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A discrete time two-nation arms race model involving a piecewise constant nonlinear control
function is formulated and studied. By elementary but novel arguments, we are able to give a
complete analysis of its asymptotic behavior when the threshold parameter in the control function
varies from 0+ to ∞. We show that all solutions originated from positive initial values tend to
limit one or two cycles. An implication is that when devastating weapons are involved, “terror
equilibrium” can be achieved and escalated race avoided. It is hoped that our analysis will provide
motivation for further studying of discrete-time equations with piecewise smooth nonlinearities.

1. Introduction

In [1, pages 87–90], a simple dynamical model of a two-nation arms race based on
Richardson’s ideas in [2] is explained, and several interesting conclusions are drawn which
can be used to explain stable and escalated arms races. Roughly, let N = {0, 1, 2, . . .}, and let
An and Bn be the amount spent on armaments by two respective countries A and B in year
n ∈ N. Assuming, A has a fixed amount of distrust of the other country, causing it to retain
arms, then

An = (1 − rA)An−1 + sABn−1 + u, (1.1)

where the constant sA measures countryA’s distrust of country B in that it reacts to the way B
arms itself, rA ∈ (0, 1) is a measure ofA’s own economy, and u is the basic annual expenditure
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(e.g., maintenance expense). If we now assume a similar situation for country B, then we also
have

Bn = (1 − rB)Bn−1 + sBAn−1 + v. (1.2)

Under the assumption that rA = rB = r and sA = sB = s, it is shown that if the initial
total expenditure A−1 + B−1 is large and that the distrust factor is also so large that s > r,
then no two countries can sustain exponentially increasing expenditures on arms, and the
alternative is war or negotiation. While this model is an oversimplification one, it could help
to understand plausible reasons behind World War I (see [2, 3] in which various aspects of
arms race modeling are discussed).

The above model cannot explain some of the observations we can make nowadays.
Therefore, we need to build various models and analyze their asymptotic behaviors. In this
paper, we will build one such model based on the idea that although the distrust factor is the
same as in the previous model, the expenditure by the other country in year n − 1 in (1.1) is
replaced by sAfλ(Bn−1) where

fλ(Bn−1) =

⎧
⎨

⎩

1 if Bn−1 ∈ (0, λ],

0 if Bn−1 ∈ (−∞, 0] ∪ (λ,∞),
(1.3)

and the termAn−1 in (1.2) is replaced by a similar one. The “discontinuous” function fλ has a
clear physical meaning. Indeed, the positive parameter λmay be treated as a cutoff threshold
indicator so that when the competitor is already spending an unreasonable amount of money
(such as stocking of hundreds of nuclear missiles that can annihilate our mother earth) or is
not spending any, there is no need to add the budget anymore. With this function at hand, we
may rewrite our new model as follows:

xn = axn−α + bfλ
(
yn−1

)
+ c,

yn = ryn−β + sfτ(xn−1) + t,
(1.4)

where we have introduced two “delays” α and β in order to reflect the fact that the
expenditure in a previous accounting period may not be recorded precisely, and hence
historical expenditure records may be more reliable for use in making future decisions.

Although (1.4) may seem to be a simple model, there are still too many parameters
involved. We therefore make further (reasonable) assumptions as follows:

c, t = 0, α = β = 2, τ = λ > 0, r = a ∈ (0, 1), b = s = (1 − a). (1.5)

The assumption that c, t = 0 means that the fixed expenditures are relatively low in both
countries, while we assume that α = β = 2 so as to use the best up-to-date and “reliable”
accounting records xn−2 and yn−2. By choosing a ∈ (0, 1) and b = 1 − a, country A is making a
decision based on a convex combination of the expenditures xn−2 and the blanket-ceiling sum
fλ(yn−1). If country B takes on a similar decision policy, then we end up with

yn = a∗yn−2 + (1 − a∗)fλ(xn−1), (1.6)
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where a∗ may or may not differ from a. The case a∗ /=a is only more technically difficult, and
therefore, in this paper, we will assume the case a = a∗ (which is already nontrivial as we will
see) so that both countries play “symmetric” roles in the interactions.

By adopting these assumptions, we then settle on the following dynamical system:

xn = axn−2 + (1 − a)fλ
(
yn−1

)
,

yn = ayn−2 + (1 − a)fλ(xn−1),
(1.7)

for n ∈ N, where in this model, a ∈ (0, 1), λ > 0. Note that if we let z = (x, y) and

Fλ(z) =
(
fλ
(
y
)
, fλ(x)

)
, (1.8)

then the above system (1.7) can be written as

zn = azn−2 + a′Fλ(zn−1), n ∈ N, (1.9)

where we write zn = (xn, yn) and a′ = 1 − a for the sake of convenience.
The above vector equation is a three-term recurrence relation. Hence, for given z−2

and z−1 in the plane, a unique sequence {zk}∞k=−2 can be calculated from it. Such a sequence
is called a solution of (1.9) determined by z−2 and z−1. Among different z−2 and z−1,
those lying in the positive quadrant are of special interests since expenditures are always
positive. Therefore, our subsequent interests are basically the asymptotic behaviors of all such
solutions determined by z−2 and z−1 with positive components.

We remark that system (1.9) can be regarded as a discrete dynamical system with
piecewise smooth nonlinearities. Such systems have not been explored extensively (see,
e.g., the discussions on “polymodal” discrete systems in [4], and there are only several
recent studies on scalar equations with piecewise smooth nonlinearities [5–9])! Therefore,
a complete asymptotic analysis of our equation is essential in the further development of
discontinuous (in particular, polymodal) discrete time dynamical systems.

We need to be more precise about the statements to be made later. To this end, we
first note that given any z−2, z−1 in the quadrant (0,∞)2, the solution {zn}∞n−2 determined by
it also lies in the same quadrant (in the sense that zn ∈ (0,∞)2 for n ∈ N). Depending on
the locations of z−2 and z−1, it is clear that the behavior of the corresponding solution may
differ. For this reason, it is convenient to distinguish various parts of the first quadrant in the
following manner:

A = (0, λ]2, B = (λ,∞) × (0, λ], C = (λ,∞) × (λ,∞), D = (0, λ] × (λ,∞),
(1.10)

where λ is a fixed positive number, then

P = {A,B,C,D} (1.11)

is a partition of the quadrant (0,∞)2.
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Note that these subsets depend on λ, but this dependence is not emphasized in the
sequel for the sake of convenience.

For any solution {zn}∞n=−2 originated from z−2 and z−1 in the above subsets, our main
conclusion in this paper is that {z2n} will tend to some vector u and {z2n+1} will tend to
another vector v (which may or may not be equal to u). This implication is important since
it says that escalated arms race cannot happen and World War III should not happen if our
model is correct!

For the sake of convenience, we record this fact by means of

zn −→ 〈u, v〉. (1.12)

In case u = v, {zn} is convergent to u, and hence we may also write

zn −→ u or zn −→ 〈u〉. (1.13)

To arrive at our main conclusion, we note, however, that since fλ is a discontinuous
function, the standard theories that employ continuous arguments cannot be applied to yield
asymptotic criteria. Fortunately, we may resort to elementary arguments as to be seen below.

Before doing so, let us make a few remarks. First, note that our system (1.9)
is autonomous (time invariant) and also symmetric in the sense that under two sets
of “symmetric initial conditions,” the behaviors of the corresponding solutions are also
“symmetric.” This statement can be made more precise in mathematical terms. However,
a simple example is sufficient to illustrate this: suppose that λ = 1. If {zn}∞n=−2 is a solution of
(1.9)with (z−2, z−1) ∈ A×B, then as will be seen below, z2n → (1, 0) and z2n+1 → (1, 1). If we
now replace the condition (z−2, z−1) ∈ A × B with the symmetric initial condition (z−2, z−1) ∈
A×D, then we will end upwith the conclusion that z2n → (0, 1) and z2n+1 → (1, 1). Such two
conclusions will be referred to as dual results. We will see some tables which contain some
obvious dual results later.

Next, by (1.8), we may easily see that

Fλ(A) = k, Fλ(B) = i, Fλ(C) = 0, Fλ(D) = j, (1.14)

where

0 = (0, 0), i = (1, 0), j = (0, 1), k = (1, 1). (1.15)

Therefore, in case {zk} is a solution of (1.9) such that, say, zk ∈ A for all large k, then (1.9) is
reduced to

zn = azn−2 + a′k, (1.16)

for all large n. Hence, linear systems and their related properties will also appear in later
discussions. More precisely, two groups of bounding quantities αj and βj are needed:

αj = 1 +
λ − 1
aj

, βj =
λ

aj
, j ∈ N. (1.17)
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Note that they satisfy α0 = β0 = λ and the recurrence relations

αj+1 =
1
a
aj +

a − 1
a

, βj+1 =
1
a
βj , j ∈ N. (1.18)

We also need the following two properties of linear systems. Let {xk}∞k=−2 be real scalar (or
vector) sequences that satisfy

x2k = ax2k−2 + d, k ∈ N, (1.19)

x2k+1 = ax2k−1 + d, k ∈ N, (1.20)

where a ∈ (0, 1), and d is a real number (resp., a real vector).

(i) If {xn}∞n=−2 is a sequence which satisfies (1.19), then

x2k = ak+1x−2 +

(
1 − ak+1)

1 − a
d, k ∈ N. (1.21)

(ii) If {xn}∞n=−2 is a sequence which satisfies (1.20), then

x2k+1 = ak+1x−1 +

(
1 − ak+1)

1 − a
d, k ∈ N. (1.22)

Finally, we need to consider various ordering arrangements for three or four
nonnegative integers k, p, l, and m. First, the ordering arrangements of three integers
k, p, and l can be classified into 6 cases: (1) k = p ≤ l, (2) l = k < p, (3) p = l <
k, (4) k < min{p, l}, (5) p < min{k, l}, and (6) l < min{k, p}. In fact, let a, b ∈ R. Then
either a < b, a = b, or a > b. Let a, b, c ∈ R, then

a < b =⇒ c ∈ (−∞, a), c = a, c ∈ (a, b), c = b or c ∈ (b,∞),

a = b =⇒ c ∈ (−∞, a), c = a or c ∈ (a,∞),

a > b =⇒ c ∈ (−∞, b), c = b, c ∈ (b, a), c = a or c ∈ (a,∞).

(1.23)

These are equivalent to

a = b ≤ c, c = a < b, b = c < a,

a < min{b, c}, b < min{a, c}, c < min{a, b},
(1.24)

by comparing the two sets of statements.
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By similar reasoning, there are 12 ordering arrangements for four integers
k, p, l, and m: (1) k = p ≤ min{l,m}, (2) k < min{p, l,m}, (3) p < min{k, l,m}, (4) p = l <
min{k,m}, (5) p = l = m < k, (6) l < min{p, k,m}, (7) l = m < min{k, p}, (8) l = m = k <
p, (9) m < min{l, k, p}, (10) m = k < min{l, p}, (11) p = m < min{l, k}, and (12) k = l <
min{p,m}.

Our following plan is quite simple. We will treat our λ as a bifurcation parameter and
distinguish four different cases (i) λ > 1, (ii) λ = 1, (iii) 0 < λ < 1 − a, and (iv) 1 − a ≤ λ < 1,
and consider different z−2, z−1 in A,B,C, or D and discuss the precise asymptotic behaviors
of the corresponding solutions determined by them.

2. The Case λ > 1

This case is relatively simple.

Theorem 2.1. Suppose, λ > 1. Let {zk}∞k=−2 be any solution of (1.9) with (z−2, z−1) ∈ (0,∞)2. Then
zn → k.

Proof. By (1.9), we may see that xn ≤ axn−2 + a′ and yn ≤ ayn−2 + a′ for n ∈ N, then limnxn ≤
1 < λ and limnyn ≤ 1 < λ. Thus, there exists an integer m such that (zk, zk+1) ∈ (0, λ]2 for all
k ≥ m. Therefore, zk+2 = azk + a′k for all k ≥ m. In view of (1.21) and (1.22), zn → k. The
proof is complete.

3. The Case λ = 1

In this section, we assume that λ = 1. If {zk}∞k=−2 is a solution of (1.9) and if zk ∈ A and
zk+1 ∈ (0,∞)2, then in view of (1.14), Fλ(zk+1) ∈ {i, j,k, 0}, and hence

zk+2 = azk + a′Fλ(zk+1) ∈ A. (3.1)

By similar reasoning, we may consider all other possible cases and collect our findings in
tables. To simplify the description of these tables, we first note that {βj}∞j=0 = {1/aj}∞j=0 is a
strictly increasing and divergent sequence. Therefore, if we let

I(i) =
(
βi, βi+1

]
, B(i) = I(i) × (0, 1], D(i) = (0, 1] × I(i), C(i,j) = I(i) × I(j), (3.2)

then

(1,∞) =
∞⋃

i=0

I(i), B =
∞⋃

i=0

B(i), D =
∞⋃

i=0

D(i), C =
⋃

i,j∈N
C(i,j). (3.3)

First of all, the fact that zk ∈ A and zk+1 ∈ A implies, zk+2 ∈ A is recorded as the (A,A)
entry in Table 1. In this table, we may also find other entries which are self-explanatory.
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Table 1

A B(s) C(s,t) D(s)

A A A A A

B(i) B B aB(i) aB(i) + a′j
C(i,j) C aC(i,j) + a′i aC(i,j) aC(i,j) + a′j
D(i) D aD(i) + a′i aD(i) D

Table 2

Initial condition Condition Conclusion
(z−2, z−1) ∈ B(k) × C(s,p) 0 ≤ k ≤ p (z2k, z2k+1) ∈ A × C

(z−2, z−1) ∈ B(k) × C(s,p) 0 ≤ p < k (z2p, z2p+1) ∈ B × B

(z−2, z−1) ∈ B(k) ×D(p) 0 ≤ k ≤ p (z2k, z2k+1) ∈ A ×D

(z−2, z−1) ∈ B(k) ×D(p) 0 ≤ p < k (z2p, z2p+1) ∈ B ×A

(z−2, z−1) ∈ C(s,k) × B(p) 0 ≤ k ≤ p (z2k, z2k+1) ∈ B × B

(z−2, z−1) ∈ C(s,k) × B(p) 0 ≤ p < k (z2p, z2p+1) ∈ C ×A

(z−2, z−1) ∈ D(k) × C(p,s) 0 ≤ k ≤ p (z2k, z2k+1) ∈ A × C

(z−2, z−1) ∈ D(k) × C(p,s) 0 ≤ p < k (z2p, z2p+1) ∈ D ×D

(z−2, z−1) ∈ D(k) × B(p) 0 ≤ k ≤ p (z2k, z2k+1) ∈ A × B

(z−2, z−1) ∈ D(k) × B(p) 0 ≤ p < k (z2p, z2p+1) ∈ D ×A

(z−2, z−1) ∈ C(k,s) ×D(p) 0 ≤ k ≤ p (z2k, z2k+1) ∈ D ×D

(z−2, z−1) ∈ C(k,s) ×D(p) 0 ≤ p < k (z2p, z2p+1) ∈ C ×A

Table 3: Initial condition: (z−2, z−1) ∈ C(k,p) × C(l,m).

Condition Conclusion

0 ≤ k = p ≤ min{l,m} (z2k, z2k+1) ∈ A × C

0 ≤ k < min{l,m, p} (z2k, z2k+1) ∈ D(p−k−1) × C(l−k−1,t) for some t ∈ N

0 ≤ p < min{k, l,m} (z2p, z2p+1) ∈ B(k−p−1) × C(t,m−p−1) for some t ∈ N

0 ≤ p = l < min{m, k} (z2p, z2p+1) ∈ B(k−p−1) × C(t,m−p−1) for some t ∈ N

0 ≤ p = l = m < k (z2p, z2p+1) ∈ B × B

0 ≤ l < min{m, k, p} (z2l , z2l+1) ∈ C(k−l−1,p−l−1) ×D(m−l−1)

0 ≤ l = m < min{p, k} (z2l , z2l+1) ∈ C ×A

0 ≤ l = k = m < p (z2l , z2l+1) ∈ D ×D

0 ≤ m < min{l, k, p} (z2m, z2m+1) ∈ C(k−m−1,p−m−1) × B(l−m−1)

0 ≤ k = m < min{l, p} (z2k, z2k+1) ∈ D(p−k−1) × C(l−k−1,t) for some t ∈ N

0 ≤ p = m < min{l, k} (z2p, z2p+1) ∈ B × B

0 ≤ k = l < min{p,m} (z2k, z2l+1) ∈ D ×D

By similar considerations, we may also obtain Tables 1 and 2.
For instance, let us show the third data row in Table 2. Suppose that z−2 ∈ B(k) and

z−1 ∈ D(p), where 0 ≤ k ≤ p. By Table 1, if 0 = k ≤ p, then

z0 = az−2 + a′Fλ(z−1) = az−2 + a′j ∈ aB(0) + a′j ⊆ A,

z1 = az−1 + a′Fλ(z0) = az−1 + a′k ∈ aD(p) + a′k ⊆ D.
(3.4)
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If 0 < k ≤ p, then

z0 = az−2 + a′Fλ(z−1) = az−2 + a′j ∈ aB(k) + a′j ⊆ B(k−1),

z1 = az−1 + a′Fλ(z0) = az−1 + a′i ∈ aD(p) + a′i ⊆ D(p−1),

z2 = az0 + a′Fλ(z1) = az0 + a′j ∈ aB(k−1) + a′j ⊆ B(k−2),

z3 = az1 + a′Fλ(z2) = az1 + a′i ∈ aD(p−1) + a′i ⊆ D(p−2),

(3.5)

and by induction,

z2k = az2k−2 + a′Fλ(z2k−1) = az2k−2 + a′j ∈ aB(0) + a′j ⊆ A,

z2k+1 = az2k−1 + a′Fλ(z2k) = az2k−1 + a′k ∈ aD(p−k) + a′k ⊆ D(p−k−1),
(3.6)

that is, z2k ∈ A and z2k+1 ∈ D.
As another example, let us show the second data row in Table 3. Suppose that

(z−2, z−1) ∈ C(k,p) × C(l,m), where 0 ≤ k < min{l,m, p}, then by Table 1, if 0 = k < min{l,m, p},

z0 = az−2 + a′Fλ(z−1) = az−2 ∈ aC(0,p) ⊆ D(p−1),

z1 = az−1 + a′Fλ(z0) = az−1 + a′j ∈ aC(l,m) + a′j ⊆ I(l−1) × (1,∞).
(3.7)

If 0 < k < min{l,m, p}, then

z0 = az−2 + a′Fλ(z−1) = az−2 ∈ aC(k,p) ⊆ C(k−1,p−1),

z1 = az−1 + a′Fλ(z0) = az−1 ∈ aC(l,m) ⊆ C(l−1,m−1),

z2 = az0 + a′Fλ(z1) = az0 ∈ aC(k−1,p−1) ⊆ C(k−2,p−2),

z3 = az1 + a′Fλ(z2) = az1 ∈ aC(l−1,m−1) ⊆ C(l−2,m−2),

(3.8)

and by induction,

z2k = az2k−2 + a′Fλ(z2k−1) = az2k−2 ∈ aC(0,p−k) ⊆ D(p−k−1),

z2k+1 = az2k−1 + a′Fλ(z2k) = az2k−1 + a′j ∈ aC(l−k,m−k) + a′j ⊆ I(l−k−1) × (1,∞),
(3.9)

that is, z2k ∈ D(p−k−1) and z2k+1 ∈ C(l−k−1,t) for some t ∈ N.
By means of the information obtained so far, let {zn}∞n=−2 be a solution of (1.9), we will

be able to show the following result.

Theorem 3.1. Suppose that λ = 1. Let {zn}∞n=−2 be a solution of (1.9) originated from (0,∞)2. Then

zn −→ 〈i〉, 〈j〉, 〈k〉, 〈0,k〉, 〈k, 0〉, 〈i,k〉, 〈k, i〉, 〈j,k〉 or 〈k, j〉. (3.10)
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Table 4

A B(s) C(s,t) D(s)

A 〈k〉 〈i,k〉 〈0,k〉 〈j,k〉
B(i) 〈k, i〉 〈i〉 〈0,k〉 or 〈i〉 〈j,k〉 or 〈k, i〉
C(i,j) 〈k, 0〉 〈i〉 or 〈k, 0〉 〈0,k〉, 〈k, 0〉, 〈i〉 or 〈j〉 〈j〉 or 〈k, 0〉
D(i) 〈k, j〉 〈i,k〉 or 〈k, i〉 〈0,k〉 or 〈i〉 〈j〉

To this end, let us consider first the case where (z−2, z−1) ∈ A × A, then by the (A,A)
entry in Table 1, z0 ∈ A. By induction, we may then see that zk ∈ A for all k ≥ −2. Hence, by
(1.9), we see that

zn = azn−2 + (1 − a)k, n ∈ N, (3.11)

from which we easily obtain

z2k = ak+1z−2 +
(
1 − ak+1

)
k, n ∈ N,

z2k+1 = ak+1z−1 +
(
1 − ak+1

)
k, n ∈ N.

(3.12)

By (1.21) and (1.22), we see that z2k, z2k+1 → k so that zn → k. We record this conclusion in
the (A,A) entry of Table 4.

Consider another case where z−2 ∈ A and z−1 ∈ B(j). Then by the (A,B(j)) entry of
Table 1, we see that z0 ∈ A. Since z−1 ∈ B(j) and z0 ∈ A, then by Table 1 again,

z1 ∈ aB(j) + a′k ∈ B(i), (3.13)

for some i ∈ N. By induction, we may then see that z2k ∈ A and z2k+1 ∈ B for k ≥ −1. Hence,
by (1.9), we see that

z2n = az2n−2 + a′i,

z2n+1 = az2n−1 + a′k,
(3.14)

for n ∈ N. We may then easily see that z2n → i and z2n+1 → k.
By similar arguments, we may then derive the (A,C(s,t)), (A,D(s)),

(B(i), A), (B(i), B(s)), (C(i,j), A), (D(i), A) and (D(i), D(s)) entries in Table 4.
To see why the other entries are correct, we consider a typical case where z−2 ∈ B(i)

and z−1 ∈ D(s) for some i, s ∈ N. Suppose that 0 ≤ i ≤ s. By Table 2, z2i ∈ A and z2i+1 ∈ D.
Hence by the (A,D) entry in Table 4, we see that z2k → j and z2k+1 → k. While if 0 ≤ s < i,
then z2s ∈ B and z2s+1 ∈ A. Hence, by the (B,A) entry in Table 4, we see that z2k → k and
z2k+1 → i.
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Table 5

A B C D

A C B A D

B C B aB aB + a′j
C C aC + a′i aC aC + a′j
D C aD + a′i aD D

4. The Case λ ∈ (0, 1 − a)

Suppose that λ ∈ (0, 1 − a). Then aλ + 1 − a > λ, and {αj}∞j=0 is a strictly decreasing sequence
which diverges to −∞. Hence, there exists M ∈ N such that α0, . . . , αM > 0 and αM+1 ≤ 0. Let
Dj = αj for j = 0, . . . ,M, and let DM+1 = 0, then

(0, λ] =
M⋃

j=0

(
Dj+1, Dj

]
. (4.1)

We denote

A(p,λ) =
(
Dp+1, Dp

] × (0, λ], A(λ,p) = (0, λ] × (
Dp+1, Dp

]
, A(p,q) =

(
Dp+1, Dp

] × (
Dq+1, Dq

]
,

B(λ,p) = (λ,∞) × (
Dp+1, Dp

]
, B(p,λ) = I(p) × (0, λ], B(p,q) = I(p) × (

Dq+1, Dq

]
,

C(λ,p) = (λ,∞) × I(p), C(p,λ) = I(p) × (λ,∞), C(p,q) = I(p) × I(q),

D(λ,p) = (0, λ] × I(p), D(p,λ) =
(
Dp+1, Dp

] × (λ,∞), D(p,q) =
(
Dp+1, Dp

] × I(q),

(4.2)

then

A =
M⋃

p=0

A(p,λ) =
M⋃

p=0

A(λ,p) =
M⋃

p=0

M⋃

q=0

A(p,q), B =
∞⋃

p=0

B(p,λ) =
M⋃

p=0

B(λ,p) =
∞⋃

p=0

M⋃

q=0

B(p,q),

C =
∞⋃

p=0

C(p,λ) =
∞⋃

p=0

C(λ,p) =
∞⋃

p=0

∞⋃

q=0

C(p,q), D =
M⋃

p=0

D(p,λ) =
∞⋃

p=0

D(λ,p) =
M⋃

p=0

∞⋃

q=0

D(p,q).

(4.3)

In Table 5, we record the fact that zα ∈ B and zα+1 ∈ B which implies zα+2 ∈ B as the
(B, B) entry, and so forth.

Tables 6 and 7 are similar to Tables 2 and 3.
For example, let us show the first data row in Table 6. Suppose that z−2 ∈ C(λ,p) and

z−1 ∈ B(m,λ) where 0 ≤ p ≤ m. Then by Table 5, if 0 = p ≤ m,

z0 = az−2 + a′Fλ(z−1) = az−2 + a′i ∈ aC(λ,0) + a′i ⊆ B,

z1 = az−1 + a′Fλ(z0) = az−1 + a′i ∈ aB(m,λ) + a′i ⊆ B.
(4.4)
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Table 6

Initial condition Condition Conclusion
(z−2,z−1) ∈ C(λ,p) × B(m,λ) 0 ≤ p ≤ m (z2p, z2p+1) ∈ B × B

(z−2,z−1) ∈ C(λ,p) × B(m,λ) 0 ≤ m < p (z2m, z2m+1) ∈ C ×A

(z−2,z−1) ∈ B(p,λ) × C(λ,m) 0 ≤ p ≤ m (z2p, z2p+1) ∈ A × C

(z−2,z−1) ∈ B(p,λ) × C(λ,m) 0 ≤ m < p (z2m, z2m+1) ∈ B × B

(z−2,z−1) ∈ D(λ,k) × B(p,λ) 0 ≤ k ≤ p (z2k, z2k+1) ∈ B × B

(z−2,z−1) ∈ D(λ,k) × B(p,λ) 0 ≤ p < k (z2p, z2p+1) ∈ C ×A

(z−2,z−1) ∈ C(p,λ) ×D(λ,m) 0 ≤ p ≤ m (z2p, z2p+1) ∈ D ×D

(z−2,z−1) ∈ C(p,λ) ×D(λ,m) 0 ≤ m < p (z2m, z2m+1) ∈ C ×A

(z−2,z−1) ∈ D(λ,p) × C(m,λ) 0 ≤ p ≤ m (z2p, z2p+1) ∈ A × C

(z−2,z−1) ∈ D(λ,p) × C(m,λ) 0 ≤ m < p (z2m, z2m+1) ∈ D ×D

(z−2,z−1) ∈ B(k,λ) ×D(λ,p) 0 ≤ k ≤ p (z2k, z2k+1) ∈ D ×D

(z−2,z−1) ∈ B(k,λ) ×D(λ,p) 0 ≤ p < k (z2p, z2p+1) ∈ C ×A

Table 7: Initial condition: (z−2, z−1) ∈ C(k,p) × C(l,m).

Condition Conclusion
0 ≤ k = p ≤ min{l,m} (z2k, z2k+1) ∈ A × C

0 ≤ k < min{l,m, p} (z2k, z2k+1) ∈ D(λ,p−k−1) × C(l−k−1,λ)

0 ≤ p < min{k, l,m} (z2p, z2p+1) ∈ B(k−p−1,λ) × C(λ,m−p−1)

0 ≤ p = l < min{m, k} (z2p, z2p+1) ∈ B(k−p−1,λ) × C(λ,m−p−1)

0 ≤ p = l = m < k (z2p, z2p+1) ∈ B × B

0 ≤ l < min{m, k, p} (z2l , z2l+1) ∈ C(k−l−1,λ) ×D(λ,m−l−1)

0 ≤ l = m < min{p, k} (z2l , z2l+1) ∈ C ×A

0 ≤ l = k = m < p (z2l , z2l+1) ∈ D ×D

0 ≤ m < min{l, k, p} (z2m, z2m+1) ∈ C(λ,p−m−1) × B(l−m−1,λ)

0 ≤ k = m < min{l, p} (z2m, z2m+1) ∈ D(λ,p−k−1) × C(l−k−1,λ)

0 ≤ p = m < min{l, k} (z2p, z2p+1) ∈ B × B

0 ≤ k = l < min{p,m} (z2k, z2l+1) ∈ D ×D

Table 8

A B C D

A 〈k, 0〉 〈i〉 〈0,k〉 〈j〉
B 〈k, 0〉 〈i〉 〈0,k〉 or 〈i〉 〈j〉 or 〈k, 0〉
C 〈k, 0〉 〈i〉 or 〈k, 0〉 〈0,k〉, 〈k, 0〉, 〈i〉 or 〈j〉 〈j〉 or 〈k, 0〉
D 〈k, 0〉 〈i〉 or 〈k, 0〉 〈0,k〉 or 〈j〉 〈j〉

Table 9

Assumption Conclusion
(z−2, z−1) ∈ B × B (z2k, z2k+1) ∈ B × B

(z−2, z−1) ∈ A × C (z2k, z2k+1) ∈ A × C

(z−2, z−1) ∈ D ×D (z2k, z2k+1) ∈ D ×D

(z−2, z−1) ∈ C ×A (z2k, z2k+1) ∈ C ×A
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If 0 < p ≤ m, then

z0 = az−2 + a′Fλ(z−1) = az−2 + a′i ∈ aC(λ,p) + a′i ⊆ C(λ,p−1),

z1 = az−1 + a′Fλ(z0) = az−1 ∈ aB(m,λ) ⊆ B(m−1,λ),

z2 = az0 + a′Fλ(z1) = az0 + a′i ∈ aC(λ,p−1) + a′i ⊆ C(λ,p−2),

z3 = az1 + a′Fλ(z2) = az1 ∈ aB(m−1,λ) ⊆ B(m−2,λ),

(4.5)

and by induction,

z2p = az2p−2 + a′Fλ

(
z2p−1

)
= az2p−2 + a′i ∈ aC(λ,0) + a′i ⊆ B,

z2p+1 = az2p−1 + a′Fλ

(
z2p

)
= az2p−1 + a′i ∈ aB(m−p,λ) + a′i ⊆ B,

(4.6)

that is, z2p ∈ B and z2p+1 ∈ B.
As another example, let us show the second data row in Table 7. Suppose that

(z−2, z−1) ∈ C(k,p) × C(l,m), where 0 ≤ k < min{l,m, p}. Then by Table 5, if 0 = k < min{l,m, p},

z0 = az−2 + a′Fλ(z−1) = az−2 ∈ aC(0,p) ⊆ D(λ,p−1),

z1 = az−1 + a′Fλ(z0) = az−1 + a′j ∈ aC(l,m) + a′j ⊆ I(l−1) × (λ,∞).
(4.7)

If 0 < k < min{l,m, p}, then

z0 = az−2 + a′Fλ(z−1) = az−2 ∈ aC(k,p) ⊆ C(k−1,p−1),

z1 = az−1 + a′Fλ(z0) = az−1 ∈ aC(l,m) ⊆ C(l−1,m−1),

z2 = az0 + a′Fλ(z1) = az0 ∈ aC(k−1,p−1) ⊆ C(k−2,p−2),

z3 = az1 + a′Fλ(z2) = az1 ∈ aC(l−1,m−1) ⊆ C(l−2,m−2),

(4.8)

and by induction,

z2k = az2k−2 + a′Fλ(z2k−1) = az2k−2 ∈ aC(0,p−k) ⊆ D(λ,p−k−1),

z2k+1 = az2k−1 + a′Fλ(z2k) = az2k−1 + a′j ∈ aC(l−k,p−k) + a′j ⊆ I(l−k−1) × (λ,∞),
(4.9)

that is, z2k ∈ D(λ,p−k−1) and z2k+1 ∈ C(l−k−1,λ).

Theorem 4.1. Suppose that λ ∈ (0, 1−a). Let {zn}∞n=−2 be a solution of (1.9) originated from (0,∞)2.
Then

zn −→ 〈i〉, 〈j〉, 〈0,k〉 or 〈k, 0〉. (4.10)
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Table 10

Initial condition Condition Conclusion
A(p,λ) × B(λ,m) 0 ≤ p ≤ m (z2p, z2p+1) ∈ B × B

A(p,λ) × B(λ,m) 0 ≤ m < p (z2m, z2m+1) ∈ A × C

C(λ,p) × B(m,λ) 0 ≤ p ≤ m (z2p, z2p+1) ∈ B × B

C(λ,p) × B(m,λ) 0 ≤ m < p (z2m, z2m+1) ∈ C ×A

D(p,λ) ×A(λ,m) 0 ≤ p ≤ m (z2p, z2p+1) ∈ C ×A

D(p,λ) ×A(λ,m) 0 ≤ m < p (z2m, z2m+1) ∈ D ×D

B(p,λ) × C(λ,m) 0 ≤ p ≤ m (z2p, z2p+1) ∈ A × C

B(p,λ) × C(λ,m) 0 ≤ m < p (z2m, z2m+1) ∈ B × B

A(λ,p) ×D(m,λ) 0 ≤ p ≤ m (z2p, z2p+1) ∈ D ×D

A(λ,p) ×D(m,λ) 0 ≤ m < p (z2m, z2m+1) ∈ A × C

C(p,λ) ×D(λ,m) 0 ≤ p ≤ m (z2p, z2p+1) ∈ D ×D

C(p,λ) ×D(λ,m) 0 ≤ m < p (z2m, z2m+1) ∈ C ×A

B(λ,p) ×A(m,λ) 0 ≤ p ≤ m (z2p, z2p+1) ∈ C ×A

B(λ,p) ×A(m,λ) 0 ≤ m < p (z2m, z2m+1) ∈ B × B

D(λ,p) × C(m,λ) 0 ≤ p ≤ m (z2p, z2p+1) ∈ A × C

D(λ,p) × C(m,λ) 0 ≤ m < p (z2m, z2m+1) ∈ D ×D

Table 11: Assumption: (z−2, z−1) ∈ A(k,p) ×A(l,m).

Condition Conclusion
0 ≤ k = p ≤ min{l,m} (z2k, z2k+1) ∈ C ×A

0 ≤ p = l = m < k (z2p, z2p+1) ∈ D ×D

0 ≤ l = m < min{k, p} (z2l , z2l+1) ∈ A × C

0 ≤ l = m = k < p (z2l , z2l+1) ∈ B × B

0 ≤ p = m < min{k, l} (z2p, z2p+1) ∈ D ×D

0 ≤ k = l < min{p,m} (z2k, z2k+1) ∈ B × B

0 ≤ k < min{p, l,m} (z2k, z2k+1) ∈ B(λ,p−k−1) ×A(l−k−1,λ)

0 ≤ p < min{k, l,m} (z2p, z2p+1) ∈ D(k−p−1,λ) ×A(λ,m−p−1)

0 ≤ p = l < min{k,m} (z2p, z2p+1) ∈ D(k−p−1,λ) ×A(λ,m−p−1)

0 ≤ l < min{p, k,m} (z2l , z2l+1) ∈ A(k−l−1,λ) × B(λ,m−l−1)

0 ≤ m < min{p, k, l} (z2m, z2m+1) ∈ A(λ,p−m−1) ×D(l−m−1,λ)

0 ≤ k = m < min{p, l} (z2m, z2m+1) ∈ B(λ,p−k−1) ×A(l−k−1,λ)

As in the proof of Theorem 3.1, we may construct Table 8.
For example, the (B, B) entry states that if (z−2, z−1) ∈ B × B, then the solution {zn} of

(1.9) originated from it will tend to 〈i〉. Indeed, by Table 5, z0 ∈ B, and then by induction,
zk ∈ B for all k ≥ −2. Hence, by (1.9), we see that

zn = azn−2 + (1 − a)i, n ∈ N, (4.11)

from which we easily obtain

z2k = ak+1z−2 +
(
1 − ak+1)i, n ∈ N,

z2k+1 = ak+1z−1 +
(
1 − ak+1

)
i, n ∈ N.

(4.12)
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Table 12: Assumption: (z−2, z−1) ∈ C(k,p) × C(l,m).

Condition Conclusion
0 ≤ k = p ≤ min{l,m} (z2k, z2k+1) ∈ A × C

0 ≤ p = l = m < k (z2p, z2p+1) ∈ B × B

0 ≤ l = m < min{k, p} (z2l , z2l+1) ∈ C ×A

0 ≤ l = m = k < p (z2l , z2l+1) ∈ D ×D

0 ≤ p = m < min{k, l} (z2p, z2p+1) ∈ B × B

0 ≤ k = l < min{p,m} (z2k, z2k+1) ∈ D ×D

0 ≤ k < min{p, l,m} (z2k, z2k+1) ∈ D(λ,p−k−1) × C(l−k−1,λ)

0 ≤ p < min{k, l,m} (z2p, z2p+1) ∈ B(p−k−1,λ) × C(λ,m−p−1)

0 ≤ p = l < min{k,m} (z2p, z2p+1) ∈ B(k−p−1,λ) × C(λ,m−p−1)

0 ≤ l < min{p, k,m} (z2l , z2l+1) ∈ C(k−l−1,λ) ×D(λ,m−l−1)

0 ≤ m < min{p, k, l} (z2m, z2m+1) ∈ C(λ,p−m−1) × B(l−m−1,λ)

0 ≤ k = m < min{p, l} (z2m, z2m+1) ∈ D(λ,p−k−1) × C(l−k−1,λ)

Hence z2k, z2k+1 → i so that zn → i. By similar reasoning, we may show the validity of the
(A,A), (A,B), (A,C), (A,D), (B,A), (C,A), (D,A), and (D,D) entries.

Next, suppose that (z−2, z−1) ∈ B(p,λ) ×C(λ,m). Then the solution {zn} of (1.9) originated
from it will tend to 〈0,k〉 or 〈i〉. Indeed, by Table 6, if 0 ≤ p ≤ m, then (z2p, z2p+1) ∈ A ×C and
by induction, (z2n+2p, z2n+2p+1) ∈ A × C for all n ∈ N. Hence, by (1.9), we have

z2n+2p = anz2p, n ∈ N,

z2n+2p+1 = anz2p+1 + (1 − an)k, n ∈ N.
(4.13)

Hence, z2n → 0, z2n+1 → k. If 0 ≤ m < p, then (z2m, z2m+1) ∈ B × B. By previous argument,
we see zn → i. By similar reasoning, we may show the correctness of the other entries. The
proof is complete.

5. The Case λ ∈ [1 − a, 1)

Suppose that λ ∈ [1−a, 1), then aλ+1−a > λ. Therefore, we may continue to use the notations
described in the previous case λ ∈ (0, 1 − a) and proceed as in the previous two sections and
derive Tables 9, 10, 11, 12, 13 and 14.

By means of these tables, we may then derive the following result.

Theorem 5.1. Suppose that λ ∈ [1 − a, 1). Let {zn} be a solution of (1.9) originated from (0,∞)2.
Then

zn −→ 〈i〉, 〈j〉, 〈k, 0〉 or 〈0,k〉. (5.1)

The proof amounts to showing the validity of Table 15.
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Table 13: Assumption: (z−2, z−1) ∈ D(k,p) × B(l,m).

Condition Conclusion
0 ≤ k = p ≤ min{l,m} (z2k, z2k+1) ∈ B × B

0 ≤ p = l = m < k (z2p, z2p+1) ∈ A × C

0 ≤ l = m < min{k, p} (z2l , z2l+1) ∈ D ×D

0 ≤ l = m = k < p (z2lz2l+1) ∈ C ×A

0 ≤ p = m < min{k, l} (z2p, z2p+1) ∈ A × C

0 ≤ k = l < min{p,m} (z2k, z2k+1) ∈ C ×A

0 ≤ k < min{p, l,m} (z2k, z2k+1) ∈ C(λ,p−k−1) × B(l−k−1,λ)

0 ≤ p < min{k, l,m} (z2p, z2p+1) ∈ A(k−p−1,λ) × B(λ,m−p−1)

0 ≤ p = l < min{k,m} (z2p, z2p+1) ∈ A(k−p−1,λ) × B(λ,m−p−1)

0 ≤ l < min{p, k,m} (z2l , z2l+1) ∈ D(k−l−1,λ) ×A(λ,m−l−1)

0 ≤ m < min{p, k, l} (z2m, z2m+1) ∈ D(λ,p−m−1) × C(l−m−1,λ)

0 ≤ k = m < min{p, l} (z2m, z2m+1) ∈ C(λ,p−k−1) × B(l−k−1,λ)

Table 14: Assumption: (z−2, z−1) ∈ B(p,k) ×D(m,l).

Condition Conclusion
0 ≤ k = p ≤ min{l,m} (z2k, z2k+1) ∈ D ×D

0 ≤ p = l = m < k (z2p, z2p+1) ∈ A × C

0 ≤ l = m < min{k, p} (z2l , z2l+1) ∈ B × B

0 ≤ l = m = k < p (z2l , z2l+1) ∈ C ×A

0 ≤ p = m < min{k, l} (z2p, z2p+1) ∈ A × C

0 ≤ k = l < min{p,m} (z2k, z2k+1) ∈ C ×A

0 ≤ k < min{p, l,m} (z2k, z2k+1) ∈ C(p−k−1,λ) ×D(λ,l−k−1)

0 ≤ p < min{k, l,m} (z2p, z2p+1) ∈ A(λ,k−p−1) ×D(m−p−1,λ)

0 ≤ p = l < min{k,m} (z2p, z2p+1) ∈ A(λ,k−p−1) ×D(m−p−1,λ)

0 ≤ l < min{p, k,m} (z2l , z2l+1) ∈ B(λ,k−l−1) ×A(m−l−1,λ)

0 ≤ m < min{p, k, l} (z2m, z2m+1) ∈ B(p−m−1,λ) × C(λ,l−m−1)

0 ≤ k = m < min{p, l} (z2m, z2m+1) ∈ C(p−k−1,λ) ×D(λ,l−k−1)

For example, the (B(p,k), D(m,l)) entry states that if (z−2, z−1) ∈ B(p,k) × D(m,l) where
0 ≤ p < min{k, l,m}, then the solution {zn} of (1.9) originated from it will tend to 〈j〉 or
〈0,k〉. Indeed, by Table 14, (z2p, z2p+1) ∈ A(λ,k−p−1) × D(m−p−1,λ). Furthermore, by Table 10, if
0 ≤ k − p − 1 ≤ m − p − 1, then (z2k, z2k+1) ∈ D ×D. Hence, by (1.9), we see that

zn = azn−2 + (1 − a)j, n ≥ 2k + 2, (5.2)

from which we easily obtain

z2n+2k = anz2k + (1 − an)j, n ∈ N,

z2n+2k+1 = anz2k+1 + (1 − an)j, n ∈ N.
(5.3)

Hence, zn → j.
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Table 15

A B C D

A 〈k, 0〉, 〈0,k〉, 〈i〉 or 〈j〉 〈i〉 or 〈0,k〉 〈0,k〉 〈j〉 or 〈0,k〉
B 〈k, 0〉 or 〈i〉 〈i〉 〈0,k〉 or 〈i〉 〈k, 0〉, 〈0,k〉, 〈i〉 or 〈j〉
C 〈k, 0〉 〈i〉 or 〈k, 0〉 〈0,k〉, 〈k, 0〉, 〈i〉 or 〈j〉 〈j〉 or 〈k, 0〉
D 〈k, 0〉 or 〈j〉 〈k, 0〉, 〈0,k〉, 〈i〉 or 〈j〉 〈0,k〉 or 〈j〉 〈j〉

If 0 ≤ m−p−1 < k−p−1, then (z2m, z2m+1) ∈ A×C. By Table 9 again, (z2n, z2n+1) ∈ A×C
for all n ≥ m. Hence, by (1.9), we see that

z2n = az2n−2, n > m,

z2n+1 = az2n−1 + (1 − a)k, n > m,
(5.4)

from which we easily obtain

z2n+2m = anz2m, n ∈ N,

z2n+2m+1 = anz2m+1 + (1 − an)k, n ∈ N.
(5.5)

Hence, z2n → 0, z2n → k. By similar reasoning, we may derive the other entries of Table 15.
The proof is complete.

6. Conclusions and Remarks

Wehave discussed a simple two-nation arms racemodel with a positive threshold λ hidden in
a nonlinear piecewise constant control function. Treating λ as a bifurcation parameter which
varies from 0+ to +∞, we have discussed the limiting behaviors of all possible solutions of
(1.9) originated from the positive orthant (0,∞)2.

Let 0 = (0, 0), i = (1, 0), j = (0, 1), and k = (1, 1).

(i) For λ > 1, all solutions of (1.9) originated from the positive orthant tend to 〈k〉.
(ii) For λ = 1, all such solutions must either be tending to 〈i〉, 〈j〉, or 〈k〉 or to

〈0,k〉, 〈k, 0〉, 〈i,k〉, 〈k, i〉, 〈j,k〉, or 〈k, j〉.
(iii) For 0 < λ < 1, all such solutions must either be tending to the steady states 〈i〉 or

〈j〉, or to 〈k, 0〉 or 〈0,k〉.

Recall that a sequence {zn}∞n=−2 is asymptotically ω-periodic if it can be expressed as
the sum of two sequences {pn}∞n=−2 and {qn}∞n=−2, where pn → 0 and {qn}∞n=−2 is periodic with
prime period ω. Therefore, as a direct consequence of our investigations, all solutions of (1.9)
originated from the positive orthants must either tend to limit 1-cycles 〈i〉, 〈j〉, or 〈k〉 or
to limit 2-cycles 〈0,k〉, 〈i,k〉, or 〈k, j〉. Such a conclusion meets our expectation of a “terror
equilibrium” in nuclear arms races.

We conclude our investigations with the following remarks. One may object that
the above east-west view of conflicts has less bite nowadays and that this way of thinking
of the problem is far too simple. Indeed, there is now a second-generation literature that
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incorporates real strategic thinking, with sound foundation in decision theory and game
theory (see, for instance, [10–12]). Yet to the best of our knowledge, there is no complete
mathematical analysis similar to those described above. We hope that our results will be
useful in furthering the mathematical investigation of arms race models based onmore recent
and realistic social models.
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