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All the known models describing the propagation of virus codes were based on the assumption
that a computer is uninfected at the time it is being connected to the Internet. In reality, however,
it is much likely that infected computers are connected to the Internet. This paper is intended
to investigate the propagation behavior of virus programs provided infected computers are
connected to the Internet with positive probability. For that purpose, a new model characterizing
the spread of computer virus is proposed. Theoretical analysis of this model indicates that (1) there
is a unique (viral) equilibrium, and (2) this equilibrium is globally asymptotically stable. Further
study shows that, by taking active measures, the percentage of infected computers can be made
below an acceptable threshold value.

1. Introduction

The past few decades have witnessed a rapid progress in computer and communication
domains. This progress, however, also provides rich techniques for the development of
virus programs. Consequently, antivirus software is indispensable to safeguard data and
files stored in computers or transmitted through network [1]. The development of antivirus
software, in turn, is preceded by a full understanding of the way that computer viruses
spread.

To a certain extent, the propagation of virus codes in a collection of interacting
computers is analogous to the diffusion of infectious diseases in a population. Inspired by this
analogy, some classical epidemic models were modified to characterize the propagation of
computer virus, and the obtained results show that the long-term behavior of virus programs



2 Discrete Dynamics in Nature and Society

could be predicted [2–10]. Very recently, Yang et al. [11] introduced an interesting virus
propagation model, known as the SLBS model, by considering the feature of virus codes
that a computer possesses infection ability immediately when it is infected.

To our knowledge, all the known models describing the propagation of virus codes
were established on the assumption that a computer is uninfected at the time it is being
connected to the Internet. This assumption, however, is inconsistent with the fact that some
computers are already infected at their respective connection times. Indeed, Zuo et al. [12]
proved that there is no perfect antivirus software that can detect and clear all kinds of virus
codes.

This paper is intended to examine the propagation behavior of virus codes in the
case that infected computers are connected to the Internet with positive probability. For that
purpose, a new computer virus propagation model, which incorporates in the SLBS model
the possibility that infected computers are connected to the Internet, is proposed. Stability
analysis of this model indicates that there is a unique (viral) equilibrium, which is globally
asymptotically stable for any combination of the system parameters. Further investigation
shows that, by taking active measures, the percentage of infected computers can be kept
below an acceptable threshold value.

The remaining materials of this paper are organized in this fashion: Section 2 describes
the new model. Section 3 proves the global asymptotic stability of the viral equilibrium. A
few insights are drawn in Section 4 by conducting a parameter analysis. Finally, Section 5
summarizes this work.

2. Model Formulation

At any time, a computer (i.e., node) is classified as either internal or external according
as it is connected to the Internet or not at that time, and the nodes all over the world are
categorized into the following three classes.

(i) Susceptible nodes, that is, uninfected nodes.

(ii) Latent nodes, that is, infected nodes in which all viruses are in their respective
latencies.

(iii) Attacked nodes, that is, infected nodes in which at least one virus is performing its
behavior module.

For our purpose, the whole set of internal nodes is partitioned into the following three
compartments (i.e., subsets).

(i) S compartment: the set of all internal susceptible nodes.

(ii) L compartment: the set of all internal latent nodes.

(iii) A compartment: the set of all internal attacked nodes.

At time t, let S(t), L(t), and A(t) denote the respective concentrations of S, L, and A
compartments, that is, their respective percentages in all internal nodes. Without ambiguity,
S(t), L(t), and A(t)will be abbreviated as S, L, and A, respectively.

Our model is based on the following reasonable hypotheses.

(H1) The total amount of internal nodes is conservative.

(H2) An external node is either susceptible or latent at the time it is being connected to
the Internet.
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(H3) Due to that external susceptible nodes are connected to the Internet, at any time the
concentration of S compartment increases by μ1.

(H4) Due to that external latent nodes are connected to the Internet, at any time the
concentration of L compartment increases by μ2.

(H5) At any time an internal node is disconnected from the Internet with probability
δ = μ1 + μ2. This hypothesis is consistent with hypotheses (H1), (H3), and (H4).

(H6) Due to the contact of susceptible nodes with infected nodes through the Internet, at
any time an internal susceptible node is infected with probability β1L + β2A.

(H7) At any time an internal latent node is attacked with probability α.

(H8) An internal latent node cannot be cured, which means that its user doesnot start
antivirus software actively.

(H9) Due to the effect of antivirus software, at any time an internal attacked node is cured
with probability γ .

Based on this collection of hypotheses, the new model is formulated as

Ṡ = μ1 − β1SL − β2SA + γA − δS,

L̇ = μ2 + β1SL + β2SA − αL − δL,

Ȧ = αL − γA − δA,

(2.1)

with initial conditions S(0) ≥ 0, L(0) ≥ 0, and A(0) ≥ 0.
Because S(t) + L(t) + A(t) ≡ 1, this system can be reduced to the following planar

system:

L̇ = μ2 + β1(1 − L −A)L + β2(1 − L −A)A − αL − δL,

Ȧ = αL − γA − δA,
(2.2)

with initial conditions L(0) ≥ 0 and A(0) ≥ 0. It is easily verified that the simply connected
compact set

Ω = {(L,A) : L ≥ 0, A ≥ 0, L +A ≤ 1} (2.3)

is positively invariant for this system.

3. Model Analysis

This section is devoted to understanding the dynamical behavior of system (2.2) within Ω.
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3.1. Equilibrium

Theorem 3.1. System (2.2) has a unique equilibrium E∗ = (L∗, A∗) within Ω, where

L∗ =
−a1 +

√
a1

2 − 4a0a2

2a0
, (3.1)

A∗ =
α

γ + δ
L∗, (3.2)

a0 =
(
α + γ + δ

)[
β1
(
γ + δ

)
+ β2α

]
,

a1 =
(
γ + δ

)[−β1
(
γ + δ

) − β2α + (α + δ)
(
γ + δ

)]
,

a2 = −μ2
(
γ + δ

)2
.

(3.3)

Moreover, this equilibrium is viral, that is L∗ +A∗ > 0.

Proof. All the equilibria of system (2.2) are determined by the following system of equations:

μ2 + β1(1 − L −A)L + β2(1 − L −A)A − (α + δ)L = 0,

αL − (
γ + δ

)
A = 0.

(3.4)

Solving this system, we get E∗ = (L∗, A∗) as the unique solution withinΩ. It is trivial to verify
that L∗ +A∗ > 0.

Remark 3.2. This theorem shows that the proposed system has no virus-free equilibrium and,
hence, doesn’t undergo any bifurcation, whereas any known computer virus propagation
model undergoes fold or backward bifurcation.

3.2. Local Analysis

Next, let us examine the local stability of the viral equilibrium.

Lemma 3.3. E∗ is locally asymptotically stable.

Proof. Rewrite system (2.2) in the matrix-vector notation as

x′ = F(x) =
(
f1(x)
f2(x)

)
. (3.5)

The Jacobian of F evaluated at E∗ is

JF(E∗) =
(
β1(1 − 2L∗ −A∗) − β2A∗ − α − δ β2(1 − L∗ − 2A∗) − β1L∗

α −γ − δ

)
, (3.6)
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and the corresponding characteristic equation is

λ2 + b1λ + b2 = 0, (3.7)

where

b1 = β1(2L∗ +A∗) + β2A∗ + α + γ + 2δ − β1,

b2 =
[
β1(2L∗ +A∗) + β2A∗ + α + δ − β1

](
γ + δ

)

+α
[
β2(L∗ + 2A∗) + β1L∗ − β2

]
.

(3.8)

Let S∗ = 1 − L∗ −A∗. Since

μ2 + β1S∗L∗ + β2S∗L∗
α

γ + δ
− (α + δ)L∗ = 0, (3.9)

we have

β1S∗ + β2S∗
α

γ + δ
< α + δ, (3.10)

that is, S∗ < (γ + δ)(α + δ)/(β1(γ + δ) + β2α). Hence,

b1 = β1L∗ + β2A∗ − β1S∗ + α + γ + 2δ

> β1L∗ + β2A∗ − α + δ

1 +
(
β2α/β1

(
γ + δ

)) + α + γ + 2δ

> β1L∗ + β2A∗ + γ + δ > 0.

(3.11)

On the other hand,

b2 =
[
β1
(
γ + δ

)
+ β2α

]
(L∗ +A∗ − 1) + β2α(L∗ +A∗ − 1)

+
(
β1L∗ + β2A∗

)(
α + γ + δ

)
+ (α + δ)

(
γ + δ

)

= −[β1
(
γ + δ

)
+ β2α

]
S∗ + (α + δ)

(
γ + δ

)
+
(
β1L∗ + β2A∗

)(
α + γ + δ

)

>
(
β1L∗ + β2A∗

)(
α + γ + δ

)
> 0.

(3.12)

By the Hurwitz criterion, the two roots of (3.7) both have negative real parts, and the claimed
result follows by the Lyapunov theorem [13].

3.3. Global Analysis

Now, it is the turn to examine the global stability of the viral equilibrium.
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Lemma 3.4. System (2.2) admits no periodic orbit that lies in the interior of Ω.

Proof. Define D(L,A) = 1/LA. Then,

∂
(
Df1

)

∂L
+
∂
(
Df2

)

∂A
= − μ2

AL2
− β1

A
− α

A2
− β2

1 −A

L2
< 0. (3.13)

By the Bendixson-Dulac criterion [13], the system has no periodic orbit.

Lemma 3.5. System (2.2) admits no periodic orbit that passes through a point on ∂Ω, the boundary
of Ω.

Proof. By the smoothness of all orbits of system (2.2), it can be concluded that:

(1) there is no periodic orbit that passes through a corner of Ω, that is, either (0,0) or
(0,1) or (1,0),

(2) if there is a periodic orbit that passes through a noncorner point on ∂Ω, then this
orbit must be tangent to ∂Ω at this point.

On the contrary, suppose there is a periodic orbit Γ that passes through a noncorner point
(L,A) on ∂Ω, then there are three possibilities.

Case 1: 0 < L < 1, A = 0. Then we have Ȧ|(L,A) = αL > 0, implying that Γ is not tangent to
∂Ω at this point. A contradiction occurs.

Case 2: L = 0, 0 < A < 1. Then we have L̇|(L,A) = μ2 + β2(1 −A)A > 0, implying that Γ is not
tangent to ∂Ω at this point, again a contradiction.

Case 3: L +A = 1, L/= 0, A/= 0. Then we have d(L +A)/dt|(L,A) = −μ1 − γA < 0, implying
that Γ is not tangent to ∂Ω at this point, also a contradiction.

Combining the above discussions, we conclude that there is no periodic orbit that
passes through a point on ∂Ω.

We are ready to present the main result of this paper.

Theorem 3.6. E∗ is globally asymptotically stable with respect to Ω.

Proof. The claimed result follows by combining the generalized Poincaré-Bendixson theorem
[13] with Lemmas 3.1–3.3.

Remark 3.7. This theorem shows that, with the elapse of time, the concentrations of latent
nodes and attacked nodes would tend to L∗ and A∗, respectively.

Example 3.8. Consider system (2.2) with β1 = 0.01, β2 = 0.02, μ2 = 0.1, α = 0.1, γ = 0.1, and
δ = 0.2. We have (L∗, A∗) = (0.3437, 0.1146), and the phase portrait is presented in Figure 1.

Example 3.9. Consider system (2.2) with β1 = 0.05, β2 = 0.08, μ2 = 0.08, α = 0.1, γ = 0.2, and
δ = 0.1. We have (L∗, A∗) = (0.4675, 0.1558), and the phase portrait is displayed in Figure 2.

Example 3.10. Consider system (2.2) with β1 = 0.02, β2 = 0.05, μ2 = 0.1, α = 0.3, γ = 0.1,
and δ = 0.2. We have (L∗, A∗) = (0.2172, 0.2172), and the phase portrait is demonstrated in
Figure 3.
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Figure 1: Phase portrait for the system given in Example 3.8.
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Figure 2: Phase portrait for the system given in Example 3.9.

Example 3.11. Consider system (2.2) with β1 = 0.1, β2 = 0.2, μ2 = 0.1, α = 0.4, γ = 0.2, and
δ = 0.1. We have (L∗, A∗) = (0.2727, 0.3648), and the phase portrait is exhibited in Figure 4.

From Figures 1–4 one can see that, for each of these four systems, there exists a globally
asymptotically stable viral equilibrium.

4. Discussions

Due to the fact that the proposed model has no virus-free equilibrium, any effort in
eradicating virus is doomed to failure. In practical situations, the best achievable goal is to
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Figure 3: Phase portrait for the system given in Example 3.10.
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Figure 4: Phase portrait for the system given in Example 3.11.

keep the percentage of infected nodes below an acceptable threshold. For that purpose, some
valuable suggestions shall be presented in this section.

Theorem 4.1. L∗ +A∗ ≤ T if and only if

a0
(
γ + δ

)2
T2 + a1

(
γ + δ

)(
α + γ + δ

)
T + a2

(
α + γ + δ

)2 ≥ 0. (4.1)

Proof. This result follows by substituting (3.1)-(3.2) into L∗ + A∗ ≤ T and simplifying the
resulting inequality.

This theorem has the following three valuable corollaries.
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Figure 5: μ2,max versus T for the class of systems given in Example 4.3.

Corollary 4.2. L∗ +A∗ ≤ T if and only if μ2 ≤ μ2,max, where

μ2,max =
T

α + γ + δ

{[
β1
(
γ + δ

)
+ β2α

]
(T − 1) + (α + δ)

(
γ + δ

)}
. (4.2)

Proof. The claimed result holds by combining Theorem 4.1 with (3.10).

Example 4.3. Consider a class of systems (2.2) with α = 0.1, γ = 0.1, δ = 0.2, β1 = 0.1, and β2 =
0.2. In order that L∗ +A∗ ≤ T , it is sufficient by Corollary 4.2 that μ2 ≤ μ2,max = (7T2 + 2T)/40
be satisfied. See Figure 5 for how μ2,max varies with T .

Corollary 4.4. L∗ +A∗ ≤ T if and only if 0 < β1 ≤ β1, max , where

β1, max =
μ2
(
α + γ + δ

)
+
[
β2α − (α + δ)

(
γ + δ

)]
T − β2αT

2

(
γ + δ

)
T(T − 1)

. (4.3)

Proof. The claimed result holds by Theorem 4.1.

Example 4.5. Consider a class of systems (2.2) with α = 0.3, γ = 0.1, δ = 0.2, μ2 = 0.01, and
β2 = 0.1. In order that L∗ + A∗ ≤ T , it is sufficient by Corollary 4.4 that 0 < β1 ≤ β1,max =
(5T2 + 20T − 1)/50T(1 − T) be satisfied. See Figure 6 for how β1,max varies with T .

Corollary 4.6. L∗ +A∗ ≤ T if and only if 0 < β2 ≤ β2,max, where

β2,max =
μ2
(
α + γ + δ

)
+
[
β1
(
γ + δ

) − (α + δ)
(
γ + δ

)]
T − β1

(
γ + δ

)
T2

αT(T − 1)
. (4.4)

Proof. The claimed result holds by Theorem 4.1.
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Figure 6: β1,max versus T for the class of systems given in Example 4.5.
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Figure 7: β2,max versus T for the class of systems given in Example 4.7.

Example 4.7. Consider system (2.2) with α = 0.3, γ = 0.1, δ = 0.2, μ2 = 0.01, and β1 = 0.1. In
order that L∗ + A∗ ≤ T , it is sufficient by Corollary 4.6 that 0 < β2 ≤ β2,max = (5T2 + 20T −
1)/50T(1 − T) be satisfied. See Figure 7 for how β2,max varies with T .

Second, check the dependency of u := L∗ +A∗ on β1, β2, and μ2, respectively. We have

c0u
2 + c1u + c2 = 0, (4.5)
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where

c0 = β1
(
γ + δ

)
+ β2α,

c1 = (α + δ)
(
γ + δ

) − β2α − β1
(
γ + δ

)
,

c2 = −μ2
(
α + γ + δ

)
.

(4.6)

Theorem 4.8. ∂u/∂β1 > 0, ∂u/∂β2 > 0, ∂u/∂μ2 > 0.

Proof.

∂u

∂β1
=

(
γ + δ

)
u(1 − u)

(2u − 1)
[
β1
(
γ + δ

)
+ β2α

]
+ (α + δ)

(
γ + δ

)

=

(
γ + δ

)
u(1 − u)

√
c12 − 4c0c2

> 0,

∂u

∂β2
=

αu(1 − u)
(2u − 1)

[
β1
(
γ + δ

)
+ β2α

]
+ (α + δ)

(
γ + δ

)

=
αu(1 − u)

√
c12 − 4c0c2

> 0,

∂u

∂μ2
=

α + γ + δ

(2u − 1)
[
β1
(
γ + δ

)
+ β2α

]
+ (α + δ)

(
γ + δ

)

=
α + γ + δ

√
c12 − 4c0c2

> 0.

(4.7)

The proof is complete.

Remark 4.9. This theorem states that u is increasing with β1, β2, and μ2. Hence, another means
of suppressing the concentration of infected nodes is to reduce these parameters.

Finally, examine the dependency of u := L∗ +A∗ on γ and δ, respectively.

Theorem 4.10. ∂u/∂γ < 0 and ∂u/∂δ < 0 if β1(γ + δ) + β2α − β2γ > 0.

Proof. By means of the implicit differentiation, it is derived that

∂u

∂γ
=

μ2 +
(
β1 − α − δ

)
u − β1u

2

(2u − 1)
[
β1
(
γ + δ

)
+ β2α

]
+ (α + δ)

(
γ + δ

)

=

[(
β1(α + δ)

(
γ + δ

)
/
(
β1
(
γ + δ

)
+ β2α

)) − α − δ
]
u + μ2

[
1−β1

(
α+γ+δ

)
/
(
β1
(
γ+δ

)
+β2α

)]

√
c12 − 4c0c2

=

(
α/β1

(
γ + δ

)
+ β2α

)[−β2(α + δ)u + μ2
(
β2 − β1

)]

√
c12 − 4c0c2

.

(4.8)
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Since

μ2 + β1S∗L∗ + β2S∗A∗ − γA∗ − δ(L∗ +A∗) = 0, (4.9)

then

μ2 −
(
γ + δ

)
u < 0. (4.10)

In view of β2α + β1(γ + δ) > β2γ , one can derive

u >
μ2

γ + δ
>

μ2
(
β2 − β1

)

β2(α + δ)
, (4.11)

which implies ∂u/∂γ < 0. Likewise,

∂u

∂δ
=

μ2 −
(
α + γ + 2δ

)
u − β1u

2

√
c12 − 4c0c2

< 0. (4.12)

The proof is complete.

Remark 4.11. This theorem states that in some cases u is decreasing with γ and δ. Thus,
still another means of inhibiting the concentration of infected nodes is to enhance these
parameters.

5. Summary

A new model describing the spread of computer virus has been proposed, under which
infected computers are assumed to be probably connected to the Internet. To our knowledge,
this is the first model with this reasonable assumption. Qualitative analysis of this model
has shown that, entirely different from any previously proposed model, the new model
admits no virus-free equilibrium. Rather, it possesses a globally asymptotically stable viral
equilibrium. Furthermore, it has been indicated that, by adjusting some system parameters,
the concentration of infected computers can be reduced .

This work provides a new insight into the modeling of propagation of computer
virus, which, in our opinion, would arouse considerable interest from the computer virus
community.
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