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We study the existence of global attractors for nonclassical diffusion equations in H1(RN). The
nonlinearity satisfies the arbitrary order polynomial growth conditions.

1. Introduction

In this paper, we investigate the long-time behavior of the solutions for the following non-
classical diffusion equations:

ut −Δut −Δu + f(x, u) = g(x), x ∈ R
N, (1.1)

with the initial data

u(x, 0) = u0, x ∈ R
N, (1.2)

where g(x) ∈ L2(RN), and the nonlinearity f(x, u) = f1(u) + a(x)f2(u) satisfies

(F1) α1|u|p − β1|u|2 ≤ f1(u)(u) ≤ γ1|u|p + δ1|u|2, f1(u)u ≥ 0, p ≥ 2, and f ′
1(u) ≥ −c,

(F2) α2|u|p − β2 ≤ f2(u)(u) ≤ γ2|u|p + δ2, p ≥ 2, and f ′
2(u) ≥ −c,

and

(A) a ∈ L1(RN) ∩ L∞(RN), a(x) > 0,

where αi, βi, γi, δi, i = 1, 2, and c are all positive constants. Moreover, without loss of generality,
we also assume f1(0) = f2(0) = 0.
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In 1980, Aifantis in [1–3] pointed out that the classical reaction-diffusion equation

ut −Δu = f(u) + g(x) (1.3)

does not contain each aspect of the reaction-diffusion problem, and it neglects viscidity,
elasticity, and pressure of medium in the process of solid diffusion and so forth. Furthermore,
Aifantis found out that the energy constitutional equation revealing the diffusion process is
different along with the different property of the diffusion solid. For example, the energy
constitutional equation is different, when conductive medium has pressure and viscoelastici-
ty or not. He constructed themathematical model by some concrete examples, which contains
viscidity, elasticity, and pressure of medium, that is the following nonclassical diffusion
equation:

ut −Δut −Δu = f(u) + g(x). (1.4)

This equation is a special form of the nonclassical diffusion equation used in fluid mechanics,
solid mechanics, and heat conduction theory (see [1–4]). Recently, Aifantis presented a new
model about this problem and scrutinized the concrete process of constructing model; the
reader can refer to [5] for details.

The longtime behavior of (1.1) acting on a bounded domain Ω has been extensively
studied by several authors in [6–13] and references therein. In [12] the existence of a global
attractor for the autonomous case has been shown provided that the nonlinearity is critical
and g(x) ∈ H−1(Ω). Furthermore, for the non-autonomous, the existence of a uniform attrac-
tor and exponential attractors has been scrutinized when the time-dependent forcing term
g(x, t) only satisfies the translation bounded domain instead of translation compact, namely,
g(x, t) ∈ L2

b(R, L2(Ω)). A similar problem was discussed in [13] by virtue of the standard
method based on the so-called squeezing property. To our best knowledge, the dynamics of
(1.1) acting on an unbounded domain R

N has not been considered by predecessors.
As we know, if we want to prove the existence of global attractors, the key point is to

obtain the compactness of the semigroup in some sense. For bounded domains, the compact-
ness is obtained by a priori estimates and compactness of Sobolev embeddings. This method
does not apply to unbounded domains since the embeddings are no longer compact. To
overcome the difficulty of the noncompact embedding, in [14], using the idea of Ball [15], the
author proved that the solutions are uniformly small for large space and time variables and
then showed that the weak asymptotic compactness is equivalent to the strong asymptotic
compactness in certain circumstances. In [16], the authors provided new a priori estimates
for the existence of global attractors in unbounded domains and then applied this approach
to a nonlinear reaction-diffusion equationwith a nonlinearity having a polynomial growth for
arbitrary order p − 1 (p ≥ 2) and with distribution derivatives in homogeneous term. More
recently, in [17] the authors achieved the existence of global attractors for reaction-diffusion
equations in L2(Rn), by using the methods presented in [18]. Our purpose in this paper is
to study the existence of global attractors of (1.1) on the unbounded domains R

n, and we
borrow the idea of [17, 18]. Our main result is Theorem 4.6.

This paper is organized as follows. In Section 2, we recall some basic definitions and
related theorems that will be used later. In Section 3, we prove the existence of weak solution
for nonclassical diffusion equations in H1(RN). The main result is stated and proved in
Section 4.
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2. Preliminaries

In this section, we iterate some notations and abstract results.

Definition 2.1 (see [18]). Let M be a metric space, and let A be bounded subsets of M. The
Kuratowski measure of noncompactness γ(A) of A defined by

γ(A) = inf
{
δ > 0 | A admits a finite cover by sets whose diameter ≤ δ

}
. (2.1)

Definition 2.2 (see [18]). LetX be a Banach space, and let {S(t)}t≥0 be a family of operators on
X. We say that {S(t)}t≥0 is a continuous semigroup (C0 semigroup) (or norm-to-weak contin-
uous semigroup) on X, if {S(t)}t≥0 satisfies

(i) S(0) = Id (the identity),

(ii) S(t)S(s) = S(t + s), for all t, s ≥ 0,

(iii) S(tn)xn → S(t)x, if tn → t, xn → x inX (or (iii) S(tn)xn ⇀ S(t)x, if tn → t, xn →
x in X).

Definition 2.3 (see [18]). A C0 semigroup (or norm-to-weak continuous semigroup) {S(t)}t≥0
in a complete metric space M is called ω-limit compact if for every bounded subset B of M
and for every ε > 0, there is a t(B) > 0, such that

γ

⎛

⎝
⋃

t≥t(B)
S(t)B

⎞

⎠ ≤ ε. (2.2)

Condition C (see [18]). For any bounded set B of a Banach space X, there exists a t(B) > 0 and
a finite dimensional subspace X1 of X such that {‖PmS(t)B‖} is bounded and

‖(I − Pm)S(t)x‖ < ε for t ≥ t(B), x ∈ B, (2.3)

where Pm : X → X1 is a bounded projector.

Lemma 2.4 (see [18]). Let X be a Banach space, and let {S(t)}t≥0 be a C0 semigroup (or norm-to-
weak continuous semigroup) in X.

(1) If Condition C holds, the {S(t)}t≥0 is ω-limit compact.

(2) LetX be a uniformly convex Banach space. Then {S(t)}t≥0 is ω-limit compact if and only if
Condition C holds.

Lemma 2.5 (see [18]). Let X be a Banach space, and let {S(t)}t≥0 be a C0 semigroup (or norm-to-
weak continuous semigroup) in X.

(1) If Condition C holds, the {S(t)}t≥0 is ω-limit compact;

(2) LetX be a uniformly convex Banach space. Then {S(t)}t≥0 is ω-limit compact if and only if
Condition C holds.
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Theorem 2.6 (see [18]). Let X be a Banach space. Then the C0 semigroup (or norm-to-weak contin-
uous semigroup) {S(t)}t≥0 has a global attractor in X if and only if

(1) there is a bounded absorbing set B ⊂ X.

(2) {S(t)}t≥0 is ω-limit compact.

Lemma 2.7 (see [19]). LetΦ be an absolutely continuous positive function on R
+, which satisfies for

some ε > 0 the differential inequality

d
dt

Φ(t) + 2εΦ(t) ≤ g(t)Φ(t) + h(t), (2.4)

for almost every t ∈ R
+, where g and h are functions on R

+ such that

∫ t

τ

∣∣g
(
y
)∣∣dy ≤ m1

(
1 + (t − τ)μ

)
, ∀t ≥ τ ≥ 0, (2.5)

for some m1 ≥ 0 and μ ∈ [0, 1), and

sup
t≥0

∫ t+1

t

∣∣h
(
y
)∣∣dy ≤ m2, (2.6)

for some m2 ≥ 0. Then

Φ(t) ≤ βΦ(0)e−εt + ρ, ∀t ∈ R+, (2.7)

for some β = β(m1, μ) ≥ 1 and

ρ =
βm2e

ε

1 − e−ε
. (2.8)

Lemma 2.8 (see [20]). Let X ⊂⊂ H ⊂ Y be Banach spaces, with X reflexive. Suppose that un is a
sequence that is uniformly bounded in L2(0, T ;X), and dun/dt is uniformly bounded in Lp(0, T ;Y ),
for some p > 1. Then there is a subsequence that converges strongly in L2(0, T ;H).

3. Unique Weak Solution

Theorem 3.1. Assume (F1), (F2), and (A) are satisfied. Then for any T > 0 and u0 ∈ H1(RN), there
is a unique solution u of (1.1)-(1.2) such that

u ∈ C1
(
[0, T];H1

(
R

N
))

∩ Lp
(
0, T ;Lp

(
R

N
))

. (3.1)

Moreover, the solution continuously depends on the initial data.
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Proof. We decompose our proof into three steps for clarity.
Step 1. For any n ∈ N, we consider the existence of the weak solution for the following prob-
lem in B(0, n) � Bn ⊂ RN :

ut −Δut −Δu + f(x, u) = g(x), x ∈ Bn,

u(x, 0) = u0 ∈ H1(Bn),

u|∂Ω = 0.

(3.2)

Choose a smooth function χn(x)with

χn(x) =

{
1, x ∈ Bn−1,

0, x /∈ Bn.
(3.3)

Since Bn is a bounded domain, so the existence and uniqueness of solutions can be
obtained by the standard Faedo-Galerkinmethods; see [6, 8, 11, 16]; we have the uniqueweak
solution

un ∈ C1
(
[0, T];H1(Bn)

)
∩ Lp(0, T ;Lp(Bn)), un(x, 0) = χn(x)u0(x). (3.4)

Step 2. According to Step 1, we denote (d/dt)un = unt; then un satisfies

unt −Δunt −Δun + f(x, un) = g(x), x ∈ Bn, (3.5)

un(x, 0) = χn(x)u0(x), (3.6)

un|∂Bn
= 0. (3.7)

For the mathematical setting of the problem, we denote ‖ · ‖L2(Bn) � ‖ · ‖Bn
, ‖ · ‖L1(RN) � ‖ · ‖1,

‖ · ‖L2(RN) � ‖ · ‖, ‖ · ‖L∞(RN) � ‖ · ‖∞.
Multiplying (3.5) by un in Bn, using f1(u)u ≥ 0, (F2) and (A), we have

1
2
d
dt

(
‖∇un‖2Bn

+ ‖un‖2Bn

)
+ ‖∇un‖2Bn

≤
∫

Bn

a(x)
(
β2 − α2|u|p

)
dx +

∫

Bn

gundx

≤ β2‖a(x)‖1 −
∫

Bn

α2a(x)|u|pdx +

∥∥g
∥∥2

2λ
+
λ

2
‖un‖2Bn

.

(3.8)

By the Poincaré inequality, for some ν > 0, we conclude that

1
2
d
dt

(
‖∇un‖2Bn

+ ‖un‖2Bn

)
+ ν
(
‖∇un‖2Bn

+ ‖un‖2Bn

)
+
∫

Bn

α2a(x)|u|pdx

≤ β2‖a(x)‖1 +
∥∥g
∥∥2

2λ
.

(3.9)
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Hence, it follows that

‖∇un(T)‖2Bn
+ ‖un(T)‖2Bn

+ 2ν
∫T

0

(
‖∇un(T)‖2Bn

+ ‖un(T)‖2Bn

)
+ 2
∫T

0

∫

Bn

α2a(x)|u|pdx

≤
(

2β2‖a(x)‖1 +
∥
∥g
∥
∥2

λ

)

T.

(3.10)

We get the following estimate:

sup
t∈[0,T]

‖∇un(t)‖2Bn
+ ‖un(t)‖2Bn

≤ C,

∫T

0

(
‖∇un(t)‖2Bn

+ ‖un(t)‖2Bn

)
≤ C,

∫T

0

∫

Bn

α2a(x)|u(t)|pdx ≤ C.

(3.11)

Similar to (3.9), using (F1), (F2), and (A), we get

∫T

0

∫

Bn

|u(t)|pdx ≤ C, (3.12)

where C is independent of n.
(F1) and (F2) yield

∣∣f1(un)
∣∣ ≤ C

(
|un|p−1 + |un|

)
,

∣∣f2(un)
∣∣ ≤ C

(
|un|p−1 + 1

)
.

(3.13)

Choose q such that (1/p) + (1/q) = 1; then (p − 1)q = p. Noting that p ≥ 2, then 1 < q ≤ 2, and
we have the embedding Lp(Bn) ↪→ Lq(Bn). According to (3.12) and (3.13), we get

∫T

0

∫

Bn

∣∣f1(u)
∣∣q ≤ C

∫T

0

∫

Bn

(
|un|p−1 + |un|

)q
dxdt

≤ C

∫T

0

∫

Bn

|un|(p−1)qdxdt + C

∫T

0

∫

Bn

|un|qdxdt

≤ C

∫T

0

∫

Bn

|un|p + C

∫T

0

∫

Bn

|un|pdxdt

≤ C,
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∫T

0

∫

Bn

∣
∣f2(u)

∣
∣q ≤ C

∫T

0

∫

Bn

|a(x)|q
(
|un|p−1 + 1

)q
dxdt

≤ C|a(x)|q−1∞

∫T

0

∫

Bn

a(x)
(
|un|(p−1)q + 1

)
dxdt

≤ C|a(x)|q−1∞

(

C|a(x)|1 +
∫T

0

∫

Bn

a(x)|un|pdxdt

)

≤ C,

(3.14)

where C is independent of n.
Thanks to (3.14), f1(un) is bounded in Lp(0, T ;Lq(Bn)), and af2(un) is bounded in

Lp(0, T ;Lq(Bn)).
For ∀v ∈ L2(0, T ;H1

0(Bn)),

∫T

0

∫

Bn

−Δunv =
∫T

0

∫

Bn

∇un∇v

≤
(∫T

0
‖∇un‖2Bn

)1/2(∫T

0
‖∇v‖2Bn

)1/2

≤
(∫T

0
‖∇un‖2

)1/2(∫T

0
‖∇v‖2Bn

)1/2

≤ C‖∇v‖H1
0 (Bn),

(3.15)

where C is independent of n. We can obtain that −Δun is bounded in L2(0, T ;H−1(Bn)).
Since g(x) ∈ L2(RN),

g(x) ∈ L2
(
0, T ;RN

)
. (3.16)

Therefore, there exists s > 0, such that L2(0, T ;H−1(Bn)), L2(0, T ;H1
0(Bn)), Lq(0, T ;Lq(Bn)),

and L2(0, T ;L2(Bn)) are continuous embedding to Lq(0, T ;H−s(Bn)).
According to (3.5) and (3.14)–(3.16), we obtain

unt −Δunt ∈ Lq(0, T ;H−s(Bn)
)
. (3.17)

So un has a subsequent (we also denote un) weak∗ convergence to u in L2(0, T ;H−1(Bn)) and
L2(0, T ;L2(Bn)); unt − Δunt has a subsequent (we also denote unt − Δunt) weak∗ convergence
to ut −Δut. Let un = 0 outside of Bn; we can extend un to R

N .
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As introduced in [6, 20],C∞
c (RN) is dense in the dual space ofH−1(Bn), L2(Bn), Lq(Bn),

and H−s(Bn), so we can choose for all φ ∈ L2(0, T ;C∞
c (RN)) ∩ Lq(0, T ;C∞

c (RN)) as a test
function such that

〈
Δun, φ

〉 −→ 〈Δu, φ
〉
,

〈
unt −Δunt, φ

〉 −→ 〈ut −Δut, φ
〉
.

(3.18)

Since for all φ ∈ C∞
c (RN), there exists bounded domainΩ ⊂ R

N such that φ = 0, x /∈ Ω.
It follows that un is uniformly bounded in L2(0, T ;H1

0(Ω)), and unt −Δunt ∈ Lq(0, T ;H−s(Ω)).
Since H1

0(Ω) ⊂⊂ L2(Ω) ⊂ H−s(Ω), according to Lemma 2.8, there is a subsequence un (we
also denote un) that converges strongly to u in L2(0, T ;L2(Ω)).

Using the continuity of f1 and f2, we have

〈
f1(un), φ

〉 −→ 〈f1(u), φ
〉
,

〈
a(x)f2(un), φ

〉 −→ 〈a(x)f2(u), φ
〉
.

(3.19)

In line with (3.18) and (3.19), and let n → ∞, we geting for all φ ∈ L2(0, T ;C∞
c (RN)) ∩

Lq(0, T ;C∞
c (RN)):

〈
ut −Δut −Δu + f1(u) + a(x)f2(u), φ

〉
=
〈
g(x), φ

〉
. (3.20)

Thus, u is the weak solution of (3.2) and satisfies

u ∈ C1
(
[0, T];H1

(
R

N
))

∩ Lp
(
0, T ;Lp

(
R

N
))

. (3.21)

Step 3 (uniqueness and continuous dependence). Let u0, v0 be inH1(RN), and settingw(t) =
u(t) − v(t), we see that w(t) satisfies

wt −Δwt −Δw + f1(u) − f1(v) + a(x)
(
f2(u) − f2(v)

)
= 0, x ∈ R

N. (3.22)

Taking the inner product with w of (3.22), using (F1), (F2), and (A), we obtain

1
2
d
dt

(
‖∇w‖2 + ‖w‖2

)
+ ‖∇w‖2

≤
∣∣∣∣

∫
(
f1(u) − f1(v)

)
w dx

∣∣∣∣

+
∣∣∣∣

∫
a(x)

(
f2(u) − f2(v)

)
w dx

∣∣∣∣

≤ C(1 + ‖a‖∞)‖w‖2.

(3.23)
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By the Gronwall Lemma, we get

‖∇w(t)‖2 + ‖w(t)‖2 ≤ eCt
(
‖∇w(0)‖2 + ‖w(0)‖2

)
. (3.24)

This is uniqueness and is continuous dependence on initial conditions.
Thanks to Theorem 3.1, and leting S(t)u0 = u(t), S(t) : H1(RN) → H1(RN) is a C0

semigroup.

4. Global Attractor in R
N

Lemma 4.1. Assume (F1), (F2), and (A) are satisfied. There is a positive constant ρ1 such that for
any bounded subset B ⊂ H1(RN), there exists T1 = T1(B) such that

‖∇u(t)‖ ≤ ρ1, ∀t ≥ T1, u0 ∈ B. (4.1)

Proof. Multiplying (1.1) by u in R
N , using f1(u)u ≥ 0, (F2) and (A), we have

1
2
d
dt

(
‖∇u‖2 + ‖u‖2

)
+ ‖∇u‖2 ≤

∫

RN

a(x)
(
β2 − α2|u|p

)
dx +

∫

RN

gudx

≤ β2‖a(x)‖1 −
∫

RN

α2a(x)|u|pdx +

∥∥g
∥∥2

2λ
+
λ

2
‖u‖2Bn

.

(4.2)

By virtue of the Poincaré inequality, for some ν > 0, there holds

1
2
d
dt

(
‖∇u‖2 + ‖u‖2

)
+ ν
(
‖∇u‖2 + ‖u‖2

)
+
∫

RN

α2a(x)|u|pdx

≤ β2‖a(x)‖1 +
∥∥g
∥∥2

2λ
.

(4.3)

Furthermore,

1
2
d
dt

(
‖∇u‖2 + ‖u‖2

)
+ ν
(
‖∇u‖2 + ‖u‖2

)
≤ β2‖a(x)‖1 +

∥∥g
∥∥2

2λ
. (4.4)

By the Gronwall Lemma, we get

‖∇u(t)‖2 + ‖u(t)‖2 ≤ e−νt
(
‖∇u(0)‖2 + ‖u(0)‖2

)
+ 2β2‖a(x)‖1 +

∥∥g
∥∥2

λ
. (4.5)

We completed the proof.
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According to Lemma 4.1, we know that

B0 =
{
u ∈ H1

(
R

N
)
: ‖∇u‖ ≤ ρ

}
(4.6)

is a compact absorbing set of a semigroup of operators {S(t)}t≥0 generalized by (1.1)-(1.2),
(F1), (F2), and (A).

Lemma 4.2. Assume (F1), (F2), and (A) hold. Then for any u0 ∈ H1(RN) and ε > 0, there are some
T(ε) and k(ε) such that

∫

|x|≥2k
|∇u(t)|2dt ≤ Cε, (4.7)

whenever k ≥ T(ε) and t ≥ t(ε).

Proof. Choose a smooth function θ(x) with

θ(x) =

{
0, 0 ≤ s ≤ 1,
1, s ≥ 2,

(4.8)

where 0 ≤ θ(s) ≤ 1, 1 ≤ s ≤ 2, and there is a constant c such that |θ′(s)| ≤ c.
Multiplying (1.1) with θ2(|x|2/k2)u and integrating on R

N , we obtain

1
2
d
dt

∫

RN

θ2

(
|x|2
k2

)(
|∇u|2 + |u|2

)
dx −

∫

RN

θ2

(
|x|2
k2

)

uΔudx

= −
∫

RN

θ2

(
|x|2
k2

)

f1(u)udx −
∫

RN

θ2

(
|x|2
k2

)

a(x)f2(u)udx

+
∫

RN

θ2

(
|x|2
k2

)

ug dx

≤ −
∫

RN

θ2

(
|x|2
k2

)

f1(u)udx −
∫

RN

θ2

(
|x|2
k2

)

a(x)f2(u)udx

+
λ

2

∫

RN

θ2

(
|x|2
k2

)

|u|2dx +
1
2λ

∫

RN

∣∣g
∣∣2dx.

(4.9)

Next we deal with the right hand side of (4.9) one by one:

∫

RN

θ2

(
|x|2
k2

)

uΔudx = −
∫

RN

θ2

(
|x|2
k2

)

|∇u|2dx −
∫

RN

4x
k2

θ

(
|x|2
k2

)

θ′
(

|x|2
k2

)

u∇udx.

(4.10)
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According to the condition |θ′(s)| ≤ c and the bounded absorbing set in H1(RN) for t ≥ t∗, it
follows that

∣
∣
∣
∣
∣

∫

RN

4x
k2

θ

(
|x|2
k2

)

θ′
(

|x|2
k2

)

u∇udx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

k≤|x|≤√2k

4x
k2

θ

(
|x|2
k2

)

θ′
(

|x|2
k2

)

u∇udx

∣
∣
∣
∣
∣

≤ 4
√
2

k

∫

k≤|x|≤√2k
θ2

(
|x|2
k2

)

|u||∇u|dx

≤ 2
√
2

k

(∫

RN

θ2

(
|x|2
k2

)

|∇u|2dx +
∫

RN

|u|2dx
)

≤ C

k

∫

RN

θ2

(
|x|2
k2

)

|∇u|2dx +
C

k
,

(4.11)

where C is independent of k. For any 0 < ε < 1 given, let

k1(ε) =
C

ε
. (4.12)

Hence, combining (4.10)with (4.11), when k ≥ k1(ε), we conclude that

∫

RN

θ2

(
|x|2
k2

)

uΔudx ≤ −1
2

∫

RN

θ2

(
|x|2
k2

)

|∇u|2dx + ε. (4.13)

Using f1(u)u ≥ 0 and (F2), it yields

−
∫

RN

θ2

(
|x|2
k2

)

f1(u)udx −
∫

RN

θ2

(
|x|2
k2

)

a(x)f2(u)udx

≤
∫

RN

θ2

(
|x|2
k2

)

a(x)
(
β2 − α2|u|p

)
dx

≤ β2

∫

RN

θ2

(
|x|2
k2

)

a(x)dx

≤ β2

∫

|x|≥k
a(x)dx.

(4.14)

Since a ∈ L1(RN), there exist k2(ε) > k1(ε), such that

∫

|x|≥k
a(x)dx ≤ ε

2β2
. (4.15)
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Then

−
∫

RN

θ2

(
|x|2
k2

)

f1(u)udx −
∫

RN

θ2

(
|x|2
k2

)

a(x)f2(u)udx ≤ ε

2
. (4.16)

From the assumption g(x) ∈ L2(RN), provide k ≥ k(ε) ≥ k2(ε), such that

∫

|x|≥k

∣
∣g
∣
∣2dx ≤ ελ. (4.17)

Thus combining (4.9), (4.13), (4.16), and (4.17), we finally obtain

d
dt

∫

RN

θ2

(
|x|2
k2

)(
|∇u|2 + |u|2

)
dx +

∫

RN

θ2

(
|x|2
k2

)

|∇u|2dx ≤ 4ε. (4.18)

Furthermore, there holds

d
dt

∫

RN

θ2

(
|x|2
k2

)(
|∇u|2 + |u|2

)
dx +

∫

RN

θ2

(
|x|2
k2

)(
|∇u|2 + |u|2

)
dx

≤ 2
∫

RN

θ2

(
|x|2
k2

)(
|∇u|2 + |u|2

)
dx + 4ε.

(4.19)

According to Lemma 2.7, we obtain

∫

RN

θ2

(
|x|2
k2

)(
|∇u(t)|2 + |u(t)|2

)
≤ β

∫

RN

θ2

(
|x|2
k2

)(
|∇u(0)|2 + |u(0)|2

)
e−t/2 +

βe1/2

1 − e−1/2
ε.

(4.20)

Thus, we get

∫

|x|≥2k
|∇u(t)|2dt ≤

∫

RN

θ2

(
|x|2
k2

)(
|∇u(t)|2 + |u(t)|2

)
≤ Cε, (4.21)

provided T ≥ T(ε) and k ≥ k̃(ε), we complete the proof.

Lemma 4.3. Assume (F1), (F2), and (A) hold. There is a positive constant ρ2 such that for any
bounded subset B ⊂ H2(RN), there exists T2 = T2(B) such that

‖Δu(t)‖ ≤ ρ2, ∀t ≥ T2, u0 ∈ B. (4.22)
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Proof. Multiplying (1.1) by −Δu in R
N , we find

1
2
d
dt

(
‖∇u‖2 + ‖Δu‖2

)
+ ‖Δu‖2

=
∫

RN

f1(u)Δudx +
∫

RN

a(x)f2(u)Δudx −
∫

RN

gΔudx.
(4.23)

Using (F1), (F2), and (A), we have the following estimates:

∫

RN

f1(u)Δudx ≤
∫

RN

f ′
1(u)|∇u|2dx ≤ c‖∇u‖2,

∫

RN

a(x)f2(u)Δudx ≤
∫

RN

a(x)f ′
2(u)|∇u|2dx ≤ c‖∇u‖2,

∣∣∣∣

∫

RN

gΔudx
∣∣∣∣ ≤ c

∥∥g(x)
∥∥2 +

1
2
‖Δu‖2.

(4.24)

Together with (4.6) and (4.19)–(4.21), by the Poincaré inequality, for some μ > 0, this yields

d
dt

(
‖∇u‖2 + ‖Δu‖2

)
+ μ
(
‖∇u‖2 + ‖Δu‖2

)
≤ C
∥∥g(x)

∥∥2 + C. (4.25)

By the Gronwall Lemma, we get

‖∇u(t)‖2 + ‖Δu(t)‖2 ≤ e−μt
(
‖∇u(0)‖2 + ‖Δu(0)‖2

)
+ C. (4.26)

We complete the proof.

Remark 4.4. There is a constant C > 0, such that for any bounded subset B ⊂ B(0, ρ2) ⊂
H1(RN), when t > t∗, there holds

∫ t+1

t

(
‖∇u‖2 + ‖Δu‖2

)
≤ C. (4.27)

Lemma 4.5. Assume (F1), (F2), and (A) are satisfied. Then the semigroup {S(t)}t≥0 associated with
the initial value problems (1.1) and (1.2) is ω-limit compact.

Proof. Denote BR = B(0;R) ∩ R
N , and we split u(t) as

u(t) = χ(x)u(t) +
(
1 − χ(x)

)
u(t) = u1(t) + u2(t), (4.28)

where θ(x) is a smooth function:

χ(x) =

{
1, x ∈ BR,

0, x /∈ BR+1,
(4.29)
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with 0 ≤ χ(x) ≤ 1, and there is a positive constant c such that |χ′(x)| ≤ c. Then

u1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

u(t), x ∈ BR,

0, x /∈ BR+1,

χ(x)u(t), others,

u2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ∈ BR,

u(t), x /∈ BR+1,
(
1 − χ(x)

)
u(t), others.

(4.30)

From Lemma 4.1, we know that u1(t) ∈ H1(BR) as t ≥ T1.
For any ε > 0 given, we can choose R large enough; by Remark 4.4, we can assume

∫

|x|≥R
|∇u|2dx ≤ ε

2
. (4.31)

So we conclude that

‖∇u2‖2 ≤ ε

2
. (4.32)

For any bounded set B ⊂ H1(RN), {S(t)B}t≥0 = {S(t)u0 | u0 ∈ B}t≥0 can be split as

S(t)B = χ(x)s(t)B +
(
1 − χ(x)

)
s(t)B. (4.33)

Then in line with the property of noncompact measure, it follows that

γ(S(t)B) = γ
(
χ(x)s(t)B

)
+ γ
((
1 − χ(x)

)
s(t)B

)
. (4.34)

On the other hand,

γ
(
χ(x)s(t)B

)
=
{
χ(x)s(t)u0 = u1(t) | u0 ∈ B

}
. (4.35)

From Lemma 4.3, we get

‖u1‖H2(BR+1) ≤ C, ∀t > t∗ + 1. (4.36)

Recall that

(
1 − χ(x)

)
s(t)B =

{(
1 − χ(x)

)
s(t)u0 = u2 | u2 ∈ B

}
. (4.37)

On account of Remark 4.4, it yields

γ
((
1 − χ(x)

)
s(t)B

) ≤ ε, ∀t > t∗ + 1. (4.38)
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Therefore, we have

γ(S(t)B)B ≤ ε, ∀t > t∗ + 1. (4.39)

That is, {S(t)}t≥0 is ω-limit compact inH1(RN).

Theorem 4.6. Assume (F1), (F2), and (A) hold. Then the semigroup {S(t)}t≥0 associated with the
initial value problems (1.1) and (1.2) has a global attractorA inH1(RN).
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