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According to a triopoly game model in the electricity market with bounded rational players, a
new Cournot duopoly game model with delayed bounded rationality is established. The model is
closer to the reality of the electricity market and worth spreading in oligopoly. By using the theory
of bifurcations of dynamical systems, local stable region of Nash equilibrium point is obtained.
Its complex dynamics is demonstrated by means of the largest Lyapunov exponent, bifurcation
diagrams, phase portraits, and fractal dimensions. Since the output adjustment speed parameters
are varied, the stability of Nash equilibrium gives rise to complex dynamics such as cycles of
higher order and chaos. Furthermore, by using the straight-line stabilizationmethod, the chaos can
be eliminated. This paper has an important theoretical and practical significance to the electricity
market under the background of developing new energy.

1. Introduction

In 1980s, chaos theory was first introduced into the economic research. Chaotic economists
used the basic mathematic theory of chaos to improve the existing models of economic
phenomena. The economic system is whether a chaotic system is a hot topic in the economic
field. Bifurcation theory based on difference equation has been applied in all branches of
chaos [1]. In recent years, a series of dynamic game models on the output decision (Cournot
model) and price decision (Bertrand model) have been studied in related references.
Agiza [2] and Kopel [3] have considered bounded rationality and established duopoly
Cournot model with linear cost functions. From then on, the model has been extended to
multioligopolistic market. Bischi et al. [4] suppose that firms determine their output based on
the reaction functions, that is, all the players take adaptive expectation. Agiza and Elsadany
[5] have improved the model that contains two-types of heterogeneous players: boundedly
rational player and adaptive expectation player. Zhang et al. [6] have further improved
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the model with nonlinear cost functions. Matsumoto and Nonaka [7] have researched the
complexity of Cournot model with linear cost functions. Ma and Ji [8] have constructed and
considered a Cournot model in electric power triopoly with nonlinear inverse demand, and
the model is further studied by Ji [9] based on heterogeneous players. Ma and Feng [10]
have studied the chaotic behavior in retailer’s demand model. Xin et al. [11] have researched
the complex dynamics of an adnascent-type gamemodel. Chen et al. [12] have used Bertrand
model with linear demand functions to study the competition in Chinese telecommunications
market. Sun andMa [13] have introduced a Bertrandmodel with nonlinear demand functions
in Chinese cold rolled steel market and researched the complexity and the control of the
model. Yassen and Agiza [14] have considered a Cournot duopoly game and the model with
delayed rationality. In these pieces of literatures, adjustment speed or other parameters are
taken as bifurcation parameters, and complex results such as period doubling bifurcation,
unstable period orbits, and chaos are found.

Economic dynamics seem to devote new interest to delay differential equations. This
is because some economic phenomena cannot be described exhaustively with pure (linear or
nonlinear) differential equations. Differential equations with time delay play an important
role in economy, engineering, biology, and social sciences, because a great deal of problems
may be described with their help. Based on the game model [8], a new duopoly game model
with delayed bounded rationality in the electricity market is obtained. The duopoly model
with delayed bounded rationality is closer to the economic reality and is worth being used
in oligopoly. Suppose the inverse demand function is nonlinear, and cost functions are one
nonlinear and one linear. In this model, the bounded rational players regulate output speed
according to marginal profit and decide the output. By theoretical analysis and numerical
simulation, the stable region about the output adjustment speed parameters is derived. It
is shown that the output adjustment speed lead to the chaos at a definite range. It has
an important theoretical and applied significance to research the complexity of new style
nonlinear dynamical system.

The paper is organized as follows. In Section 2, the dynamics of a game with delayed
bounded rationality is presented. In Section 3, the existence, local stability, and bifurcation
of the equilibrium points are also analyzed. Numerical simulations are used to show the
complex characteristics of the system via computation of Lyapunov exponents, confirmation
of the system sensitive dependence on initial conditions and calculation of the fractal
dimension of the chaotic attractor. In Section 4, bifurcation and chaos control of the model
is considered with the straight-line stabilization method. Finally, some conclusions are made.

2. Model

Suppose that there are two representative electricity enterprises (the enterprise X represents
the traditional coal electricity enterprise, the enterprise Y represents new energy enterprise
such as water electricity, nuclear power, or solar energy, or wind energy, etc.) in the electricity
market, and they provide electric power to consumers through the electric utilities. The
electricity enterprises X,Y make the optimal output decision and suppose the t-output is
qi(t), (i = 1, 2), respectively.

At each period t, the price p is determined by the total output Q(t) = q1(t) + q2(t).
According to [8], the inverse demand function is

p = p(Q) = m − nQ2. (2.1)
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We propose the cost function of the enterprise X is nonlinear. We propose the cost
function of the enterprise Y is linear because the new energy enterprise has lower variable
cost. So, the cost functions of the two enterprises are as follows:

VCX = VCX

(
q1
)
= a1 + b1q1 + c1q

2
1,

VCY = VCY

(
q2
)
= a2 + b2q2.

(2.2)

It is assumed that the wheeling rate is γ . The profits of the companies are

πX(t) = x(t)
[
m − nQ2(t)

]
−
(
a1 + b1q1(t) + c1q1(t)2

)
− γq1(t),

πY (t) = y(t)
[
m − nQ2(t)

]
− (a2 + b2q2(t) − γq2(t)

)
.

(2.3)

As the game between the enterprises is a continuous and long-term repeated dynamic
process in the electricitymarket, so the dynamic adjustment of this repeated Cournot duopoly
game with bounded rational players is as follows:

q1(t + 1) = q1(t) + α1q1(t)
∂πx

∂q1
, 0 ≤ α1 ≤ 1,

q2(t + 1) = q2(t) + α2q2(t)
∂πy

∂q2
, 0 ≤ α2 ≤ 1,

(2.4)

where αi, (i = 1, 2) is output adjustment speed parameters.
Combining (2.3), (2.4), a dynamic duopoly game with bounded rationality has the

following form:

q1(t + 1) = q1(t) + α1q1(t)
[
−3nq21(t) − nq22(t) − 4nq1(t)q2(t) − 2c1q1(t) +m − b1 − γ

]
,

q2(t + 1) = q2(t) + α2q2(t)
[
−3nq22(t) − nq21(t) − 4nq1(t)q2(t) +m − b2 − γ

]
.

(2.5)

According to [14], there are two reasons for the occurrence of delayed structure in
economic models: one is that decisions made by economic agents at time t is depended on the
past observed variables bymeans of a prediction feedback, and the other is that the functional
relationships describing the dynamics of the model both depend on the current state of the
economy and in a nontrivial manner on past states.

Due to incomplete information and delayed decision, we propose that there is one step
(T = 1) delay in the output of the mutual enterprises. Therefore, the dynamic game model
(2.5) with delayed is as follows:

q1(t + 1) = q1(t) + α1q1(t)
[
−3nq21(t) − nq22(t − 1) − 4nq1(t)q2(t − 1) − 2c1q1(t) +m − b1 − γ

]
,

q2(t + 1) = q2(t) + α2q2(t)
[
−3nq22(t) − nq21(t − 1) − 4nq1(t − 1)q2(t) +m − b2 − γ

]
.

(2.6)
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3. Complex Dynamics Character of System (2.6)

The bounded rational player makes output decision on the basis of the marginal profit of the
last period. The company decides to increase output if it has a positive marginal profit and
decrease output if the marginal profit is negative. Thus, output adjustment speed parameter
αi, (i = 1, 2) has an important effect on game results. In the following section, the effect of
αi, (i = 1, 2) on dynamical behaviors of system (2.6) will be taken into account.

3.1. The Equilibrium Point and Stability Analysis

The bifurcation parameters are α1, α2, and the other parameters of system (2.6) are as follows:
m = 5.2, n = 0.95, b1 = 0.42, c1 = 0.25, b2 = 0.37, and γ = 0.15.

By solving the following equations, the fixed points of system (2.6) can be obtained

q1(t)
[
−3nq21(t) − nq22(t − 1) − 4nq1(t)q2(t − 1) − 2c1q1(t) +m − b1 − γ

]
= 0,

q2(t)
[
−3nq22(t) − nq21(t − 1) − 4nq1(t − 1)q2(t) +m − b2 − γ

]
= 0.

(3.1)

Equation (3.1) is solved, and three fixed points p1(0.6993, 0.8363), p2(0, 1.28144),
p3(18.4879, 0) are obtained. The stability of the Nash equilibrium point p∗(q∗1 = 0.6993, q∗2 =
0.8363) is only considered here.

To study the stability of system (2.6), we rewrite it as a fourth-dimensional system in
the form

x(t + 1) = q1(t),

y(t + 1) = q2(t),

q1(t + 1) = q1(t) + α1q1(t)
[
−3nq21(t) − ny2(t) − 4nq1(t)y(t) − 2c1q1(t) +m − b1 − γ

]
,

q2(t + 1) = q2(t) + α2q2(t)
[
−3nq22(t) − nx2(t) − 4nx(t)q2(t) +m − b2 − γ

]
.

(3.2)

The Jacobian matrix of (3.2) at the Nash equilibrium point p∗ is

J =

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 1
0 j32 1 + j33 0
j41 0 0 1 + j44

⎞

⎟⎟
⎠, (3.3)

where

j32 = α1q
∗
1

(−2nq∗2 − 4nq∗1
)
, j33 = α1q

∗
1

(−6nq∗1 − 4nq∗2 − 2c1
)
,

j41 = α2q
∗
2
(−2nq∗1 − 4nq∗2

)
, j44 = α2q

∗
2
(−6nq∗2 − 4nq∗1

)
.

(3.4)
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Figure 1: The stable region of Nash equilibrium point about adjustment speed (α1, α2).

The characteristic polynomial of (3.2) is

f(λ) = λ4 +Aλ3 + Bλ2 + Cλ +D, (3.5)

where

A = −(j33 + j44 + 2
)
, B =

(
1 + j33

)(
1 + j44

)
, C = 0, D = −j32j41. (3.6)

Denote μ1 = 1−D2, μ2 = A−CD, μ3 = A−BD, μ4 = C−AD, ν1 = μ2
4−μ2

1, ν2 = μ3μ4−μ1μ2,
and ν3 = μ2μ4 − μ1μ3; the necessary and sufficient conditions for the local stability of Nash
equilibrium can be gained by Jury test [15]:

(i) 1 +A + B + C +D > 0,

(ii) 1 −A + B − C +D > 0,

(iii) |D| < 1,

(iv)
∣∣μ4
∣∣ <
∣∣μ1
∣∣,

(v) |v3| < |v1|.

(3.7)

Through computing the above equations, the local stable region of Nash equilibrium
point can be obtained. The stable region of slash with positive (α1, α2) is shown in Figure 1.
The Nash equilibrium is stable for the values (α1, α2) inside the stable region. The meaning of
the stable region is that whatever initial outputs are chosen by the two electricity companies
in the local stable region, they will eventually arrive at Nash equilibrium output after finite
games. It is valuable to analyze the enterprises on accelerating the output adjustment speed to
increase their profits. While output adjustment parameters do not change Nash equilibrium
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Figure 2: Bifurcation diagram and the largest Lyapunov exponent with α1 ∈ (0, 0.35], α2 = 0.2.

point, but once one party is adjusting output speed too fast and pushing αi, (i = 1, 2) out of the
stable region, the system tends to become unstable and fall into chaos. Numerical simulation
is used to analyze the characteristics of nonlinear dynamical systemwith the change of αi, (i =
1, 2). Numerical results such as bifurcation diagrams, the largest Lyapunov exponent, strange
attractors, sensitive dependence on initial conditions, and fractal structure will be researched.

3.2. The Output Adjustment Speed Effect on the System

Once companyX accelerates output adjustment speed and pushes α1 out of the stable region,
the stability of Nash equilibrium point will change. Figure 2 demonstrates that the output
evolution of the duopoly starts with equilibrium state, undergoes period doubling bifurcation
to chaotic state, occurs period doubling bifurcation again and ends with chaotic state when
the output adjustment speed α1 increases and α2 = 0.2.

When α2 = 0.2, the diagrams of bifurcation and the largest Lyapunov exponent with
α1 increasing are shown in Figure 2. For 0 < α1 < 0.2362, the largest Lyapunov exponent is
negative and the system (2.6) is stable at Nash equilibrium point. For 0.2362 < α1 < 0.2790,
the largest Lyapunov exponent is negative and system (2.6) has an orbit of 2-cycle. For
0.2790 < α1 < 0.3059 and 0.3329 < α1 < 0.3427, the largest Lyapunov exponent is negative
and system (2.6) has an orbit of 4-cycle. For 0.3427 < α1 < 0.3476, the largest Lyapunov
exponent is negative and system (2.6) has an orbit of 8-cycle. For 0.3059 < α1 < 0.3280, the
largest Lyapunov exponent just a little bigger than zero and system (2.6) has a double chaotic
attractor as shown in Figures 3(a) and 3(b). For 0.3280 < α1 < 0.3329 and 0.3476 < α1 < 0.35,
the largest Lyapunov exponent is obviously positive and system (2.6) is in a chaotic state as
shown in Figures 3(c) and 3(d).

Similarly, Figure 4 shows a one-parameter bifurcation diagram and the largest
Lyapunov exponent with respect to α2 and when α1 = 0.15. We can see that Nash equilibrium
point is stable for 0 < α2 < 0.2621, which implies that output of two firms is in equilibrium
state. With α2 increasing, the stability of equilibrium point changes, and output undergoes
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Figure 3: The typical dynamical behaviors of system (2.6)with α2 = 0.2 and (a) α1 = 0.31; (b) α2 = 0.32; (c)
α1 = 0.33; (d) α1 = 0.348.
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Figure 5: Chaos attractor of system (2.6) with α2 = 0.362, α1 = 0.15, and initial point (q01 = 0.6, q02 = 0.5).

doubling period bifurcation and eventually falls into chaos. α2 ∈ (0.2621, 0.3] is the range of
2-cycle output fluctuation. For α2 > 0.3, output doubling occurs again. α2 ∈ (0.3, 0.3537] is
the range of 4-cycle output fluctuation. α2 ∈ (0.3537, 0.379] is the range of output falling into
chaos.

Figure 5 illustrates chaos attractor with initial point (q01 = 0.6, q02 = 0.5) when α2 =
0.362, α1 = 0.15.

The sensitive dependence on initial conditions is one of the important features of
chaos. To verify whether system (2.6) depends on initial values sensitively, the relationships
between output and time are shown in Figures 6(a), 6(b), 6(c), and 6(d)when α1 = 0.348, α2 =
0.2 and α1 = 0.15, α2 = 0.362, respectively. At first, the difference is indistinguishable,
but with the number of the game increasing, the difference between them is huge. This
demonstrates that only a little difference between initial data will have a great impact on
the results of the game. It further proves that system (2.6) falls into a chaotic state when
α1 = 0.348, α2 = 0.2 and α1 = 0.15, α2 = 0.362. While the system is in a chaotic state, the
market becomes volatile and it is difficult for electricity companies to plan long-term strategy.
A slight adjustment of the initial output can have a great effect on the game results.

A fractal dimension is taken as a criterion to judge whether the system is chaotic. There
are many specific definitions of fractal dimension and none of them should be treated as the
universal one. According to [16], we adopt the following definition of fractal dimension:

d = j −
∑j

1 λi

λj+1
, (3.8)

where λ1 > λ2 >, . . . , λn are the Lyapunov exponents and j is the maximum integer for which
∑j

1 λi > 0 and
∑j+1

1 λi < 0. If λi ≥ 0, i = 1, 2, . . . , n, then d = n. If λi < 0, i = 1, 2, . . . , n, then
d = 0.

The Lyapunov exponents of system (2.6) are λ1 = 0.067051, λ2 = −0.106206 when
α1 = 0.15, α2 = 0.362. The largest Lyapunov exponent λ1 is positive, which indicates system
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Figure 6: Sensitive dependence on initial conditions: the two orbits of (a) q1-coordinates for initial points
are (0.62, 0.52) and (0.63, 0.52); (b) q2-coordinates for initial points are (0.62, 0.52) and (0.62, 0.53); (c) q1-
coordinates for initial points are (0.6, 0.5) and (0.61, 0.5); (d) q2-coordinates for initial points are (0.6, 0.5)
and (0.6, 0.51).

(2.6) is in a chaotic state. Fractal dimension illustrates that the chaotic motion has self-similar
structure, that is to say, the chaotic motion follows a definite rule. This is an important
difference between chaotic motion and stochastic motion. The fractal dimension of system
(2.6) is d = 2 − λ1/λ2 ≈ 1.6313. The fractal dimension reflects the space density of the chaotic
attractor [17]. The larger the dimension of the chaotic attractor is, the larger is the occupied
space. Consequently, the structure is more compact, and the system is more complicated and
vice versa. The fractal dimension of the 2D discrete system (2.6) is more than 1.5, so the
occupied space is big and the structure is tight, which can be seen in Figure 5.

4. Chaos Control

The numerical simulation results show that the oligopolistic market becomes unstable and
even falls into chaos when output adjustment speed parameter goes beyond the stable region.
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All the players will be harmed and the market will become irregular when chaos occurs. So,
nobody is able to make good strategies and decide reasonable output. To avert the risk, it is a
good ideal for duopoly to maintain at Nash equilibrium output.

Perturbation feedback and nonfeedback are two methods for the chaos control.
Recently, Yang et al. [18] and Xu et al. [19] proposed a new control method, which is called
the straight-line stabilization method. This method is adopted to control the chaos in this
paper

δ =
(
δ1
δ2

)
=

(
k − (1 + j33

)
0

0 k − (1 + j44
)

)(
q1(t) − q∗1
q2(t) − q∗2

)

−
(

0 j32

j41 0

)(
q1(t − 1) − q∗1
q2(t − 1) − q∗2

)

=

( [
k − (1 + j33

)](
q1(t) − q∗1

) − j32
(
q2(t − 1) − q∗2

)

−j41
(
q1(t − 1) − q∗1

)
+
[
k − (1 + j44

)](
q2(t) − q∗2

)

)

,

(4.1)

where |k| < 1 is the feedback control parameter and other parameters are the same as above.
Adding the external control signal (4.1) to system (2.6), the controlled system is as

follows:

q1(t + 1) = q1(t) + α1q1(t)
[
−3nq21(t) − nq22(t − 1)

−4nq1(t)q2(t − 1) − 2c1q1(t) +m − b1 − γ
]
+ δ1,

q2(t + 1) = q2(t) + α2q2(t)
[
−3nq22(t) − nq21(t − 1)

−4nq1(t − 1)q2(t) +m − b2 − γ
]
+ δ2.

(4.2)

It can be seen from Figure 7, at (α1 = 0.15, α2 = 0.362), that controlled system (4.2)
stabilized at Nash equilibrium point when −0.9876 < k < −0.28. It demonstrates that the
stable control of the specific goal can be realized even if the perturbation is very small.

At k = −0.5, α1 = 0.15, the stable range of system (4.2) is 0.289 < α2 < 0.436. The range
of 2-cycle bifurcation is 0.436 < α2 < 0.5171. The range of 4-cycle bifurcation is 0.5171 < α2 <
0.5374. For 0.5374 < α2 < 0.6084, system (4.2) is in the chaotic state. The details are shown in
Figure 8, which indicates that once system (2.6) is under a chaotic state, system (4.2) can be
efficient to eliminate chaos.

Figure 9 shows chaos attractor of the controlled system (4.2) with initial point q01 =
0.6, q02 = 0.5 and α1 = 0.15, α2 = 0.56, k = −0.5.

5. Conclusions

A new dynamics of nonlinear duopoly game in the electricity market with delayed bounded
rationality is established in this paper. The stability of equilibria, bifurcation, and chaotic
behavior of the duopoly game are investigated. It is found that bifurcation, chaos, and other
complex phenomena occur when the output adjustment speed parameter changes. It is well
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Figure 7: Bifurcation diagram with α1 = 0.15, α2 = 0.362, k ∈ [−1,−0.2].
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Figure 8: Bifurcation diagram with α1 = 0.15, k = −0.5, and α2 ∈ [0, 0.6084].

known that the occurrence of chaos depends on the values of bifurcation parameters. The
straight-line stabilization method is used to control the period-doubling bifurcation, unstable
periodic orbits, and chaos. The system quickly arrived at the Nash equilibrium point when
a small perturbation is applied in the chaos region. The research results have an important
theoretical and practical significance to the electricity market under the view of developing
new energy. This paper also shows guidance for electricity companies to formulate strategies
of output and is helpful for the government to formulate relevant policies to macrocontrol
economy.
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