
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 735623, 10 pages
doi:10.1155/2012/735623

Research Article
Limit 2-Cycles for a Discrete-Time Bang-Bang
Control Model

Chengmin Hou1 and Sui Sun Cheng2

1 Department of Mathematics, Yanbian University, Yanji 133002, China
2 Department of Mathematics, Tsing Hua University, Taiwan 30043, Taiwan

Correspondence should be addressed to Sui Sun Cheng, sscheng@math.nthu.edu.tw

Received 3 August 2012; Revised 19 September 2012; Accepted 24 September 2012

Academic Editor: Raghib Abu-Saris

Copyright q 2012 C. Hou and S. S. Cheng. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

A discrete-time periodic model with bang-bang feedback control is investigated. It is shown that
each solution tends to one of four different types of limit 2-cycles. Furthermore, the accompanying
initial regions for each type of solutions can be determined. When a threshold parameter is
introduced in the bang-bang function, our results form a complete bifurcation analysis of our
control model. Hence, our model can be used in the design of a control system where the state
variable fluctuates between two state values with decaying perturbation.

1. Introduction

Discrete-time control systems of the form

xn = Anxn−1 +G(n,un−1), (1.1)

with xn ∈ Rn and un ∈ Rm, are of great importance in engineering (see, e.g., any text books
on discrete-time signals and systems).

Indeed, such a system consists of a linear part which is easily produced by design and
a nonlinear part which allows nonlinear feedback controls of the form

un = Q(xn), (1.2)

commonly seen in engineering designs.
In a commonly seen situation, xn and un belong to R1, while un takes on two fixed

values (on-off values) depending on whether the state variable is above or below a certain
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value (as commonly seen in thermostat control). In some cases, it is desirable to see that the
state value xn fluctuates between two fixed values with decaying perturbations as time goes
by (an example will be provided at the end of this paper). Here, the important question is
whether we can design such a control system that fulfils our objectives.

In this note, we will show that a very simple feedback system of the form

xn = anxn−2 + bnfλ(xn−1) + dn, n ∈ N = {0, 1, 2, . . .}, (1.3)

can achieve such a goal provided that:
(i)we take {an}∞n=0, {bn}∞n=0, {dn}∞n=0 to be 2-periodic sequences with a0, a1 ∈ (0, 1), b0, b1 ∈
(0,+∞), d0, d1 ∈ R,
(ii)while the control function fλ is taken to be the step (activation) or bang bang function [1]
defined by

fλ(u) =

{
1, ifu ≤ λ,

−1, ifu > λ,
(1.4)

where λmay be regarded as a threshold parameter.
Remarks: (i) Note that in case λ = 0, our function f0 is reduced to the well-known Heaviside
function

H(u) =

{
1, ifu ≤ 0,
−1, ifu > 0.

(1.5)

These bang bang controllers are indeed used in daily control mechanisms; for example, a
water heater that maintains desired temperature by turning the applied power on and off
based on temperature feedback is an example application.
(ii)As for the sequences {an}∞n=0, {bn}∞n=0 and {dn}∞n=0, we have assumed that they are periodic
with a prime period ω. We could have considered more general periodic sequences since
a large number of environmental parameters are generated in periodic manners, and such
structural nature should be reflected in the choice of our sequences. However, in the early
stage of our study, it is quite reasonable to assume that they have a common prime period 2
(instead of various prime periods).
(iii) Finally, we have selected a0, a1 ∈ (0, 1). A simple reason is that without the feedback
control and forcing sequence {dn}, our system is a stable one and which can easily be realized
in practice.
(iv) Equation (1.3) has a second-order delay in the open loop part and a first-order delay in
the control function. It may equally be well to choose a system that has a first-order delay
in the open loop part and a second-order delay in the control function. Such a model will be
handled in another paper.
(v) The simple prototype studied here is representative of a much wider class of discrete-
time periodic systems with piecewise constant feedback controls [2–10], and hence we hope
that our results will lead to much more general ones for complex systems involving such
discontinuous controls.

Clearly, given any initial state value pair (x−2, x−1) inR2, we can generate through (1.3)
a unique real sequence {xn}∞n=−2. Such a (state) sequence is called a solution of (1.3) originated
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from (x−2, x−1). What is interesting is that by elementary analysis, we can show that for any
value of the threshold parameter λ, there are at most four possible types of limiting behaviors
for solutions of (1.3), and we can determine exactly the range of the parameter values and the
exact “initial region” from which each type of solutions originates from (see the concluding
section for more details).

To this end, we first note that by the transformation un = xn − λ, (1.3) is equivalent to

un = anun−2 + bnH(un−1) + cn, n ∈ N, (1.6)

where cn = dn + (an − 1)λ. Next, by means of the identification u2n = yn and u2n+1 = zn
for n ∈ {−1, 0, . . .}, we note further that (1.6) is equivalent to the following two-dimensional
autonomous dynamical system:

yn = a0yn−1 + b0H(zn−1) + c0, zn = a1zn−1 + b1H
(
yn

)
+ c1, n ∈ N, (1.7)

which is a special case of the system (1.1). By such a transformation, we are then considering
the subsequences {u2n} and {u2n+1} consisting of even and odd terms of the solution sequence
{un} of (1.6). Therefore, all the asymptotic properties of (1.6) can be obtained from those of
(1.7).

To study the asymptotic properties of (1.7), we first note that its solution is of the form
{(yn, zn)}∞n=−1 where (y−1, z−1) is now a point in the real plane. By considering all possible
initial data pairs (y−1, z−1) ∈ R2, we will be able to show that every solution of (1.7) tends to
one of four vectors. To describe these four vectors, we set

ξ±i =
ci ± bi
1 − ai

, i = 0, 1. (1.8)

Then, the four vectors are

(
ξ−0 , ξ

−
1

)
,
(
ξ+0 , ξ

−
1

)
,
(
ξ+0 , ξ

+
1

)
,
(
ξ−0 , ξ

+
1

)
, (1.9)

and since b0, b1 > 0, we see that ξ−0 < ξ+0 and ξ−1 < ξ+1 ,and hence they form the corners of a
rectangle.

Depending on the relative location of the origin (0, 0) with respect to this rectangle,
we may then distinguish eleven exhaustive (but not mutually distinct; see Section 3 in the
following) cases:

(i) 0 > max{ξ+0 , ξ+1 },
(ii) 0 < min{ξ−0 , ξ−1 },
(iii) min{ξ+0 , ξ+1 } < 0 < max{ξ+0 , ξ+1 },
(iv) min{ξ−0 , ξ−1 } < 0 < max{ξ−0 , ξ−1 };
(v) max{ξ+0 , ξ+1 } = 0,

(vi) min{ξ−0 , ξ−1 } = 0;

(vii) 0 = min{ξ+0 , ξ+1 } = ξ+0 < ξ+1 ,
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(viii) 0 = min{ξ+0 , ξ+1 } = ξ+1 < ξ+0 ;

(ix) 0 = max{ξ−0 , ξ−1 } = ξ−1 > ξ−0 ,

(x) 0 = max{ξ−0 , ξ−1 } = ξ−0 > ξ−1 ;

(xi) max{ξ−0 , ξ−1 } < 0 < min{ξ+0 , ξ+1 }.
For each case, we intend to show that solutions of (1.7) originated from different parts

of the plane will tend to one of the four vectors in (1.9). To facilitate description of the various
parts of the plane, we introduce the following notations:

A±
i,j = −

(
1 − a

j

i

)
a
j

i

ξ±i , j ∈ N, i = 0, 1,

R+ = (0,+∞), R− = (−∞, 0].

(1.10)

2. Main Results

Cases (i), (ii), (iii), and (iv)

First of all, the first four cases 0 > max{ξ+0 , ξ+1 }, 0 < min{ξ−0 , ξ−1 }, min{ξ+0 , ξ+1 } < 0 < max{ξ+0 , ξ+1 },
and min{ξ−0 , ξ−1 } < 0 < max{ξ−0 , ξ−1 } are relatively easy. Indeed, suppose 0 > max{ξ+0 , ξ+1 }. Let
(y, z) = {(yn, zn)}∞n=−1 be a solution of (1.7). By (1.7), yn ≤ a0yn−1 +b0 + c0, zn ≤ a1zn−1 +b1 + c1.
Then,

lim sup
n

yn ≤ (b0 + c0)
(1 − a0)

= ξ+0 < 0, (2.1)

lim sup
n

zn ≤ (b1 + c1)
(1 − a1)

= ξ+1 < 0. (2.2)

Therefore, there exists an m0 ∈ N such that yn, zn ∈ R− for all n ≥ m0. By (1.7) again, yn =
a0yn−1 + b0 + c0 and zn = a1zn−1 + b1 + c1 for n > m0. Then, a0, a1 ∈ (0, 1) imply

lim
n

(
yn, zn

)
=
(
c0 + b0
1 − a0

,
c1 + b1
1 − a1

)
=
(
ξ+0 , ξ

+
1

)
. (2.3)

In summary, suppose max{ξ+0 , ξ+1 } < 0 and suppose (y−1, z−1) ∈ R2, then the solution
{(yn, zn)} originated from (y−1, z−1)will tend to (ξ+0 , ξ

+
1 ). We record this result as the first data

row in Table 1.
By symmetric arguments, the second data row is also correct. To see the validity of the

third data row, we first note that min{ξ+0 , ξ+1 } < 0 < max{ξ+0 , ξ+1 } if and only if ξ+0 < 0 < ξ+1 or
ξ+1 < 0 < ξ+0 . If ξ

+
0 < 0 < ξ+1 holds, then by (1.7), yn ≤ a0yn−1 + b0 + c0 for all n ∈ N. Hence,

lim supnyn ≤ (b0 + c0)/(1 − a0) = ξ+0 < 0. Therefore, there exists anm0 ∈ N such that yn < 0 for
n ≥ m0. Thus, zn = a1zn−1 + b1 + c1 for n > m0. Then limnzn = ξ+1 > 0. Therefore, there exists
an m1 ≥ m0 such that zn > 0 for all n > m1. Then, by (1.7) again, yn = a0yn−1 − b0 + c0 for all
n > m1 + 1, and hence limnyn = ξ−0 . The case where ξ+1 < 0 < ξ+0 is similarly proved. Finally, the
fourth data row is established by arguments symmetric to those for the third row.
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Case (v)

Next, we assume that 0 = max{ξ+0 , ξ+1 }. Since ai ∈ (0, 1), bi ∈ (0,+∞), and ci ∈ R for i = 0, 1,
then ξ+i = (ci + bi)/(1 − ai) > (ci − bi)/(1 − ai) = ξ−i for i = 0, 1. We see that max{ξ−0 , ξ−1 } < 0, and
A−

i,0 = 0, limjA
−
i,j = limj(−(1 − a

j

i )/(a
j

i ))ξ
−
i = +∞ for i = 0, 1. Therefore, R+ =

⋃+∞
j=0(A

−
i,j , A

−
i,j+1]

for i = 0, 1. Furthermore, if ξ+0 < ξ+1 = 0, then limjA
+
0,j = +∞, R+ =

⋃+∞
j=0(A

+
0,j , A

+
0,j+1], and if

ξ+1 < ξ+0 = 0, then limjA
+
1,j = +∞, R+ =

⋃+∞
j=0(A

+
1,j , A

+
1,j+1]. We need to consider three cases: (i)

ξ+0 < ξ+1 = 0, (ii) ξ+1 < ξ+0 = 0, and (iii) ξ+0 = ξ+1 = 0. By arguments similar to those used in the
derivation of Table 1, we may derive Table 2.

For instance, suppose ξ+0 < ξ+1 = 0. Let (y−1, z−1) ∈ R− × R−. Then, by (1.7), we have
y0 = a0y−1+b0+c0 < a0y−1 < 0, z0 = a1z−1+b1+c1 = a1z−1 < 0, and by induction, wemay easily
see that yn, zn ∈ R− for all n ∈ N. Thus, yn = a0yn−1 + b0 + c0, zn = a1zn−1 + b1 + c1, and hence
limn(yn, zn) = (ξ+0 , ξ

+
1 ). As another example, let (y−1, z−1) ∈ R+ × R−, then y−1 ∈ (A+

0,k, A
+
0,k+1]

for some k ∈ N. By (1.7) and induction, we may easily see that (yk, zk) ∈ R− × R−. Our
conclusion comes from the previous case. As a further example, let (y−1, z−1) ∈ (A−

0,k, A
−
0,k+1]×

(A−
1,s, A

−
1,s+1] ⊂ R+ × R+, where 0 ≤ k ≤ s, then by (1.7) and induction, we may easily see that

(yk, zk) ∈ R− × R+. Our conclusion now follows from the fourth data row.

Case (vi)

This case is a dual of the Case (v). Indeed, assume that 0 = min{ξ−0 , ξ−1 }. Then, min{ξ+0 , ξ+1 } > 0
and A+

i,0 = 0, limjA
+
i,j = limj(−(1 − a

j

i )/(a
j

i ))ξ
+
0 = −∞ for i = 0, 1. Thus, R− =

⋃+∞
j=0(A

+
i,j+1, A

+
i,j]

for i = 0, 1. Furthermore, if 0 = ξ−1 < ξ−0 , then limjA
−
0,j = −∞, R− =

⋃+∞
j=0(A

−
0,j+1, A

−
0,j], and if

0 = ξ−0 < ξ−1 , then limjA
−
1,j = −∞, R− =

⋃+∞
j=0(A

−
1,j+1, A

−
1,j]. We need to consider three cases: (i)

0 = ξ−1 < ξ−0 , (ii) 0 = ξ−0 < ξ−1 , and (iii) ξ−0 = ξ−1 = 0. By arguments similar to those in the previous
case, we may obtain the asymptotic behaviors of (1.7) summarized in Table 3.

Cases (vii) and (viii)

By arguments similar to those described previously, the corresponding asymptotic behaviors
of (1.7) can be summarized in Tables 4 and 5.

Case (ix) and (x)

By arguments similar to those described previously, the corresponding asymptotic behaviors
of (1.7) can be summarized in Tables 6 and 7.

Case (xi)

By arguments similar to those described previously, the corresponding asymptotic behaviors
of (1.7) can be summarized in Table 8.

3. Remarks

We remark that the different Cases (i)–(xi) discussed above may not be mutually distinct. For
instance, the conditions min{ξ+0 , ξ+1 } < 0 < max{ξ+0 , ξ+1 } and min{ξ−0 , ξ−1 } < 0 < max{ξ−0 , ξ−1 } are
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Table 1

Case y−1 z−1 Condition limn(yn, zn)
0 > max{ξ+0 , ξ+1 } ∈R ∈R (ξ+0 , ξ

+
1 )

0 < min{ξ−0 , ξ−1 } ∈R ∈R (ξ−0 , ξ
−
1 )

min{ξ+0 , ξ+1 } < 0 < max{ξ+0 , ξ+1 } ∈R ∈R ξ+0 < 0 < ξ+1 (ξ−0 , ξ
+
1 )

ξ+1 < 0 < ξ+0 (ξ+0 , ξ
−
1 )

min{ξ−0 , ξ−1 } < 0 < max{ξ−0 , ξ−1 } ∈R ∈R ξ−0 < 0 < ξ−1 (ξ−0 , ξ
+
1 )

ξ−1 < 0 < ξ−0 (ξ+0 , ξ
−
1 )

Table 2: max{ξ+0 , ξ+1 } = 0.

y−1 z−1 Condition Condition limn(yn, zn)

∈R− ∈R−
ξ+0 < ξ+1 = 0 (ξ+0 , ξ

+
1 )

ξ+1 < ξ+0 = 0 (ξ+0 , ξ
+
1 )

ξ+1 = ξ+0 = 0 (ξ+0 , ξ
+
1 )

∈R− ∈R+
ξ+0 < ξ+1 = 0 (ξ−0 , ξ

+
1 )

ξ+1 < ξ+0 = 0 (ξ+0 , ξ
+
1 )

ξ+1 = ξ+0 = 0 (ξ−0 , ξ
+
1 )

∈R+ ∈R−
ξ+0 < ξ+1 = 0 (ξ+0 , ξ

+
1 )

ξ+1 < ξ+0 = 0 (ξ+0 , ξ
−
1 )

ξ+1 = ξ+0 = 0 (ξ+0 , ξ
−
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ k ≤ s

ξ+0 < ξ+1 = 0 (ξ−0 , ξ
+
1 )

ξ+1 < ξ+0 = 0 (ξ+0 , ξ
+
1 )

ξ+1 = ξ+0 = 0 (ξ−0 , ξ
+
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ s < k

ξ+0 < ξ+1 = 0 (ξ+0 , ξ
+
1 )

ξ+1 < ξ+0 = 0 (ξ+0 , ξ
−
1 )

ξ+1 = ξ+0 = 0 (ξ+0 , ξ
−
1 )

Table 3: min{ξ−0 , ξ−1 } = 0.

y−1 z−1 Condition Condition limn(yn, zn)

∈R+ ∈R+
0 = ξ−1 < ξ−0 (ξ−0 , ξ

−
1 )

0 = ξ−0 < ξ−1 (ξ−0 , ξ
−
1 )

0 = ξ−1 = ξ−0 (ξ−0 , ξ
−
1 )

∈R+ ∈R−
0 = ξ−1 < ξ−0 (ξ+0 , ξ

−
1 )

0 = ξ−0 < ξ−1 (ξ−0 , ξ
−
1 )

0 = ξ−1 = ξ−0 (ξ+0 , ξ
−
1 )

∈R− ∈R+
0 = ξ−1 < ξ−0 (ξ−0 , ξ

−
1 )

0 = ξ−0 < ξ−1 (ξ−0 , ξ
+
1 )

0 = ξ−1 = ξ−0 (ξ−0 , ξ
+
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ k ≤ s

0 = ξ−1 < ξ−0 (ξ+0 , ξ
−
1 )

0 = ξ−0 < ξ−1 (ξ−0 , ξ
−
1 )

0 = ξ−1 = ξ−0 (ξ+0 , ξ
−
1 )

∈(A−
0,k+1, A

−
0,k] ⊂ R− ∈(A−

1,s+1, A
−
1,s] ⊂ R− 0 ≤ s < k

0 = ξ−1 < ξ−0 (ξ−0 , ξ
−
1 )

0 = ξ−0 < ξ−1 (ξ−0 , ξ
+
1 )

0 = ξ−1 = ξ−0 (ξ−0 , ξ
+
1 )
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Table 4: 0 = min{ξ+0 , ξ+1 } = ξ+0 < ξ+1 .

y−1 z−1 Condition Condition limn(yn, zn)
∈R− ∈R (ξ−0 , ξ

+
1 )

∈R+ ∈R− ξ−1 ≤ 0 (ξ+0 , ξ
−
1 )

ξ−1 > 0 (ξ−0 , ξ
+
1 )

∈R+ ∈R+ ξ−1 ≥ 0 (ξ−0 , ξ
+
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ k ≤ s ξ−1 < 0 (ξ−0 , ξ

+
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ s < k ξ−1 < 0 (ξ+0 , ξ

−
1 )

Table 5: 0 = min{ξ+0 , ξ+1 } = ξ+1 < ξ+0 .

y−1 z−1 Condition Condition limn(yn, zn)
∈R ∈R− (ξ+0 , ξ

−
1 )

∈R− ∈R+ ξ−0 ≤ 0 (ξ−0 , ξ
+
1 )

ξ−0 > 0 (ξ+0 , ξ
−
1 )

∈R+ ∈R+ ξ−0 ≥ 0 (ξ+0 , ξ
−
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ k ≤ s ξ−0 < 0 (ξ−0 , ξ

+
1 )

∈ (A−
0,k, A

−
0,k+1] ⊂ R+ ∈ (A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ s < k ξ−0 < 0 (ξ+0 , ξ

−
1 )

Table 6: 0 = max{ξ−0 , ξ−1 } = ξ−1 > ξ−0 .

y−1 z−1 Condition Condition limn(yn, zn)
∈R ∈R+ (ξ−0 , ξ

+
1 )

∈R+ ∈R− ξ+0 ≥ 0 (ξ+0 , ξ
−
1 )

ξ+0 < 0 (ξ−0 , ξ
+
1 )

∈R− ∈R− ξ+0 ≤ 0 (ξ−0 , ξ
+
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ k ≤ s ξ+0 > 0 (ξ+0 , ξ

−
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ s < k ξ+0 > 0 (ξ−0 , ξ

+
1 )

Table 7: 0 = max{ξ−0 , ξ−1 } = ξ−0 > ξ−1 .

y−1 z−1 Condition Condition limn(yn, zn)
∈R+ ∈R (ξ+0 , ξ

−
1 )

∈R− ∈R+ ξ+1 ≥ 0 (ξ−0 , ξ
+
1 )

ξ+1 < 0 (ξ+0 , ξ
−
1 )

∈R− ∈R− ξ+1 ≤ 0 (ξ+0 , ξ
−
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ k ≤ s ξ+1 > 0 (ξ+0 , ξ

−
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ s < k ξ+1 > 0 (ξ−0 , ξ

+
1 )

Table 8:max{ξ−0 , ξ−1 } < 0 < min{ξ+1 , ξ+0 }.

y−1 z−1 Condition limn(yn, zn)
∈R− ∈R+ (ξ−0 , ξ

+
1 )

∈R+ ∈R− (ξ+0 , ξ
−
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ k ≤ s (ξ−0 , ξ

+
1 )

∈(A−
0,k, A

−
0,k+1] ⊂ R+ ∈(A−

1,s, A
−
1,s+1] ⊂ R+ 0 ≤ s < k (ξ+0 , ξ

−
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ k ≤ s (ξ+0 , ξ

−
1 )

∈(A+
0,k+1, A

+
0,k] ⊂ R− ∈(A+

1,s+1, A
+
1,s] ⊂ R− 0 ≤ s < k (ξ−0 , ξ

+
1 )
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not mutually exclusive. However, the corresponding conclusions in Table 1 show that they
are compatible (and hence should not cause any problem).

Next, we turn our attention to our original equation (1.3). By ci = di + (ai − 1)λ, we
may see that

ξ±i =
ci ± bi
1 − ai

= −λ +
di ± bi
1 − ai

, i = 0, 1. (3.1)

Therefore, the results in the previous section for the system (1.7) can easily be translated into
results for (1.3). For instance, by Table 1, we may see that when 0 > max{ξ+0 , ξ+1 }, that is, λ >
max{(b0 +d0)/(1− a0), (b1 +d1)/(1− a1)}, a solution {xn}∞n=−2 with (x−2, x−1) ∈ R2 will satisfy

lim
n
x2n =

b0 + d0

1 − a0
, lim

n
x2n+1 =

b1 + d1

1 − a1
. (3.2)

As another example, the condition ξ+0 < ξ+1 = 0 is equivalent to (b0 + d0)/(1 − a0 ) < (b1 +
d1)/(1−a1 ) = λ. Let {xn}∞n=−2 be a solution of (1.3)with (x−2, x−1) ∈ R− ×R+. Then, by Table 2,
we may see that

lim
n
x2n =

−b0 + d0

1 − a0
, lim

n
x2n+1 =

b1 + d1

1 − a1
. (3.3)

By arguments similar to those just described, the corresponding asymptotic behaviors
of solutions {xn} of (1.3) can be summarized as follow:

(i) if λ < min{(d0 − b0)/(1 − a0), (d1 − b1)/(1 − a1)}, then

{(x2n, x2n+1)} −→
(
d0 − b0
1 − a0

,
d1 − b1
1 − a1

)
, (3.4)

(ii) if λ = min{(d0 − b0)/(1 − a0), (d1 − b1)/(1 − a1)}, then

{(x2n, x2n+1)} −→
(
d0 − b0
1 − a0

,
d1 − b1
1 − a1

)
,

(
d0 + b0
1 − a0

,
d1 − b1
1 − a1

)
or

(
d0 − b0
1 − a0

,
d1 + b1
1 − a1

)
, (3.5)

(iii) if min{(d0 − b0)/(1 − a0), (d1 − b1)/(1 − a1)} < λ < max{(d0 + b0)/(1 − a0), (d1 +
b1)/(1 − a1)}, then

{(x2n, x2n+1)} −→
(
d0 − b0
1 − a0

,
d1 + b1
1 − a1

)
or

(
d0 + b0
1 − a0

,
d1 − b1
1 − a1

)
, (3.6)

(iv) if λ = max{(d0 + b0)/(1 − a0 ), (d1 + b1)/(1 − a1)}, then

{(x2n, x2n+1)} −→
(
d0 + b0
1 − a0

,
d1 + b1
1 − a1

)
,

(
d0 + b0
1 − a0

,
d1 − b1
1 − a1

)
or

(
d0 − b0
1 − a0

,
d1 + b1
1 − a1

)
, (3.7)
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(v) if λ > max{(d0 + b0)/(1 − a0), (d1 + b1)/(1 − a1)}, then

{(x2n, x2n+1)} −→
(
d0 + b0
1 − a0

,
d1 + b1
1 − a1

)
. (3.8)

We remark that the precise initial regions of each type of solutions in the above
statements can be inferred from our previous tables. Such repetitions, however, need not to
be spelled out in detail for obvious reasons. Instead, based on the statements made above, it
is more important to point out that our original motivation can be fulfilled.

(i) Equation (1.3) possesses exactly four 2-periodic solutions {ξ±0 , ξ±1 }with ξ±i = −λ+(di±
bi)/(1−ai)). Every other solution tends to one of these four solutions ”according to
the information given in the previous section.”

As an example, consider a plant which is supposed to produce a type of products with
capacity xn, where n now denotes economic stages. Suppose that the stages reflect booms
and busts experienced by an economy characterized by alternating periods of economic
growth and contraction. Then, during busts, the plant should be managed in a fashion so
as to produce at low capacity and during booms at high capacity. Suppose that it is estimated
that ξ−0 = 1 unit capacity is demanded during busts and ξ−1 = 10 unit capacity during booms.
Then, an automated plant of the form (1.7)may be built to fit the estimated demands:

yn =
1
2
yn−1 +

3
2
H(zn−1) + 2, zn =

1
3
zn−1 +

2
3
H
(
yn

)
+
22
3
, n ∈ N, (3.9)

where the “structural” parameters a0 = 1/2, a1 = 1/3, b0 = 3/2, b1 = 2/3, c0 = 2, and c1 =
22/3 are chosen since they, as may be checked easily, guarantee that the capacities yn and
zn will tend to 1 and 10, respectively. In fact, for all (y−1, z−1) ∈ R2, by (1.7), we have yn =
(1/2)yn−1 + (3/2)H(zn−1) + 2 ≥ (1/2)yn−1 − (3/2) + 2 = (1/2)yn−1 + 1/2, and zn = (1/3)zn−1 +
(2/3)H(yn) + (22/3) ≥ (1/3)zn−1 − (2/3) + (22/3) = (1/3)zn−1 + (20/3) for n ∈ N. Thus,
lim infnyn ≥ 1 and lim infnzn ≥ 10. Therefore, there is n′ ∈ N such that yn, zn ∈ R+ for n ≥ n′.
Then,

yn =
1
2
yn−1 +

1
2
, zn =

1
3
zn−1 +

20
3
, n > n′. (3.10)

We get limnyn = 1 = (c0 − b0)/(1 − a0) = ξ−0 and limnzn = 10 = (c1 − b1)/(1 − a1) = ξ−1 .
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