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This paper investigates the guaranteed cost control of chaos problem in 4D Lorenz-Stenflo (LS)
system via Takagi-Sugeno (T-S) fuzzy method approach. Based on Lyapunov stability theory and
linear matrix inequality (LMI) technique, a state feedback controller is proposed to stabilize the
4D Lorenz-Stenflo chaotic system. An illustrative example is provided to verify the validity of the
results developed in this paper.

1. Introduction

Chaos phenomenon which is a deterministic nonlinear dynamical system has been generally
developed over the past two decades, based on its particular properties, such as broadband
noise-like waveform, and depending sensitively on the system’s precise initial conditions,
and so forth. Due to its powerful applications in engineering systems, both control and
synchronization/stability problems have extensively been studied in the past decades
for chaotic systems. Recently, many papers studied the hyperchaotic system, and some
dynamical behaviors are studied, such as Chen’s system [1], Lorenz-Stenflo system [2],
Josephson junctions [3], cell neural network [4], Lü system [5, 6], and Genesio System
[7]. Several control schemes for the stability/synchronization/solution problem of nonlinear
systems have been studied extensively, such as backstepping design [8], feedback control [9],
adaptive control [10], intermittent control [11], fuzzy model based [12], and multistep differ-
ential transform [13]. On the other hand, Takagi-Sugeno (T-S) fuzzy concept was introduced
by the pioneering work of Takagi and Sugeno and has been successfully and effectively used
in complex nonlinear systems [14]. The main feature of T-S fuzzy model is that a nonlinear
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system can be approximated by a set of T-S linear models. The overall fuzzy model of complex
nonlinear systems is achieved by fuzzy “blending” of the set of T-S linear models. Therefore,
the controller design and the stability analysis of nonlinear systems can be analyzed via T-S
fuzzy models and the so-called parallel distributed compensation (PDC) scheme [15–18].

Inspired by the researches mentioned above, this paper examines the problem of
stability for the 4D Lorenz-Stenflo systems. To achieve this goal, based on the Lyapunov
stability theory, PDC scheme, and the LMI optimization technique, a controller is derived to
guarantee stability of the 4D Lorenz-Stenflo system. Finally, an example is given to illustrate
the usefulness of the obtained results.

2. Problem Formulation and Main Results

A 4D Lorenz-Stenflo chaotic system is expressed by the following differential equation [2]:

ẋ1(t) = a(x2(t) − x1(t)) + bx4(t),

ẋ2(t) = cx1(t) − x1(t)x3(t) − x2(t),

ẋ3(t) = x1(t)x2(t) − dx3(t),

ẋ4(t) = −x1(t) − ax4(t),

(2.1)

where x1, x2, x3, x4 are state variables and a, b, c, d are called the Prandel number,
rotation number, Rayleigh number, and geometric parameter of the system, respectively
[2]. To investigate the control design of system (2.5), let the system’s state vector x(t) =
[x1(t) x2(t) x3(t) x4(t)]

T and the control input vector u(t). Then, the state equations of 4D
Lorenz-Stenflo chaotic system (2.1) can be represented as follows:

ẋ(t) = A(x(t))x(t) + Bu(t), (2.2)

where

A(x(t)) =

⎡
⎢⎢⎣

−a a 0 b
c −1 −x1(t) 0
0 x1(t) −d 0
−1 0 0 −a

⎤
⎥⎥⎦ (2.3)

and B is known constant matrix with appropriate dimensions.
The aim of this paper is to stabilize 4D Lorenz-Stenflo chaotic systems using T-S fuzzy

controller. The continuous fuzzy system was proposed to represent a nonlinear system [14].
The system dynamics (2.2) can be captured by a set of fuzzy rules which characterize local
correlations in the state space. Each local dynamic described by the fuzzy IF-THEN rule has
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the property of linear input-output relation. Based on the T-S fuzzy model concept, a general
class of T-S fuzzy 4D Lorenz-Stenflo chaotic systems is considered as follows

Model Rule i

If z1(t) is Mi1 and . . . zr(t) is Mir , then

ẋ(t) = Aix(t) + Biu(t), (2.4)

where z1(t), z2(t), . . . , zr(t) are known premise variables, Mij , i ∈ {1, 2, . . . , m}, j ∈
{1, 2, . . . , r} is the fuzzy set, and m is the number of model rules; x(t) is the state vector and
u(t) is input vector. The matrices Ai and Bi are known constant matrices with appropriate
dimensions. Given a pair of (x(t), u(t)), the final outputs of the fuzzy system are inferred as
follows:

ẋ(t) =
∑m

i=1 wi(z(t)) · {Aix(t)Biu(t)}∑m
i=1 wi(z(t))

=
m∑
i=1

ηi(z(t)) · {Aix(t) + Biu(t)},
(2.5)

where z(t) = [z1(t) z2(t) · · · zr(t)], wi(z(t)) =
∏r

j=1Mij(zj(t)), ηi(z(t)) = wi(z(t))/∑m
i=1 wi(z(t)). The term Mij(zj(t)) is the grade of membership of zj(t) in Mij . In this paper,

we assume that wi(z(t)) ≥ 0, i ∈ {1, 2, . . . , m}, and
∑m

i=1 wi(z(t)) > 0. Therefore, we have
ηi(z(t)) ≥ 0, i ∈ {1, 2, . . . , m} and

∑m
i=1 ηi(z(t)) = 1, for all t ≥ 0.To derive the main results, we

first introduce the cost function of system (2.4) as follows:

J =
∫∞

0

[
xT (s) ·Q · x(s) + uT (s) · R · u(s)

]
ds, (2.6)

where Q and R are two given positive definite symmetric matrices. Associated with cost
function (2.6), the fuzzy guaranteed cost control is defined as follows.

Definition 2.1. Consider the T-S fuzzy system (2.4); if there exist a control law u(t) and a
positive scalar J∗ such that the closed-loop system is stable and the value of cost function
(2.6) satisfies J ≤ J∗, then J∗ is said to be a guaranteed cost and u(t) is said to be a guaranteed
cost control law for the T-S fuzzy 4D Lorenz-Stenflo chaotic systems (2.4).

This paper aims at designing a guaranteed cost control law for the asymptotic
stabilization of the T-S fuzzy 4D Lorenz-Stenflo chaotic systems (2.4). To achieve this control
goal, we utilize the concept of PDC [14] scheme and select the fuzzy guaranteed cost
controller via state feedback as follows.

Control Rule j

If z1(t) is Mj1 and . . . zr(t) is Mjr , then

u(t) = −Kjx(t), t ≥ 0, (2.7)
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where Kj , j ∈ {1, 2, . . . , m} are the state feedback gains. Hence, the overall state feedback
control law is represented as follows:

u(t) = −
m∑
j=1

ηj(z(t)) ·Kjx(t), t ≥ 0. (2.8)

Before proposing the main theorem for determining the feedback gains Kj (j = 1, 2, . . . , m), a
lemma is introduced.

Lemma 2.2 (see [19] (Schur complement)). For a given matrix S =
[
S11 S12

ST
12 S22

]
with S11 = ST

11,

S22 = ST
22, then the following conditions are equivalent:

(1) S < 0,

(2) S22 < 0, S11 − S12S
−1
22S

T
12 < 0.

Now we present an asymptotic stabilization condition for T-S fuzzy 4D Lorenz-Stenflo chaotic systems
(2.4).

Theorem 2.3. If there exist some positive definite symmetric matrices P̂ and matrices K̂j , j ∈
{1, 2, . . . , m} such that the following LMI condition holds for all i, j ∈ {1, 2, . . . , m}:

Φ̃ij =

⎡
⎢⎢⎣
AiP̂ + P̂AT

i − BiK̂j − K̂T
j B

T
i P̂ K̂T

j

∗ −Q−1 0

∗ ∗ −R−1

⎤
⎥⎥⎦ < 0. (2.9)

Then system (2.4) is asymptotically stabilizable by controller (2.8). The stabilizing feedback control
gain is given by Kj = K̂j P̂

−1, and the system performance (2.6) is bounded by

J ≤ J∗ = xT (0)Px(0), (2.10)

where P = P̂−1.

Proof. Define the Lyapunov functional:

V (x(t)) = xT (t)Px(t), (2.11)



Discrete Dynamics in Nature and Society 5

where V (x(t)) is a legitimate Lyapunov functional candidate and P is positive definite
symmetric matrices. By the system (2.4) with

∑m
i=1 ηi(z(t)) = 1, the time derivatives of

V (x(t)), along the trajectories of system (2.4) with (2.6) and (2.8), satisfy

V̇ (x(t)) −
m∑
i=1

m∑
j=1

ηi(z(t))ηj(z(t))
{
xT (t)

(
Q +KT

j RKj

)
x(t)

}

=
m∑
i=1

m∑
j=1

ηi(z(t))ηj(z(t))
{
xT (t)

(
PAi +AT

i P −KT
j B

T
i P − PBiKj −Q −KT

j RKj

)
x(t)

}

≤
m∑
i=1

m∑
j=1

ηi(z(t))ηj(z(t))xT (t)Φijx(t).

(2.12)

In order to guarantee V̇ (x(t)) − ∑m
i=1

∑m
j=1 ηi(z(t))ηj(z(t)){xT (t)(Q + KT

j RKj)x(t)} < 0, we
need to satisfy Φij < 0. By Lemma 2.2 (Schur complement) [19], and premultiplying and
postmultiplying the Φij in (2.12) by P−1 > 0, Φij < 0 are equivalent to Φ̃ij < 0 in (2.9), then we
can obtain the following:

V̇ (x(t)) ≤ −
m∑
i=1

m∑
j=1

ηi(z(t))ηj(z(t))xT (t)
(
Q +KT

j RKj

)
x(t)

= −
(
xT (t) ·Q · x(t) + u(t) · R · u(t)

)
< 0.

(2.13)

From the inequality (2.13), V̇ (x(t)) < 0, we conclude that system (2.4) with (2.6) is
asymptotically stable. Integrating (2.13) from 0 to ∞, we have

∫∞

0
V̇ (x(s))ds = lim

t→∞
V (x(t)) − V (x(0)) ≤ −

∫∞

0

[
xT (s) ·Q · x(s) + uT (s) · R · u(s)

]
ds.

(2.14)

Since that the system (2.4) with (2.6) is asymptotically stable, we can obtain the following
results:

lim
t→∞

V (x(t)) = 0. (2.15)

Consequently, J =
∫∞

0 [xT (s) ·Q · x(s) + uT (s) · R · u(s)]ds ≤ xT (0)Px(0) = V (x(0)) = J∗. This
completes the proof.
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Figure 1: The chaotic attractor of the 4D Lorenz-Stenflo chaotic system.

3. Numerical Simulation and Analysis

In this section, a numerical example is presented to demonstrate and verify the performance
of the proposed results. Consider a 4D Lorenz-Stenflo as given in (2.1) with the following
parameters [2]: a = 1.0, b = 1.5, c = 26, and d = 0.7.

From the simulation result, we can get that x1(t) is bounded in interval [−7 7]. By
solving the equation, M1 and M2 are obtained as follows:

M1(x1(t)) =
1
2

(
1 +

x1(t)
7

)
, M2(x1(t)) = 1 −M1(x1(t)) =

1
2

(
1 − x1(t)

7

)
. (3.1)

M1 and M2 can be interpreted as membership functions of fuzzy sets. Using these fuzzy sets,
the nonlinear system with time-varying delays can be expressed by the following T-S fuzzy
models.

Rule 1. If x1(t) is M1, then

ẋ(t) = A1x(t) + B1u(t), (3.2)

Rule 2. IF x1(t) is M2, then

ẋ(t) = A2x(t) + B2u(t), (3.3)
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Figure 2: The state responses of the controlled 4D Lorenz-Stenflo chaotic system.

where

x(t) = [x1(t) x2(t) x3(t) x4(t)]T , A1 =

⎡
⎢⎢⎣

−1 1 0 1.5
26 −1 7 0
0 −7 −0.7 0
−1 0 0 −1

⎤
⎥⎥⎦,

A2 =

⎡
⎢⎢⎣

−1 1 0 1.5
26 −1 −7 0
0 7 −0.7 0
−1 0 0 −1

⎤
⎥⎥⎦, B1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦, B2 =

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦.

(3.4)

By the theorem, the stabilizing fuzzy control gains are given by K1 = K2 = [61.392 4.857 −
0.137 4.026].
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Consequently, the minimal guaranteed cost is J∗ = 6.26 × 10−11. The simulation
results with initial conditions x(0) = [0.1 0.1 30 0.1]T are shown in Figures 1 and 2. The
chaotic attractor of 4D Lorenz-Stenflo system is given in Figure 1. The system state responses
trajectory of controller design is shown in Figure 2. When t = 20 sec, it is obvious that the
feedback control gain can guarantee stable of 4D Lorenz-Stenflo systems. From the simulation
results, it is shown that the proposed controller works well to guarantee stable.

4. Conclusion

This paper has presented the solutions to the guaranteed cost control of chaos problem
via the Takagi-Sugeno fuzzy control for 4D Lorenz-Stenflo system. Based on Lyapunov
stability theory and LMI technique, the guaranteed cost control gains can be easily obtained
through a convex optimization problem. Finally, a numerical example shows the validity and
superiority of the developed result.
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