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This paper investigates the optimal control and MLE (maximum likelihood estimation) for a
single-species system subject to random perturbation. With the help of the techniques of stochastic
analysis and mathematical statistics, sufficient conditions for the optimal control threshold
value, the optimal control moment, and the maximum likelihood estimation of parameters are
established, respectively. An example is presented to illustrate the feasibility of our theoretical
results.

1. Introduction

The Malthus model is usually expressed as

dx(t)
dt

= rx(t), (1.1)

where x(0) = x0 > 0, x(t) stands for the density of species x at tmoment, and r is the intrinsic
growth rate. As everyone knows, model (1.1) has epoch-making significance in mathematics
and ecology and later, many deterministic mathematical models have been widely studied
(see [1–5]). In fact, a population system is inevitably affected by the environmental noise in
the real world. As a consequence, it is reasonable to study a corresponding stochastic model.
Notice that some recent results, especially on optimal control, for the following stochastic
model

dx(t)
x(t)

= rdt + σdw(t), (1.2)
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have been obtained (see [6–9]), where w(t) stands for the standard Brownian motion.
However, for some pest populations, their generations are nonoverlapping (e.g., poplar and
willow weevil, osier weevil and paranthrene tabaniformis) and the discrete models are more
appropriate than the continuous ones. Compared with the continuous ones, the study on
discrete mathematical models is more challenging. Inspired by [1–12], in this paper we will
consider the following discrete model of system (1.2)

x(n) = x(n − 1) exp(r + σεn), (1.3)

where x(0) > 0, εi ∼ N(0, 1), i = 1, 2, . . . , n, and any two of them are independent. σ stands
for the noise intensity. We will focus on the optimal control threshold value, the optimal
control moment, and the maximum likelihood estimation of parameters. To the best of our
knowledge, no work has been done for system (1.3).

The rest of this paper is organized as follows. In Section 2, some preliminaries are
introduced. In Section 3, we give three results of this paper. As applications of our main
results; an example is presented to illustrate the feasibility of our theoretical results in
Section 4.

2. Preliminaries

In this section, we summarize several definitions, assumptions, and lemmas which are useful
for the later sections.

Definition 2.1. Only when the quantity of pest population reaches U one starts to control the
pest population, and the real number U is called to be a control threshold value.

Definition 2.2. Until the N0th generation, the total quantity of pest population first reaches
the control threshold value, then one says thatN0 is the first reaching time.

Two main goals of this paper are to seek the optimal control threshold value and the
optimal control moment from the point of view of the lowest control cost. Considering that
the practical control to some pest population must be in the limited time range, we give the
first assumption:

(H1) n ≤ n0, where n is the number of generation of pest population in a control period
and n0 is a positive integer.

Denote M = max{x(0), x(1), . . . , x(n0)}. Usually, at the beginning, the number of pest
population is very small, so we give the second assumption:

(H2) The first reaching time N0 > 0.

Let the life period of pest population x be τ , we should annihilate pest atN0τ moment
from the point of view of the lowest control cost. We further give the third assumption.

(H3) The number of pest population xwill not reach the extent which can cause damage
again after being annihilated.

By (H3), we have

P{M < U} = P{N0 > n0} or P{M ≥ U} = P{N0 ≤ n0}. (2.1)
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So we can give the expression of the total loss caused by pest and expending for annihilating
pest, respectively. It is obvious that the loss caused by pest population comes from the
quantity of population and damaging time. We need to the fourth assumption

(H4) The generation of pest population is nonoverlapping.

On one hand, the loss caused by pest can be expressed as

S(N0) = k1

N0∑

n=0

E[x(n)]τ, (2.2)

where k1 stands for the loss caused by unit number pest in one generation, E[x(n)] is
the mean function of x(n). On the other hand, the expending for annihilating pest can be
expressed as

k2H(M −U), (2.3)

where H(x) is defined by

H(x) =

{
1, x > 0,

0, x ≤ 0,
(2.4)

that is,

H(M −U) =

{
1, M > U,

0, M ≤ U,
(2.5)

where k2 stands for the expending for annihilating pest once. Since S(N0) is dependent on
random variable N0 and k2H(M − U) is dependent on random variable M and threshold
value U, the total cost is a random variable, which can be expressed as

J(U) = E[S(N0)] + E[k2H(M −U)] = E[S(N0)] + k2P{M > U}. (2.6)

Thus, we need to search for U∗ such that J(U∗) is minimum and consequently, we can give
the optimal control moment.

Next, we will give some lemmas which are very important to the proofs of three
theorems in the following section.

Lemma 2.3. The solution of system (1.3) can be expressed as

x(n) = x(0) exp

(
nr + σ

n∑

i=1

εi

)
. (2.7)
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Proof. By (1.3), we have

x(n)
x(n − 1)

= exp(r + σεn), (n = 1, 2 . . .). (2.8)

Thus, one has

x(1)
x(0)

= exp(r + σε1),

x(2)
x(1)

= exp(r + σε2),

...

x(n)
x(n − 1)

= exp(r + σεn).

(2.9)

By a simplification, we obtain

x(n)
x(0)

= exp

(
nr + σ

n∑

i=1

εi

)
, (2.10)

that is,

x(n) = x(0) exp

(
nr + σ

n∑

i=1

εi

)
. (2.11)

Lemma 2.4. If E(x(n)) is the mean-value function of the solution of system (1.3), then one has

E[x(n)] = x(0) exp

[
n

(
r +

σ2

2

)]
. (2.12)

Proof. One has

E[x(n)] = E

[
x(0) exp

(
nr +

n∑

i=1

εi

)]

= E

[
x(0) exp(nr) exp

(
σ

n∑

i=1

εi

)]

= x(0) exp(nr)E

[
exp

(
σ

n∑

i=1

εi

)]
.

(2.13)
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Let Y =
∑n

i=1 εi. Since εi ∼ N(0, 1), i = 1, 2, . . . , n, we have

Y ∼ N(0, n), (2.14)

and the probability density function of random variable Y is

f
(
y
)
=

1√
2πn

exp

(
−y2

2n

)
. (2.15)

It follows from (2.13) and (2.15) that we have

E[x(n)] = x(0) exp(nr)E
[
exp(σY )

]

= x(0) exp(nr)
∫+∞

−∞

1√
2πn

exp

(
−y2

2n

)
dy

= x(0) exp(nr)
1√
2πn

∫+∞

−∞
exp

(
σy − −y2

2n

)
dy

= x(0) exp(nr)
1√
2πn

∫+∞

−∞
exp

[(
y − σn

)2 − (σn)2

2n

]
dy

= x(0) exp(nr)
exp

(
nσ2/2

)
√
2πn

∫+∞

−∞
exp

[(
y − σn

)2

2n

]
dy

= x(0) exp(nr)
exp

(
nσ2/2

)
√
2π

∫+∞

−∞
exp

[((
y − σn

)
/
√
n
)2

2

]
d

(
y − σn√

n

)

= x(0) exp

[
n

(
r +

σ2

2

)]
.

(2.16)

Lemma 2.5. Let the life period of pest population be τ , let k1 be the loss caused by unit number pest
in one generation, and let k2 be the expending for annihilating pests once time. The loss caused by pest
can be expressed as

S(N0) =
k1x(0)

1 − exp(r + (σ2/2))

[
1 − exp

(
N0

(
r +

σ2

2

))]
. (2.17)
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Proof. Consider

S(N0) = k1τ
N0∑

n=0

x(n)

= k1τ

{
x(0) + x(0) exp

(
r +

σ2

2

)
+ x(0) exp 2

(
r +

σ2

2

)

+ · · · + x(0) expN0

(
r +

σ2

2

)}

= k1τx(0)
1 − exp

(
N0

(
r +

(
σ2/2

)))

1 − exp(r + (σ2/2))

=
k1τx(0)

1 − exp(r + (σ2/2))

[
1 − exp

(
N0

(
r +

σ2

2

))]
.

(2.18)

Lemma 2.6. Let P{N0 = k} = Pk, One has

Pk =
[
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)
, k = 1, 2, . . . , n0, (2.19)

where

Φ(x) =
∫x

−∞

1√
2π

exp

(
− t

2

2

)
dt. (2.20)

Proof. By the definition of N0, we have

x(N0) ≥ U, x(n) < U, n = 0, 1, . . . ,N0 − 1. (2.21)

Then

P{N0 = k} = P{x(k) ≥ U,x(n) < U, (n = 0, 1, . . . , k − 1)}

= P{x(k) ≥ U}
k−1∏

n=1

P{x(n) < U}.
(2.22)

By (H2), we have

P{x(0) < U} = 1. (2.23)

Furthermore,

P{x(k) ≥ U} = 1 − P{x(k) < U}. (2.24)
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By (2.24), we have

P{N0 = k} = [1 − P{x(k) < U}]
k−1∏

n=1

P{x(n) < U}. (2.25)

Moreover, one has

P{x(n) < U} = P

{
x(0) exp

(
nr + σ

n∑

i=1

εi

)
< U

}

= P

{
exp

(
nr + σ

n∑

i=1

εi

)
<

U

x(0)

}

= P

{(
nr + σ

n∑

i=1

εi

)
< ln

U

x(0)

}

= P

{
n∑

i=1

εi <
ln(U/x(0)) − nr

σ

}

= P

{∑n
i=1 εi√
n

<
ln(U/x(0)) − nr

σ
√
n

}

= Φ
(
ln(U/x(0)) − nr

σ
√
n

)
,

(2.26)

and then we obtain

Pk =
[
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)
, k = 1, 2, . . . , n0. (2.27)

Lemma 2.7. The mean-value function of the loss caused by pest population is

E[S(N0)] =
n0∑

k=1

{[
1 − exp

(
k

(
r +

σ2

2

))][
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)]

×
k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)}
.

(2.28)

Proof. By the definition of mean value function, we have

E[S(N0)] =
n0∑

k=1

{[
1 − exp

(
k

(
r +

σ2

2

))]
P{N0 = k}

}
, (2.29)
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then by Lemma 2.6, we obtain

E[S(N0)] =
n0∑

k=1

{[
1 − exp

(
k

(
r +

σ2

2

))][
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)]

×
k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)}
.

(2.30)

Lemma 2.8. The following equality holds

P{M > U} =
n0−1∑

k=1

{[
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)}
. (2.31)

Proof. By the definitions of M and U, we have

P{M > U} = P{N0 < n0} =
n0−1∑

k=1

P{N0 = k}

=
n0−1∑

k=1

{[
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)}
.

(2.32)

3. Main Results

In this section, we give three main results. We first give the optimal control threshold value.

Theorem 3.1. If the assumptions (H1)–(H4) are satisfied, then the optimal control threshold value
of system (1.3) is the minimal nonnegative solution of the following equation about U

k1x(0)
∑n0

k=1 p + k2
(
1 − exp

(
r + (1/2)σ2))∑n0−1

k=1 p

exp(r + (1/2)σ2) − 1
= 0, (3.1)

where

p1 = 2−k
k−1∏

n=1

[
1 + f

( √
2

2
√
nσ

ln
(
U − nrx(0)

x(0)

))]
,

p2 = exp
(
− 1
2kσ2

)(
ln
(
U − krx(0)

x(0)

))2

,

p3 =
√
kπσ(krx(0) −U),

p = −
√
2p1 p2
p3

,

f(x) =
2√
π

∫x

0
e−t

2
dt.

(3.2)
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Proof. By Lemmas 2.3–2.8, we obtain that the total loss can be expressed as

J(U) = E[S(N0)] + k2P(M > U)

=
n0∑

k=1

{[
1 − exp

(
k

(
r +

σ2

2

))][
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)}

+ k2

n0−1∑

k=1

{[
1 −Φ

(
ln(U/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U/x(0)) − nr

σ
√
n

)}
.

(3.3)

A calculation leads to

J ′(U) =
k1x(0)

∑n0
k=1 p + k2

(
1 − exp

(
r + (1/2)σ2))∑n0−1

k=1 p

exp(r + (1/2)σ2) − 1
. (3.4)

Denote U∗ is the minimal nonnegative solution of the above equation, it follows from (3.4)
that J ′(U∗) = 0 and U∗ is the optimal control threshold value of system (1.3). The proof of
Theorem 3.1 is complete.

In the following, we give the optimal control moment.

Theorem 3.2. If the assumptions (H1)–(H4) hold, then the optimal control moment of system (1.3)
can be expressed as

T0 = τ
n0∑

k=1

{
k

[
1 −Φ

(
ln(U∗/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U∗/x(0)) − nr

σ
√
n

)}
. (3.5)

whereU∗ is defined in Theorem 3.1 and τ is the life period of the pest population.

Proof. By the definition ofN0, we have T0 = E[N0τ]. Furthermore, it follows from Lemma 2.6
that

T0 = τ
n0∑

k=1

kP{N0 = k}

= τ
n0∑

k=1

{
k

[
1 −Φ

(
ln(U∗/x(0)) − kr

σ
√
k

)] k−1∏

n=1

Φ
(
ln(U∗/x(0)) − nr

σ
√
n

)}
.

(3.6)

The proof of Theorem 3.2 is complete.

Finally, we give the estimate of the maximum likelihood estimations of the parameters
r and σ of system (1.3).
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Theorem 3.3. Let r̂ and σ̂ be the maximum likelihood estimations of the parameters r and σ, one has

r̂ =
y(n) − y(0)

n
,

σ̂ =

[∑n
i=1

[
y(i) − y(i − 1) − r̂

]2

n

]1/2

,

(3.7)

where y(n) = lnx(n).

Proof. From system (1.3), we have

lnx(n) − lnx(n − 1) = r + σεn, (3.8)

let y(n) = lnx(n), then we obtain

y(n) − y(n − 1) = r + σεn. (3.9)

Since εn i.i.d N(0, 1), we have [y(n) − y(n − 1)] i.i.d N(r, σ2). Let x(n) be the quantity of the
nth generation pest population, we can obtain corresponding values y(0), y(1), . . . , y(n), then
the likelihood function of parameters r and σ is

L(r, σ) =
n∏

i=1

1√
2πσ

exp

(
−
[
y(i) − y(i − 1) − r

]2

2σ2

)

=
(

1√
2πσ

)n

exp
(
− 1
2σ2

) n∑

i=1

[
y(i) − y(i − 1) − r

]2
.

(3.10)

Further, we have

lnL(r, σ) = −n ln
√
2πσ − 1

2σ2

n∑

i=1

[
y(i) − y(i − 1) − r

]2
. (3.11)

From (3.11), we obtain the following likelihood equation

∂ lnL(r, σ)
∂σ

= −n
σ
+
∑n

i=1
[
y(i) − y(i − 1) − r

]2

σ3
= 0,

∂ lnL(r, σ)
∂r

=
y(n) − y(0) − nr

σ2
= 0,

(3.12)
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Table 1: The average value and absolute error of MLE of parameters with different number of sample.

True Size Aver AE
(r, σ) n r-MLE σ-MLE r σ

500 0.3049901 0.1000706 0.0049901 0.0000706
(0.3, 0.1) 1000 0.3048290 0.0999396 0.0048290 0.0000604

2000 0.3040423 0.1000054 0.0040423 0.0000054

and the maximum likelihood estimations of r and σ are

r̂ =
y(n) − y(0)

n
,

σ̂ =

[∑n
i=1

[
y(i) − y(i − 1) − r̂

]2

n

]1/2

.

(3.13)

The proof of Theorem 3.3 is complete.

4. An Example

In this section, to illustrate the feasibility of our theoretical results, we will give the following
example.

Example 4.1. Consider the following system

x(n) = x(n − 1) exp(0.3 + 0.08εn). (4.1)

The choose the loss caused by the unit number pest k1 = 0.8, the expending for annihilating
pest once k2 = 0.2, and initial value x(0) = 0.01, n0 = 5. By Theorems 3.1 and 3.2, we can obtain
the approximates of the optimal control threshold value U∗ = 0.1168326 and the optimal
control moment T0 = 3.3217.

Next, we give the MLE of the parameters r and σ to compare the true value with
estimation. In Table 1, for the given true value of parameters r = 0.3 and σ = 0.1, the number
of the sample “size n” increases from 500 to 2000, the data of the columns r-MLE and σ-MLE
are obtained by the average of 10MLEs from the data coming from system (1.3). The columns
of AE shows the absolute error of MLE. Table 1 shows that, with the augment of the number
of the sample, the absolute error of MLE of r and σ will decrease, which implies that it is
reasonable to estimate the parameters of system (1.3) by MLE.
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