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In order to simulate gene regulatory oscillators more effectively, Runge-Kutta (RK) integrators are
adapted to the limit-cycle structure of the system. Taking into account the oscillatory feature of
the gene regulatory oscillators, phase-fitted and amplification-fitted Runge-Kutta (FRK) methods
are designed. New FRK methods with phase-fitted and amplification-fitted updated are also
considered. The error coefficients and the error constant for each of new FRKmethods are obtained.
In the numerical simulation of the two-gene regulatory system, the new methods are shown to be
more accurate and more efficient than their prototype RK methods in the long-term integration. It
is a new discovery that the best fitting frequency not only depends on the problem to be solved,
but also depends on the method.

1. Introduction

Differential equations (DEs) have become one of the powerful tools for modeling the complex
dynamics of gene regulatory systems, where the cellular concentrations of mRNAs, proteins,
and other molecules are assumed to vary continuously in time (see, e.g., de Jong [1], Widder
et al. [2], Polynikis et al. [3], Altinok et al. [4], Gérard and Goldbeter [5], and the references
therein). An N-gene activation-inhibition network can be modeled by a system of ordinary
differential equations of the form (Polynikis et al. [3])

Transcription: ṙi = Ψi

(
gR
1

(
p1
)
, . . . , gR

N

(
pN

)) − γiri,

Translation: ṗi = gP
i (ri) − δipi,

(1.1)

where for i = 1, . . . ,N, ri is the concentration of mRNA Ri produced by gene Gi, pi is
the concentration of protein Pi produced by mRNA Ri, γi is the degradation rate of Ri,
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and δi is the degradation rate of Pi. Function gP
i (ri) is the translation function. Function

Ψi(gR
1 (p1), . . . , g

R
N(pN)) is the regulation function, typically defined sums and products of

functions gR
1 (p1), . . . , g

R
N(pN). If protein Pj has no effect on gene Gi, gR

j (pj) does not appear in
Ψi. If ∂Ψi/∂pj > 0, protein pj is an activator of gene Gi. If ∂Ψi/∂pj < 0, protein pj is an inhibitor
of gene Gi.

Since the functions gP
i (ri), g

R
i (pi), and Ψi(·) are nonlinear, the analytical solution of

the system (1.1) is in general not acquirable. Therefore, in order to reveal the dynamics of
such gene regulatory systems, one usually resorts to numerical simulation. To be theoretically
clear, we first consider abstractly the initial value problem (IVP) of the autonomous system
of ordinary differential equations

ẏ = f
(
y
)
, t > 0, (1.2)

where y : [0,+∞) → R
d, “ẏ” represents the first derivative of ywith respect to time, and f :

R
d → R

d is a sufficiently smooth function. Based on experimental observation of biological
facts about gene regulation systems, it is reasonable to make the following assumptions.

(I) The system (1.2) has a stable limit cycle Γ0.

(II) The function f(y) satisfies f(y∗) = 0, that is, y∗ is an equilibrium point of the system
(1.2).

(III) The equilibrium point y∗ lies inside the limit cycle Γ0 and there is no other
equilibrium point inside Γ0.

With these assumptions, any solution near the limit cycle is oscillatory. Up till now,
differential equations of gene regulatory systems are mostly simulated by Runge-Kutta
methods, especially by the classical fourth-order Runge-Kuttamethod or by the Runge-Kutta-
Felhberg adaptivemethod as in theMATLAB package (see [6–8]). Unfortunately, the general-
purpose RK method has not taken into account the special structure of the system (1.1) and
hence they cannot give satisfactory numerical results. There are mainly two deficiencies of
the classical RK methods: (i) They cannot produce as accurate numerical results as required,
even if they have a very high algebraic order; (ii) the true dynamical behavior of the system
cannot be preserved as expected in long term integration.

Recently, researchers have proposed to adapt traditional integrators to problems
whose solutions are oscillatory or periodic (see [9–12]). Bettis [13] constructed a three-stage
method and a four-stage method which can solve the equation y′ = iωy (i2 = −1) exactly.
Paternoster [14] developed a family of implicit Runge-Kutta (RK) and Runge-Kutta-Nyström
(RKN) methods by means of trigonometric fitting. For oscillatory problems which can be
put in the form of a second-order equation y′′ = f(x, y), Franco [15] improved the update
of the classical RKN methods and proposes a family of explicit RKN methods adapted to
perturbed oscillators (ARKN) and a class of explicit adapted RK methods in [16]. Anastassi
and Simos [17] constructed a phase-fitted and amplification-fitted RK method of “almost”
order five. Chen et al. [18] considered symmetric and symplectic extended Runge-Kutta-
Nyström methods. You et al. [19] investigated trigonometrically fitted Scheifele two-step
(TFSTS) methods, derived the necessary and sufficient conditions for TFSTS methods of up
to order five based on the linear operator theory and constructed two practical methods
of algebraic four and five, respectively. For other important work on frequency-dependent
integrators for general second-order oscillatory equations, the reader is referred to [20–24].
Some authors aimed at obtaining effective integrators for specific categories of oscillatory
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problems. For instance, Vigo-Aguiar and Simos [24] constructed an exponentially fitted and
trigonometrically fitted method for orbital problems. The papers [25–27] have designed
highly efficient integrators for the Schrödinger equation.

The objective of this paper is to develop effective integrators for simulating the gene
regulation system (1.1) near its limit cycle. Motivated by the work of Van de Vyver [28] on the
two-step hybrid methods (FTSH), this paper develops a novel type of phase-amplification-
fitted methods of Runge-Kutta type. These new numerical integrators respect the limit cycle
structure of the system and are expected to be more accurate than the traditional RKmethods
in the long-time integration of gene regulatory systems. In Section 2, we present the order
conditions for the modified Runge-Kutta methods for solving initial value problems of
autonomous ordinary differential equations with oscillatory solutions. Section 3 gives the
conditions for a modified RK method and its update to be phase-fitted and amplification-
fitted. In Section 4, we construct six phase-fitted and amplification-fitted RK (FRK)methods.
For each of these methods, the error coefficients and the error constant are presented. In
Section 5, the two-gene regulation system is solved by the new FRK methods as well as their
prototype RK methods. Section 6 is devoted to the conclusions.

2. Modified Runge-Kutta Methods and Order Conditions

Assume that the principal frequency of the problem (1.2) is known or can be accurately
estimated in advance. This estimated frequency matrix is denoted by ω, which is also called
the fitting frequency. We consider the following s-stage modified Runge-Kutta method:

ki = f

⎛
⎝yn + h

s∑
j=1

aijkj

⎞
⎠, i = 1, . . . , s,

yn+1 = yn + h
s∑
i=1

bi(ν)ki,

(2.1)

where h is the step size, aij , i, j = 1, . . . , s are real numbers and bi(ν), i = 1, . . . , s are even
functions of ν = hΩ. The scheme (2.1) can be represented by the Butcher tableau

c A

bT (ν)
=

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1(ν) · · · bs(ν)

(2.2)

or simply by (c,A, b(ν)). With the rooted tree theory of Butcher [6], the exact solution to the
problem (1.2) and the numerical solution produced by the modified RK type method (2.1)
have the B-series expressions as follows:

y(x0 + h) =
∞∑
j=0

hj

j!

∑
ρ(τ)=j

α(τ)F(τ)(y0
)
,

y1 =
∞∑
j=0

hj

j!

∑
ρ(τ)=j

α(τ)γ(τ)bTΦ(τ)F(τ)(y0
)
,

(2.3)
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where the trees τ , the functions ρ(τ) (order), α(τ) (the number of monotonic labelings of
tree τ), γ(τ) (density), Φ(τ) = (Φ1(τ), . . . ,Φs(τ))

T (the vector of elementary weights) and
the elementary differentials F(τ)(y0) are defined in [8]. Then the local truncation error has the
following series expansion:

LTE = y(x0 + h) − y1 =
∞∑
j=0

hj

j!

∑
ρ(τ)=j

α(τ)
(
1 − γ(τ)bT (ν)Φ(τ)

)
F(τ)(y0

)
. (2.4)

If for any (p + 1)th differentiable function f(y), when the scheme (2.1) is applied to the
problem (1.2), LTE = Cp+1h

p+1 + O(hp+2), Cp+1 /= 0, then the method (2.1) is said to have
(algebraic) order p.

Theorem 2.1 (Franco [16]). The modified RK type method (2.1) has order p if and only if the
following conditions are satisfied:

bTΦ(τ) =
1

γ(τ)
+O

(
hp−ρ(τ)+1

)
, ρ(τ) = 1, . . . , p. (2.5)

If the method (2.1) is of order p, then we have

LTE =
hp+1

(
p + 1

)
!

∑
ρ(τ)=p+1

α(τ)
(
1 − γ(τ)bT (ν)Φ(τ)

)
F(τ)(y0

)
+O

(
hp+2

)

:=
hp+1

(
p + 1

)
!

∑
ρ(τ)=p+1

α(τ)ε(τ)F(τ)(y0
)
+O

(
hp+2

)
,

(2.6)

where ε(τ) = 1−γ(τ)bT (ν)Φ(τ) is called the error coefficient associated with the tree τ of order
p + 1 which is involved in the leading term of the local truncation error. Denote

ECp+1(ν) =

⎛
⎝ ∑

ρ(τ)=p+1

ε(τ)2
⎞
⎠

1/2

. (2.7)

The positive number

Cp+1 = lim
ν→ 0

ECp+1(ν) (2.8)

is called the error constant of the method. According to Theorem 2.1, we list the conditions
for modified RK type methods to be of up to order 5 as follows:

(i) Order 1 : bTe = 1 +O(h);

(ii) Order 2 : bTe = 1 +O
(
h2
)
, bTc =

1
2
+O(h);
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(iii) Order 3 : bTe = 1 +O
(
h3
)
, bTc =

1
2
+O

(
h2
)
, bTc2 =

1
3
+O(h),

bTAc =
1
6
+O(h);

(iv) Order 4 : bTe = 1 +O
(
h4
)
, bTc =

1
2
+O

(
h3
)
, bTc2 =

1
3
+O

(
h2
)
,

bTAc =
1
6
+O

(
h2
)
, bTc3 =

1
4
+O(h), bT (c ·Ac) =

1
8
+O(h),

bT
(
Ac2

)
=

1
12

+O(h), bTA2c =
1
24

+O(h);

(v) Order 5 : bTe = 1 +O
(
h5
)
, bTc =

1
2
+O

(
h4
)
, bTc2 =

1
3
+O

(
h3
)
,

bTAc =
1
6
+O

(
h3
)
, bTc3 =

1
4
+O

(
h2
)
, bT (c ·Ac) =

1
8
+O

(
h2
)
,

bT
(
Ac2

)
=

1
12

+O
(
h2
)
, bTA2c =

1
24

+O
(
h2
)
, bTc4 =

1
5
+O(h),

bTA2c2 =
1
10

+O(h), bT
(
c ·

(
Ac2

))
=

1
15

+O(h),

bT
(
c ·A2c

)
=

1
30

+O(h), bT (Ac ·Ac) =
1
20

, bTAc3 =
1
20

+O(h),

bTA(c ·Ac) =
1
40

+O(h), bTA2c2 =
1
60

+O(h), bTA3c =
1
120

+O(h),

(2.9)

where e = (1, 1, . . . , 1)T , c = (c1, . . . , cs)
T with ci =

∑s
j=1 aij , i = 1, . . . , s, the dot “·” between

two vectors indicates componentwise product, c2 indicates the componentwise square of the
vector c and so on. We will follow this convention in the sequel.

It is obvious that if a method satisfies the conditions for some order p, then it satisfies
all the conditions for orders lower than p.

In Section 4, when we use the above order conditions as equations to solve for the
coefficients of a method, the higher order terms will be neglected.

3. Phase-Fitting and Amplification-Fitting Conditions

For oscillatory problems, Paternoster [14] and Van der Houwen and Sommeijer [29] propose
to analyze the phase properties (dispersion and dissipation) of numerical integrators. To this
end, we consider the linear equation

y′ = iωy. (3.1)

The exact solution of this equation with the initial value y(x0) = y0 satisfies

y(x0 + h) = R0(z)y0, (3.2)
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where R0(z) = exp(z), z = iν. This means that after a period of time h, the exact solution
experiences a phase advance ν = hω and the amplification remains constant.

An application of the modified RK method (2.1) to (3.1) yields

y1 = R(z)y0, (3.3)

where

R(z) = 1 + zbT (I − zA)−1e, z = iν, e = (1, . . . , 1)T . (3.4)

Thus, after a time step h, the numerical solution obtains a phase advance argR(z) and the
amplification factor |R(iν)|. R(z) is called the stability function of the method (2.1). Denoting
the real and imaginary part of R(z) by U(ν) and V (ν), respectively, we have

U(ν) = 1 − ν2
(
bTAe

)
+ ν4

(
bTA3e

)
− ν6

(
bTA5e

)
+ ν8

(
bTA7e

)
− · · · ,

V (ν) = ν
(
bTe

)
− ν3

(
bTA2e

)
+ ν5

(
bTA4e

)
− ν7

(
bTA6e

)
+ · · · .

(3.5)

Thus, argR(z) = tan−1(V (ν)/U(ν)) and |R(z)| =
√
U2(ν) + V 2(ν). The above analysis leads

to the following definition.

Definition 3.1 (see [29]). The quantities

P(ν) = ν − argR(iν), D(ν) = 1 − |R(iν)| (3.6)

are called the phase lag (or dispersion) and the error of amplification factor (or dissipation)
of the method, respectively. If

P(ν) = O
(
νq+1

)
, D(ν) = O

(
νp+1

)
, (3.7)

then the method is called dispersive of order q and dissipative of order p, respectively. If

P(ν) = 0, D(ν) = 0, (3.8)

the method is called phase-fitted (or zero-dispersive) and amplification-fitted (or zero-dissipative),
respectively. By a phase-amplification-fitted RKmethod we mean a modified RK method that is
both phase-fitted and amplification-fitted, which we refer to as an FRK method.

It is interesting to consider the phase properties of the update of the scheme (2.1).
Suppose that the internal stages have been exact for the linear equation (3.1), that is, Yi =
exp(iciV )y0, then the update gives

y1 = Ru(z)y0, (3.9)
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where

Ru(z) = 1 + z
s∑
i=1

bi(ν) exp(ciz), z = iν. (3.10)

Denote the real and imaginary part of Ru(z) byUu(ν) and νu(ν), respectively. Then, for small
h,

Uu(ν) = 1 − ν
s∑
i=1

bi(ν) sin(ciν),

Vu(ν) = ν
s∑
i=1

bi(ν) cos(ciν).

(3.11)

Definition 3.2. The quantities

Pu(ν) = ν − argRu(iν), Du(ν) = 1 − |Ru(iν)| (3.12)

are called the dispersion (or phase lag) and the dissipation (or error of amplification factor) of the
update of the method, respectively. If

Pu(ν) = O
(
νq+1

)
, Du(ν) = O

(
νp+1

)
, (3.13)

then the update is called dispersive of order q and dissipative of order p, respectively. If

Pu(ν) = 0, Du(ν) = 0, (3.14)

the update is called phase-fitted (or zero-dispersive) and amplification-fitted (or zero-dissipative),
respectively.

In general, a classical RK method with constant coefficients carries a nonzero
dispersion and a nonzero dissipation when applied to the linear oscillatory equation (3.1).
Therefore, they are neither phase-fitted nor amplification-fitted. So does the update. For
example, the classical RK method of order four with constant coefficients (denoted as RK4,
see [8]) given by

0
1
3

1
3

2
3

−1
2

1

1 1 −1 1

1
6

2
6

2
6

1
6

(3.15)
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has a phase lag and an error of amplification factor

P(ν) =
1
120

ν5 +O
(
ν7
)
, D(ν) =

1
144

ν6 +O
(
ν8
)
. (3.16)

For the update,

Pu(ν) = − 1
2880

ν5 +O
(
ν7
)
, Du(ν) = − 1

5760
ν6 +O

(
ν8
)
. (3.17)

Therefore, both the method and its update are dispersive of order four and dissipative of
order five.

The following theorem gives the necessary and sufficient conditions for a modified RK
method and its update to be phase-fitted and amplification-fitted, respectively. The proof of
this theorem is immediate.

Theorem 3.3. (i) The method (2.1) is phase-amplification-fitted if and only if

U(ν) = cos(ν), V (ν) = sin(ν). (3.18)

(ii) The update of the method (2.1) is phase-amplification-fitted if and only if

Uu(ν) = cos(ν), Vu(ν) = sin(ν). (3.19)

4. Construction of FRK Methods

In this section, we construct modified RK type methods that are phase-amplification-fitted
based on the internal coefficients of familiar classical RKmethods. For conveniencewe restrict
ourselves to explicit methods.

4.1. FRK Methods of Type I

The coefficients of Type I methods are obtained by solving the phase-amplification-fitting
conditions and some low-order conditions.

4.1.1. Three-Stage Methods of Order Three

We begin by considering the following three-stage method

0
1
2

1
2

1 −1 2

b1(ν) b2(ν) b3(ν)

(4.1)
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The phase-fitting and amplification-fitting conditions (3.18) for the scheme (4.1) have the
form

1 − 1
2
(b2 + 2b3)ν2 = cos(ν),

(b1 + b2 + b3) − b3ν
2 =

sin(ν)
ν

.

(4.2)

On the other hand, the first-order condition is given by

bTe = b1(ν) + b2(ν) + b3(ν) = 1. (4.3)

Solving (4.2) and (4.3), we obtain

b1(ν) = −ν − ν3 − 2ν cos(ν) + sin(ν)
ν3

, b2(ν) =
−2ν cos(ν) + 2 sin(ν)

ν3
,

b3(ν) =
ν − sin(ν)

ν3
.

(4.4)

As ν → 0, bi(ν) have the following Taylor expansions

b1(ν) =
1
6
+

3
40

ν2 − 13
50400

ν4 +
17

362880
ν6 − 1

1900800
ν8 + · · · ,

b2(ν) =
2
3
− 1
15

ν2 +
1
420

ν4 − 1
22680

ν6 +
1

1995840
ν8 + · · · ,

b3(ν) =
1
6
− 1
120

ν2 +
1

5040
ν4 − 1

362880
ν6 +

1
39916800

ν8 + · · · .

(4.5)

It is easy to verify that the method defined by (4.1) and (4.4) is of order three and we
denote it by FRK3s3aI.

The error coefficients for FRK3s3aI are given as follows:

ε(τ41) = 1 − 8ν − 6 sin(ν) − 2ν cos(ν)
2ν3

,

ε(τ42) = 1 − 8(ν − sin(ν))
ν3

, ε(τ43) = 1 − 6(ν − sin(ν))
ν3

, ε(τ44) = 1.

(4.6)

The error constant is

C4 = lim
ν→ 0

√
ε(τ41)2 + ε(τ42)2 + ε(τ43)2 + ε(τ44)2 =

√
10
3

. (4.7)
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Next we consider the following three-stage method based on Heun’s method of order
three

0
1
3

1
3

2
3

0
2
3

b1(ν) b2(ν) b3(ν)

(4.8)

Solving the phase-fitting and amplification-fitting conditions and the first-order condition,
we obtain

b1(ν) =
3ν + 2ν3 + 6ν cos(ν) − 9 sin(ν)

2ν3
, b2(ν) = −3(2ν + ν cos(ν) − 3 sin(ν))

ν3
,

b3(ν) =
−9(ν − sin(ν))

2ν3
.

(4.9)

As ν → 0, bi(ν), i = 1, 2, 3, have the following Taylor expansions:

b1(ν) =
1
4
+

7
80

ν2 − 11
3360

ν4 +
1

16128
ν6 − 19

26611200
ν8 + · · · ,

b2(ν) = − 1
20

ν2 − 1
420

ν4 − 1
20160

ν6 +
1

1663200
ν8 + · · · ,

b3(ν) =
3
4
− 3
80

ν2 +
1

1120
ν4 − 1

80640
ν6 +

1
8870400

ν8 + · · · .

(4.10)

The method given by (4.8) and (4.9) is also of order three and we denote it by FRK3s3bI.
The error coefficients for FRK3s3bI are given as follows:

ε(τ41) = 1 +
−40ν + 4ν cos ν + 36 sin(ν)

9ν3
,

ε(τ42) = 1 − 16(ν − sin(ν))
3ν3

, ε(τ43) = 1 − 4(ν − sin(ν))
ν3

, ε(τ44) = 1.

(4.11)

The error constant is

C4 =
2
√
23
9

. (4.12)
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4.1.2. Four-Stage Methods of Order Four

Next we consider the following four-stage method based on the so-called 3/8 rule (see the
right method in Table 1.2 of Hairer et al. [8])

0
1
3

1
3

2
3

−1
3

1

1 1 −1 1

b1(ν) b2(ν) b3(ν) b4(ν)

(4.13)

For s = 4, the phase-fitting and amplification-fitting conditions (3.18) have the form

1 − 1
3
(b2 + 2b3 + 3b4)ν2 = cos(ν),

b1 + b2 +
(
1 − 1

3
ν2
)
(b3 + b4) =

sin(ν)
ν

.

(4.14)

On the other hand, the first-order and second-order conditions become

bTe = b1 + b2 + b3 + b4 = 1,

bTc =
1
3
b2 +

2
3
b3 + b4 =

1
2
.

(4.15)

Solving (4.29) and (4.15), we obtain

b1(ν) = − 6 − 9ν2 + ν4 − 6 cos(ν) + 6ν sin(ν)
2ν4

,

b2(ν) =
3
(
2 − 5ν2 + ν4 − 2 cos(ν) + 4ν sin(ν)

)

2ν4
,

b3(ν) =
3
(
2 + ν2 − 2 cos(ν) − 2ν sin(ν)

)

2ν4
,

b4(ν) =
3
(−2 + ν2 + 2 cos(ν)

)

2ν4
.

(4.16)
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As ν → 0, bi(ν) have the following Taylor expansions:

b1(ν) =
1
8
− 7
240

ν2 +
3

4480
ν4 − 11

120960
ν6 +

1
159667200

ν8 − 1
1937295360

ν10 + · · · ,

b2(ν) =
3
8
+

13
240

ν2 − 17
13440

ν4 +
1

5760
ν6 − 1

6386688
ν8 +

29
29059430400

ν10 + · · · ,

b3(ν) =
3
8
− 1
48

ν2 +
1

1920
ν4 − 1

134400
ν6 +

1
14515200

ν8 − 1
2235340800

ν10 + · · · ,

b4(ν) =
1
8
− 1
240

ν2 +
1

13440
ν4 − 1

1209600
ν6 +

1
159667200

ν8 − 1
29059430400

ν10 + · · · .

(4.17)

The method given by (4.13) and (4.16) is also of order four and we denote it by FRK4s4aI.
Corresponding to the nine fifth-order rooted trees τ5j , j = 1, . . . , 9, the error coefficients

are given by

ε(τ51) =
420 − 180ν2 + 17ν4 − 420 cos(ν) − 30ν sin(ν)

32ν4
,

ε(τ52) =
90 − 75ν2 + 8ν4 − 90 cos(ν) + 30ν sin(ν)

8ν4
,

ε(τ53) =
90 − 135ν2 + 16ν4 − 90 cos(ν) + 90ν sin(ν)

16ν4
,

ε(τ54) = 1 − 45
(−2 + ν2 + 2 cos(ν)

)

2ν4
,

ε(τ55) =
−15ν + ν3 + 15 sin(ν)

ν3
,

ε(τ56) = 1 − 15(ν − sin(ν))
2ν3

,

ε(τ57) = 1 − 15
(−2 + ν2 + 2 cos(ν)

)

ν4
,

ε(τ58) = 1 − 45
(−2 + ν2 + 2 cos(ν)

)

2ν4
,

ε(τ59) = 1.

(4.18)

The error constant is

C5 =
√
20334
64

. (4.19)
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Nowwe consider the following four-stage method based on the classical Runge-Kutta
method (see Hairer et al. [8, Page 138], the left method in Table 1.2)

0
1
2

1
2

1
2

0
1
2

1 0 0 1

b1(ν) b2(ν) b3(ν) b4(ν)

(4.20)

The phase-fitting and amplification-fitting conditions (3.18) and the first-order and
second-order conditions give

b1(ν) =
2
(−2 + ν2 − 2 cos(ν)

)

2ν4
, b2(ν) =

−4ν + ν3 + 4 sin(ν)
ν3

,

b3(ν) =
8 − 8 cos(ν) − 4ν sin(ν)

ν4
, b4(ν) = b1(ν).

(4.21)

As ν → 0, bi(ν) have the following Taylor expansions:

b1(ν) =
1
6
− 1
180

ν2 +
1

10080
ν4 − 1

907200
ν6 +

1
119750400

ν8 − 1
21794572800

ν10 + · · · ,

b2(ν) =
1
3
+

1
30

ν2 − 1
1260

ν4 +
1

90720
ν6 − 1

9979200
ν8 +

1
1556755200

ν10 + · · · ,

b3(ν) =
1
3
− 1
45

ν2 +
1

1680
ν4 − 1

113400
ν6 +

1
11975040

ν8 − 1
1816214400

ν10 + · · · ,

b4(ν) =
1
6
− 1
180

ν2 +
1

10080
ν4 − 1

907200
ν6 +

1
119750400

ν8 − 1
21794572800

ν10 + · · · .

(4.22)

It is easily verified that the method defined by (4.20) and (4.21) is of order four and
we denote it by FRK4s4bI. The method was originally obtained by Simos [30].

Corresponding to the nine fifth-order rooted trees t5j , j = 1, . . . , 9, the error coefficients
of FRK4s4bI are given by

ε(τ51) =
280 − 140ν2 + 11ν4 − 280 cos(ν)

16ν4
, ε(τ52) =

30 − 20ν2 + 2ν4 − 30 cos(ν) + 5ν sin(ν)
2ν4

,

ε(τ53) =
30 − 30ν2 + 4ν4 − 30 cos(ν) + 15ν sin(ν)

4ν4
, ε(τ54) = 1 − 15

(−2 + ν2 + 2 cos(ν)
)

ν4
,

ε(τ55) =
10 − 10ν2 + ν4 − 10 cos(ν) + 5ν sin(ν)

ν4
, ε(τ56) =

−5ν + ν3 + 5 sin(ν)
ν3

,

ε(τ57) = 1 − 10
(−2 + ν2 + 2 cos(ν)

)

ν4
, ε(τ58) = ε(τ54), ε(τ59) = 1.

(4.23)
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Then the error constant is

C5 =
√
2881
48

. (4.24)

4.2. FRK Methods of Type II

The coefficients of Type II methods are determined by solving the phase-amplification-fitting
conditions and update phase-amplification-fitting conditions. Due to the limitation of the
number of parameters, we can only consider methods of at least four stages.

For the method given by (4.13), the conditions in Theorem 3.3 assume

1 − 1
3
(b2 + 2b3 + 3b4)ν2 +

1
3
b4ν4 = cos(ν),

1
3
ν
(
3b1 + 3b2 + (b3 + b4)

(
3 − ν2

))
= sin(ν),

b1(ν) + b2(ν) cos
(
1
3
ν

)
+ b3(ν) cos

(
2
3
ν

)
+ b4(ν) cos(ν) =

sin(ν)
ν

,

b2(ν) sin
(
1
3
ν

)
+ b3(ν) sin

(
2
3
ν

)
+ b4(ν) sin(ν) =

1 − cos(ν)
ν

.

(4.25)

Solving this system, we can obtain bi(v), i = 1, . . . , 4. Their analytic expressions are
complicated. Here we present their Taylor expansions as follows:

b1(ν) =
1
8
− 499
7200

v2 +
112107

18144000
v4 − 11695057

29393280000
v6 +

2827383107
116397388800000

ν8 +O
(
v10

)
,

b2(ν) =
3
8
+

443
3600

v2 − 347023
18144000

v4 +
5475251

3674160000
v6 − 11085686363

116397388800000
ν8 +O

(
v10

)
,

b3(ν) =
3
8
− 11
288

v2 +
227

103680
v4 − 694669

5878656000
v6 +

14560531
2116316160000

ν8 +O
(
v10

)
,

b4(ν) =
1
8
− 7
450

v2 +
20311

18144000
v4 − 1023083

14696640000
v6 +

492479531
116397388800000

ν8 +O
(
v10

)
.

(4.26)

It can be verified that the method given by (4.13) and (4.26) is of order four. We denote the
method by FRK4s4bII.

The error coefficients of FRK4s4aII are given by

ε(t51) =
9
64

+
1181
23040

v2 − 8839
29030400

v4 +O
(
v6
)
,

ε(t52) = − 3
32

+
241
1920

v2 − 13441
1612800

v4 +O
(
v6
)
,

ε(t53) = − 11
64

+
499
3840

v2 − 80347
9676800

v4 +O
(
v6
)
,
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ε(t54) = − 7
8
+

7
30

v2 − 20311
1209600

v4 +O
(
v6
)
,

ε(t55) = − 3
2
+

43
160

v2 − 5003
302400

v4 +O
(
v6
)
,

ε(t56) = − 1
4
+

43
320

v2 − 5003
604800

v4 +O
(
v6
)
,

ε(t57) = − 1
4
+

7
45

v2 − 20311
1814400

v4 +O
(
v6
)
,

ε(t58) = ε(t54),

ε(t59) = 1.

(4.27)

Then the error constant is

C5(ν) =
√
20334
64

. (4.28)

For the method given by (4.13), the conditions in Theorem 3.3 assume

1 − 1
3
(b2 + 2b3 + 3b4)ν2 = cos(ν),

(b1 + b2 + b3 + b4)ν −
(
1
3
b3 +

1
3
b4

)
ν3 +

1
3
b4ν

4 = sin(ν),

b1(ν) + b2(ν) cos
(
1
2
ν

)
+ b3(ν) cos

(
1
2
ν

)
+ b4(ν) cos(ν) =

sin(ν)
ν

,

b2(ν) sin
(
1
2
ν

)
+ b3(ν) sin

(
1
2
ν

)
+ b4(ν) sin(ν) =

1 − cos(ν)
ν

.

(4.29)

Solving this system, we obtain

b1(ν) =
4(ν − 2 sin(ν/2)) sin(ν/2)
ν2(−4 + ν2 + 4 cos(ν/2))

,

b2(ν) =
L

ν4(−4 + ν2 + 4 cos(ν/2))
,

b3(ν) = −8(ν cos(ν/2) − 2 sin(ν/2)) sin(ν/2)
ν4

,

b4(ν) = b1(ν),

(4.30)

where

L = 2 sin
(ν
2

)(
8ν − 4ν3 + ν5 + 4ν

(
−4 + ν2

)
cos

(ν
2

)
+ 8ν cos(ν)

+32 sin
(ν
2

)
− 8ν2 sin

(ν
2

)
− 16 sin(ν) + 4ν2 sin(ν)

)
.

(4.31)
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It can be verified that the method given by (4.20) and (4.30) is of order four. We denote the
method by FRK4s4bII.

The error coefficients of FRK4s4bII are given by

ε(t51) =
W

8ν2Q
,

ε(t52) =1 +
5 sin(ν/2)

ν4Q

×
(
ν
(
−4 + ν2

)
cos

(ν
2

)
+ 2

(
ν − 2ν3 + ν cos(ν) +

(
4 + 3ν2

)
sin

(ν
2

)
− 2 sin(ν)

))
,

ε(t53) =1 −
15 sin(ν/2)

(−ν cos(ν/2)Q + 2
(
ν3 − (

4 + ν2
)
sin(ν/2) + 2 sin(ν)

))

2ν4Q
,

ε(t54) =1 − 30(ν − 2 sin(ν/2)) sin(ν/2)
ν2Q

,

ε(t55) =1 +
10 sin(ν/2)

ν4Q

×
(
ν
(
−4 + ν2

)
cos

(ν
2

)
+ 2

(
ν − ν3 + ν cos(ν) +

(
4 + ν2

)
sin

(ν
2

)
− 2 sin(ν)

))
,

ε(t56) =1 −
40 cos(ν/4)sin3(ν/4)

(
ν3 + 4ν cos(ν/2) − 8 sin(ν/2)

)

ν4Q
,

ε(t57) =1 − 20(ν − 2 sin(ν/2)) sin(ν/2)
ν2Q

,

ε(t58) =1 − ε(t54)

ε(t59) =1,
(4.32)

where

W =160 − 32ν2 + 8ν4 + 2
(
−5 + 16ν2

)
cos

(ν
2

)
− 160 cos(ν) + 10 cos

(
3ν
2

)

− 140ν sin
(ν
2

)
− 5ν3 sin

(ν
2

)
,

Q = − 4 + ν2 + 4 cos
(ν
2

)
.

(4.33)

Then the error constant is

C5(ν) =
√
2881
48

. (4.34)
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5. Numerical Simulation

In this section, we proceed to solve numerically a two-gene regulatory system without self-
regulation (see Widder et al. [2] and Polynikis et al. [3])

ṙ1 = m1H
+(p2; θ2, n2

) − γ1r1,

ṙ2 = m2H
−(p1; θ1, n1

) − γ2r2,

ṗ1 = k1r1 − δ1p1,

ṗ2 = k2r2 − δ2p2,

(5.1)

where for i = 1, 2, ri is the concentration of mRNA Ri produced by gene Gi, pi is the
concentration of protein Pi,mi is the maximal transcription rate ofGi, ki is the translation rate
of Ri, γi is the degradation rate of Ri and δi is the degradation rate of Pi. The two functions

H+(p2; θ2, n2
)
=

pn2
2

pn2
2 + θn2

2

, H−(p1; θ1, n1
)
=

θn1
1

pn1
1 + θn1

1

(5.2)

are the Hill functions of activation and repression, respectively. The parameters n1, n2 are the
Hill coefficients, θ1, θ2 are the expression thresholds.

The solution (r∗1 , r
∗
2 , p

∗
1, p

∗
2) of the system ṙ1 = ṙ2 = ṗ1 = ṗ2 = 0 is an equilibrium point of

the system (5.1). Now we take the values of parameters as follows:

n1 = n2 = 3, m1 = 1.15, m2 = 2.35, k1 = k2 = 1,

γ1 = γ2 = 1, δ1 = δ2 = 1, θ1 = θ2 = 0.21.
(5.3)

For any initial point (r1(0), r2(0), p1(0), p2(0)) near the equilibrium point, the system (5.1) has
a stable limit cycle. Figure 1 presents three phase-orbits projected in the protein plane starting
at (0.6, 0.8, 0, 0), (0.6, 0.8, 0.1, 1), and (0.8, 0.2, 0.5, 0.2), respectively.

In order to test the effectiveness of the new FRK methods proposed in this paper,
we apply them to the above two-gene regulatory system. For comparison, we also employ
several highly efficient integrators from the literature. The numerical methods we choose for
experiments are as follows:

(i) FRK3s3aI: the three-stage RK method of order three given by (4.1) and (4.4) in
Section 4 of this paper;

(ii) FRK3s3bI: the three-stage RK method of order three given by (4.8) and (4.9) in
Section 4 of this paper;

(iii) FRK4s4aI: the four-stage RK method of order four given by (4.13) and (4.16) in
Section 4 of this paper;

(iv) FRK4s4bI: the four-stage RK method of order four given by (4.20) and (4.21) in
Section 4 of this paper;

(v) FRK4s4aII: the four-stage RK method of order four given by (4.13) and (4.26) in
Section 4 of this paper;
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Figure 1: Efficiency curves.

(vi) FRK4s4bII: the four-stage RK method of order four given by (4.20) and (4.30) in
Section 4 of this paper;

(vii) ARK4: the second four-stage adapted RK method of order four given in Subsection
3.2 of Franco [16];

(viii) EFRK4: the four-stage exponentially fitted RK method of order four given in [31];

(ix) RK4: the classical RK method of order four presented in [8] (the prototype method
of FRK4s4bI and FRK4s4bII);

(x) RK38: the so-called 3/8 rule, the right method in Table 1.2 of Hairer et al. [8] (the
prototype method of FRK4s4aI and FRK4s4aII).

5.1. Experiment 1: Protein Error Growth

We first integrate the problem (5.1)–(5.3) on the interval [0, 400]with the fixed step size h = 1
and the initial values

(
r10, r20, p10, p20

)
= (0.6, 0.8, 0.4, 0.6). (5.4)

In Figure 2, we plot the absolute global errors of Protein 1 produced by themethods FRK3s3aI
and FRK3s3bI compared with their prototype RK methods. In Figure 3, we plot the absolute
global errors of Protein 1 produced by the methods FRK4s4aI, FRK4s4aII, FRK4s4bI and
FRK4s4bII compared with their prototype RK methods.

It can be seen from Figures 2 and 3 that the FRK methods are more accurate than their
prototype RKmethods. Moreover, for appropriate fitting frequency (hereω = 1.006), the FRK
methods of type II can be more accurate than the corresponding FRK methods of type I and
their prototype RK methods.
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Figure 2: Comparison of (a) RK3s3a and FRK3s3aI (left), (b) RK3s3b and FRK3s3bI (right).
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Figure 3: Comparison of (a) RK3/8, FRK4s4aI and FRK4s4aII (left), (b) RK4, FRK4s4bI and FRK4s4bII
(right).

5.2. Experiment 2: Efficiency

Next we compare the computational efficiency of the methods under consideration. In this
experiment, we also take the same initial data as Experiment I. The problem is integrated
on the interval [0, 30] with step sizes h = 1/2i, i = 1, 2, 3, 4 for the four-stage methods and
with 3h/4 for the three-stage methods. The numerical results are presented in Figure 4, where
the horizontal axis stands for the computational effort measured by the number of function
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Figure 4: Efficiency curves.

evaluations required and the vertical axis stands for the maximal global error (MGE) of
Protein 1, both in the digital logarithm scale.

It can be seen from Figure 4 that the FRK methods are more efficient than their
prototype RK methods and are more efficient than the other frequency depending methods
of the same algebraic order.

6. Conclusions and Discussions

In this paper, classical Runge-Kutta methods are adapted to stable limit cycles of first-
order dynamical systems of genetic regulation. The newly developed phase-fitted and
amplification-fitted Runge-Kutta methods (FRK) adopt functions of the product ν = ωh of
the fitting frequency ω and the step size h as weight coefficients in the update. FRK methods
have zero dispersion and zero dissipation when applied to the standard linear oscillator
y′ = iωy. That is to say, they can preserve initial phase and amplification as time extends.
Therefore, FRK integrators are a kind of integrators which preserve the oscillation structure
of the problem.

We note that as the fitting frequency tends to zero, FRK methods reduce to their
classical prototype methods. Furthermore, an FRK method has the same algebraic order and
the same error constant with its prototypes method. Numerical experiments illustrate the
high efficiency of FRK methods compared with their prototype methods and some other
frequency depending methods like exponentially fitted RK methods.

Theorem 3.3 gives a pair of sufficient conditions for modified RK type methods to be
phase-fitted and amplification-fitted. The coefficients of the FRKmethods of type I (FRK3s3aI,
FRK3s3bI, FRK4s4aI, and FRK4s4b) are obtained with these conditions combined with an
appropriate number of low order conditions. Since the FRK methods of type II (FRK4s4aII
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and FRK4s4bII) have updates that are also phase-amplification-fitted, they can be more
accurate than those methods whose updates do not have this property.

In practical computations of oscillatory problems, the true frequency is, in general, not
available. The fitting frequency contained in an FRK method is just an estimate of the true
frequency. For techniques of estimating principal frequencies we refer to the papers [32–37].
In this experiment, we have a new discovery that for a specific FRK method, the choice of the
value of the fitting frequency ω affects its efficiency to some extent. For instance, in Section 5,
we have discovered that ω = 1.1966 is the best choice for FRK4s4aII, while ω = 1.006 is
the best for FRK4s4bII. This interesting discovery constitutes a challenge to the traditional
viewpoint on the choice of fitting frequency for frequency depending methods for which a
“best” estimate of frequency can be obtain from the problem under consideration. The results
of Experiment 2 of Section 5 show that this best frequency also depends on the method itself.
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