ni

)
eatn+i−k(1 + b)[tn+i−k]

+
c∑

j=1

(
α̂n
ij
− haβ̂nij

)
e
atn+ij−k(1 + b)[tn+ij−k]−1

=
k∑

i=0,i /= i1,...,ic

(
αi − haβi

)
eatn+i−k(1 + b)[tn+i−k]+[(k−i−l)/m]+1

+
c∑

j=1

(
αij − haβij

)
e
atn+ij−k(1 + b)[tn+ij−k]+[(k−ij−l)/m]

= (1 + b)[n/m]
k∑

i=0

(
αi − haβi

)
eatn+i−k .

(3.14)

Thus, the conditions in Theorem 3.3 are satisfied with μn = (1 + b)[n/m] and λ = a. Thus, the
proof is complete.

Remark 3.5. If b = 0 in (3.11), that is, the impulsive differential equations reduce to ODEs,
we have α̂n

i = αi, β̂ni = βi, that is, the improved linear multistep methods (3.2) reduce to the
classical linear multistep methods.

Remark 3.6. In the improved linear multistep method defined by (3.11), the stepsize h = 1/m
can be chosen with arbitrary positive integer m without any restriction.

Remark 3.7. If m ≥ l ≥ k, then α̂n
i = αi, β̂ni = βi. In other words, if all the mesh points are in the

same integer interval, then the process (3.2) defined by (3.11) reduces to the classical linear
multistep methods (2.1).

4. Stability Analysis

In this section, we will investigate the stability of the improved linear multistep methods
(3.1) for (1.2). The following theorem is an extention of Theorem 1.4 in [9], and the proof is
obvious.

Theorem 4.1 (see [9]). The solution x(t) ≡ 0 of (1.2) is asymptotically stable if and only if |(1 +
b)ea| < 1.

The corresponding property of the numerical solution is described as follows.

Definition 4.2. The numerical solution xn is called asymptotically stable for (1.2) with |(1 +
b)ea| < 1 if limn→∞xn = 0 for arbitrary stepsize h = 1/m.

Theorem 4.3. Assume there exist constants ε, C > 0 and a consequence of functions γi = γi(n, i),
i = 0, . . . , k such that |1/γi | < C for arbitrary n and 0 ≤ i ≤ k, and the following equality holds

α̂n
i − haβ̂ni =

(
αi − hεβi

)
γi, i = 0, 1, . . . , k. (4.1)

Then, limn→∞xn = 0 if the corresponding linear multistep methods (2.1) are A-stable and 	ε < 0.
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Proof. Denote

yn+i−k = γixn+i−k. (4.2)

Then by (4.1), the process (3.2) becomes

k∑

i=0

(
αi − hεβi

)
yn+i−k = 0. (4.3)

Therefore, yn can be viewed as the numerical solution of the equation y′(t) = εy(t) calculated
by linear multistep methods (2.1).

On the other hand, we know that 	ε < 0 and the methods are A-stable. Therefore,
limn→∞yn = 0. The conclusion is obvious in view of that

|xn| < C
∣∣yn

∣∣. (4.4)

Corollary 4.4. The improved linear multistep method (3.11) is asymptotically stable for (1.2) when
the corresponding linear multistep methods (2.1) are A-stable, and 	a < 0 hold.

Proof. It is obvious that for (3.11):

α̂n
i − haβ̂ni =

(
αi − haβi

)
γi, i = 0, 1, . . . , k, (4.5)

where γi = (1 + b)[(k−l−i)/m]+1. Note that k, l, and i are all bounded when the method and the
stepsize are given. Therefore, |1/γi | are uniformly bounded. Thus the proof is complete.

Remark 4.5. In fact, the improved linear multistep methods (3.11) cannot preserve the
asymptotical stability of all equation (1.2). To illustrate this, we consider the following
equation:

x′(t) = 2x, t > 0, t /=d,

Δx =
(
e−2 − 1.27

)
x, t = d,

x(0+) = 2.

(4.6)

Theorem 4.1 implies that limt→∞x(t) = 0. We have drawn the numerical solution calculated
by method (3.11) in case of 2-step BDF methods, which is A-stable as we know, on [0, 500] in
Figure 1. Figure 1 indicates that the numerical solutions are not asymptotically stable. Hence,
we will give another improved linear multistep method in the next section.
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1.5

1

0.5

0

−0.5

−1

−1.5
0 100 200 300 400 500

×105

t

Figure 1: The numerical solution obtained by (3.11) in case of the 2-step BDF method to (4.6).

4.1. Another Improved Linear Multistep Methods

In this section, we give another improved linear multistepmethods.We define the coefficients
as follows:

α̂n
i =

⎧
⎪⎨

⎪⎩

(1 + b){tn+i−k}αi, {tn+i−k}/= 0,
(1 + b)αi, {tn+i−k} = 0,

β̂ni =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a + ln(1 + b))
a

(1 + b){tn+i−k}βi, {tn+i−k}/= 0,

(a + ln(1 + b))
a

(1 + b)βi, {tn+i−k} = 0,

(4.7)

where we define β̂ni = 0, when a = 0.

Theorem 4.6. Assume that (2.3) holds. Then, the improved linear multistep methods formed by (4.7)
are of order p for (1.2).

Proof. It is obvious that

k∑

i=0,i /= i1,...,ic

(
α̂n
i − haβ̂ni

)
eatn+i−k(1 + b)[tn+i−k]

+
c∑

j=1

(
α̂n
ij
− haβ̂nij

)
e
atn+ij−k(1 + b)[tn+ij−k]−1
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=
k∑

i=0

(
αi − h(a + ln(1 + b))βi

)
eatn+i−k(1 + b)tn+i−k

=
k∑

i=0

(
αi − h(a + ln(1 + b))βi

)
e(a+ln(1+b))tn+i−k .

(4.8)

Thus, the conditions in Theorem 3.3 are satisfied with μn = 1, and λ = a + ln(1 + b). The proof
is compete.

Theorem 4.7. Assume that 	(a + ln(1 + b)) < 0. Then, limn→∞xn = 0 if the corresponding linear
multistep methods (2.1) are A-stable, where xn is obtained by the improved linear multistep method
(4.7).

Proof. Define

γi =

{
(1 + b){tn+i−k}, {tn+i−k}/= 0,
(1 + b), {tn+i−k} = 0.

(4.9)

Then (4.1) is satisfied, and |1/γi | ≤ max{1, |1/(1 + b)|} = C. Therefore the conditions of
Theorem 4.3 are satisfied, and the conclusion follows.

4.2. Another Way to View the Improved Linear Multistep Method (4.7)

In fact, the improved linear multistep methods (4.7) can be viewed as the application of the
classical linear multistep methods to the modified form of (1.2).

Denote

y(t) =

{
(1 + b){t}x(t), t ≥ 0, t /=d,

(1 + b)x(d), t = d.
(4.10)

Then, it is easy to see that y(t) is continuous for t ∈ [0,+∞).

Lemma 4.8. Assume that (4.10) holds. Then x(t) is the solution of (1.2) if and only if y(t) is the
solution of

y′(t) = (a + ln(1 + b))y(t),

y(0) = x0.
(4.11)

Proof. Necessity. In view of Theorem 1.3 and (4.10), we obtain that in the case t /=d:

y(t) = (1 + b){t}eat(1 + b)[t]x0 = eat(1 + b)tx0 = e(a+ln(1+b))tx0. (4.12)

and y(k) = (1 + b)x(k) = e(a+ln(1+b))kx0, which is coincided with the solution of (4.11). The
necessity can be proved in the same way, and the proof is complete.
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Table 4: Equation (5.1) in case of mid-point rule for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 1.964613490354896e + 002 8.950836048980485e − 001
20 4.971904772277776e + 001 1.197198445982186e − 001
40 1.248351989479124e + 001 1.553305410469574e − 002
80 3.126205023072544e + 000 2.002751471856357e − 003
160 7.821288588893367e − 001 2.607915957975049e − 004
320 1.955988918562071e − 001 3.491638393382512e − 005
Ratio 3.998636451705015e + 000 7.469032196798133e + 000

Table 5: Equation (5.1) in case of 2-step BDF methods for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 3.675982365982200e + 002 9.516633893408510e − 003
20 9.552174783206283e + 001 2.325825408788229e − 003
40 2.442645505222754e + 001 5.749450957563962e − 004
80 6.181500463695556e + 000 1.429301543146577e − 004
160 1.555180585986818e + 000 3.563220614588580e − 005
320 3.900496418718831e − 001 8.895535536623811e − 006
Ratio 3.987135018310406e + 000 4.005627991612696e + 000

Table 6: Equation (4.13) in case of mid-point rule for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 1.533815775376497e + 003 4.656258034474448e − 006
20 4.273673528511026e + 002 1.126844488719137e − 006
40 1.116157821124107e + 002 2.771258855727155e − 007
80 2.844156657094209e + 001 6.871261282181962e − 008
160 7.173499151609576e + 000 1.710731889481565e − 008
320 1.800995925495954e + 000 4.267991404738325e − 009
Ratio 3.983073503974838e + 000 4.008283352169618e + 000

It follows from (4.10) that the numerical solutions of (1.2) can be approximated by
means of yn as follows:

k∑

i=0

αiyn+i−k = h(a + ln(1 + b))
k∑

i=0

βiyn+i−k,

xn =

{
(1 + b)−{tn}yn, if {tn}/= 0,
(1 + b)−1yn, if {tn} = 0.

(4.13)

It is obvious that the methods (4.7) and (4.13) are the same.

5. Numerical Experiment

In this section, some numerical experiments are given to illustrate the conclusion in the paper.
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Table 7: Equation (4.13) in case of 2-step BDF methods for (2.7) and (2.8).

m Absolute errors for (2.7) Absolute errors for (2.8)
10 3.034120865054534e + 003 9.093526915804340e − 006
20 8.173504073904187e + 002 2.227110126540310e − 006
40 2.159842038101851e + 002 5.509781502155420e − 007
80 5.579637010861916e + 001 1.370190298999319e − 007
160 1.419913379106947e + 001 3.416407701184454e − 008
320 3.582733454190020e + 000 8.529607353757740e − 009
Ratio 3.963212438944776e + 000 4.005351664492912e + 0 00

15

10

5

0
100 200 300 400 500

t

0

Figure 2: The numerical solution obtained by (4.13) in case of the 2-step BDF method to (4.6).

5.1. Convergence

The improved 2-step linear multistep methods (3.11) takes the form:

x0,0 = x0,

xwm,l = −α0 − haβ0
α2 − haβ2

xwm,l−2 −
α1 − haβ1
α2 − haβ2

xwm,l−1, l = 2, . . . , m, w = 0, 1, . . . ,

x(w+1)m,0 = (1 + b)xwm,m,

x(w+1)m,1 = −(1 + b)
α0 − haβ0
α2 − haβ2

xwm,m−1 −
α1 − haβ1
α2 − haβ2

x(w+1)m,0,

(5.1)

where we assume that x0,1 has been calculated by a one-step method of order p ≥ 2. We
use the methods (5.1) and (4.13) in case of the mid-point rule and 2-step BDF method. We
consider (2.7) and (2.8) and calculate the numerical solutions at t = 5 with stepsize h = 1/m.
We have listed the absolute errors and the ratio of the errors of the case m = 160 over the
error in the casem = 320, from which we can estimate the convergent order. We can see from
Tables 4, 5, 6, and 7, that all methods can preserve their original order for ODEs.
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5.2. Stability

To illustrate the stability, we consider (4.6). We use method (4.13) in case of the 2-step BDF
method. We draw the module of numerical solution on [0, 500] in Figure 2. We can see from
the figure that the method can preserve the stability of the analytic solution.
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