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A hybrid projective synchronization scheme for two identical fractional-order chaotic systems
is proposed in this paper. Based on the stability theory of fractional-order systems, a controller
for the synchronization of two identical fractional-order chaotic systems is designed. This
synchronization scheme needs not to absorb all the nonlinear terms of response system. Hybrid
projective synchronization for the fractional-order Chen chaotic system and hybrid projective
synchronization for the fractional-order hyperchaotic Lu system are used to demonstrate the
validity and feasibility of the proposed scheme.

1. Introduction

Most recently, many authors begin to investigate the chaotic dynamics and synchronization
for fractional-order dynamical systems [1–6]. Chaos synchronization of the fractional-order
systems is just beginning to attract some attention due to its potential applications in
secure communications and control processing [7–12]. Several types of chaos synchronization
are well known, which include complete synchronization (CS), antisynchronization (AS),
phase synchronization, generalized synchronization (GS), projective synchronization (PS),
and modified projective synchronization (MPS). Among all patterns of synchronization,
the most noticeable one may be projective synchronization (PS), which was first studied
by Mainieri and Rehacek [13]. Projective synchronization (PS) has been extensively
considered because it can obtain faster communication. The drive and response sys-
tem could be synchronized up to a scaling factor in projective synchronization. In
application to secure communications, this proportional feature can be used to extend
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binary digital to M-nary digital communication for getting faster communication [14,
15].

However, most of projective synchronizations for the fractional-order systems
have concentrated on studying the same scaling factor [16–19], and some projective
synchronization schemes [16, 17] are suitable for a class of fractional-order systems or for
some special fractional-order systems [19], and all the nonlinear terms of response system
was absorbed in some previous works. Moreover, in order to increase the degree of secrecy
for secure communications, the same scaling factor in PS can be replaced by vector function
factor. Motivated by the above discussions, we propose a hybrid projective synchronization
(HPS) scheme for two identical fractional-order chaotic systems in this paper. Hybrid
projective synchronization (HPS) is a more general definition of projective synchronization,
in which the drive system and response system could be synchronized up to a vector function
factor. HPS is different from the PS. Furthermore, HPS could be used to get more secure
communication than PS in application to secure communications, because it is obvious that
the unpredictability of the vector function factor in HPS is more than that of the same scaling
factor in PS. The main contribution of this paper is as follows: the HPS scheme in this paper
is suitable for a large number of fractional-order systems (not for special fractional-order
system), and this HPS scheme needs not to absorb all the nonlinear terms of response system.
This is different from some previous works [16, 17, 19–21].

To illustrate the effectiveness of the proposed HPS scheme in this paper, the HPS for
the fractional-order Chen system and HPS for the fractional-order hyperchaotic Lu system
are investigated. Numerical simulations are used to demonstrate the effectiveness of the
proposed schemes. The organization of this paper is as follows. In Section 2, the definition
of HPS is given, and a HPS scheme for two identical fractional-order chaotic systems is
presented. In Section 3, two groups of examples are used to verify the effectiveness of the
proposed scheme. The conclusion is finally drawn in Section 4.

2. Hybrid Projective Synchronization Scheme

There are several definitions of fractional derivatives. In this paper, the Caputo-type fractional
derivative defined will be used. The Caputo definition of the fractional derivative, which is
sometimes called smooth fractional derivative, is described as

dqf(t)
dtq

=
1

Γ
(
m − q

)
∫ t

0

f (m)(τ)

(t − τ)q+1−m
dτ, m − 1 < q < m, (2.1)

where 0 < q ≤ 1 is fractional order and dq/dtq denote the Caputo definition of the fractional
derivative.m is the smallest integer larger than q, and f (m)(t) is them-order derivative in the
usual sense. Γ(•) is the gamma function.

The fractional-order chaotic drive and response systems can be written as follows,
respectively:

dqx

dtq
= f(x), (2.2)

dqy

dtq
= g
(
y
)
+ Ω
(
x, y
)
, (2.3)
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where x ∈ Rn, y ∈ Rn are state vectors of the drive system (2.2) and the response system
(2.3) and f, g : Rn → Rn are continuous vector functions, respectively. Ω(x, y) is a vector
controller.

Definition 2.1. For the drive system (2.2) and the response system (2.3), it is said to be
hybrid projective synchronization (HPS) if there exists an n × n reversible matrix A such
that

lim
t→∞
∥
∥Ay − x

∥
∥ = 0, (2.4)

where ‖ · ‖ is the Euclidean norm.

Remark 2.2. If A = I, and I is a unit matrix, then this synchronization is called complete
synchronization (CS); ifA = −I, then this synchronization is called antisynchronization (AS);
ifA = aI, and a/= ± 1 is a nonzero real constant, then this synchronization is called projective
synchronization (PS); if A = diag(a1, a2, . . . , an), and a1, a2, . . . , an are not the same nonzero
constant, then this synchronization is called modified projective synchronization (MPS).
Therefore, CS, AS, PS, and MPS are the special cases of the hybrid projective synchronization
scheme (HPS) in this paper.

In order to realize HPS for the fractional-order chaotic system (2.2), we take the
fractional-order chaotic system (2.2) as drive system and construct a response system as
follows:

dqy

dtq
= A−1[f

(
Ay
)
+ Ω
(
x, y
)]
, (2.5)

where A−1 is the reverse matrix of the reversible matrix A, y ∈ Rn are state vector of the
response system (2.5), and Ω(x, y) is a controller which will be designed.

Define the HPS errors between the response system (2.5) and the drive system (2.2) as

e = Ay − x, (2.6)

where

e = (e1, e2, . . . , en)T,

ei =

⎛

⎝
n∑

j=1

aijyj

⎞

⎠ − xi

(
i, j = 1, 2, . . . n

)
.

(2.7)

Let

f
(
Ay
) − f(x) = F(x, e). (2.8)
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Now, we assume that the errors vector e can be divided into eα = (es1 , . . . , esm)
T and

eβ = (esm+1 , . . . , esn)
T, such that F(x, e) has the form of

F(x, e) =

(
Bαeα + h1

(
x, eα, eβ

)

Bβeβ + h21
(
x, eα, eβ

)
+ h22

(
x, eα, eβ

)

)

, (2.9)

where h1(x, eα, eβ) ∈ Rm, h21(x, eα, eβ) ∈ Rn−m, h22(x, eα, eβ) ∈ Rn−m and limeα → 0h21(x, eα, eβ) =
0, respectively. Bα ∈ Rm×m and Bβ ∈ R(n−m)×(n−m) are real constant matrix.

Rewrite the controller Ω(x, y) as follows:

Ω
(
x, y
)
= μ(x, e) =

(
μα(x, e)

μβ(x, e)

)

, (2.10)

where μα(x, e) ∈ Rm and μβ(x, e) ∈ Rn−m, respectively.
Now, Theorem 2.3 is given based on the previously mentioned conditions in order to

achieve the HPS between the drive system (2.2) and the response system (2.5).

Theorem 2.3. Choose the following controller:

Ω
(
x, y
)
= μ(x, e) =

(
μα(x, e)

μβ(x, e)

)

=

(
Λαeα − h1

(
x, eα, eβ

)

Λβeβ − h22
(
x, eα, eβ

)

)

, (2.11)

where Λα ∈ Rm×m and Λβ ∈ R(n−m)×(n−m) are suitable constant matrix, respectively.

If all the eigenvalues of Bα + Λα satisfy | argλi| > 0.5πq (i = 1, 2, . . . , m) and all
the eigenvalues of Bβ + Λβ satisfy | argλj | > 0.5πq (j = 1, 2, . . . , n − m), then hybrid
projective synchronization between the drive system (2.2) and the response system (2.5) can
be achieved.

Proof. According to the drive system (2.2) and the response system (2.5), the error dynamic
system of hybrid projective synchronization can be obtained as follows:

dqe

dtq
=

Adqy

dtq
− dqx

dtq
= f
(
Ay
) − f(x) + Ω

(
x, y
)
= F(x, e) + μ(x, e). (2.12)

According to (2.9) and (2.10), the error dynamic system (2.12) can be rewritten as

dqeα
dtq

= Bαeα + h1
(
x, eα, eβ

)
+ μα(x, e),

dqeβ

dtq
= Bβeβ + h21

(
x, eα, eβ

)
+ h22

(
x, eα, eβ

)
+ μβ(x, e),

(2.13)
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because

(
μα(x, e)

μβ(x, e)

)

=

(
Λαeα − h1

(
x, eα, eβ

)

Λβeβ − h22
(
x, eα, eβ

)

)

. (2.14)

So,

dqeα
dtq

= (Bα + Λα)eα,

dqeβ

dtq
=
(
Bβ + Λβ

)
eβ + h21

(
x, eα, eβ

)
.

(2.15)

Because all the eigenvalues of Bα + Λα satisfy | argλi| > 0.5πq (i = 1, 2, . . . , m),
according to the stability theory of linear fractional-order systems [22], the equilibrium point
ei = 0 (i = 1, 2, . . . , m) in the first equation of system (2.15) is asymptotically stable, which
indicates limt→+∞eα = 0.

Since limt→+∞eα = 0 and limeα → 0 h21(x, eα, eβ) = 0, therefore when time t → +∞, the
second equation of system (2.15) can be changed as

dqeβ

dtq
=
(
Bβ + Λβ

)
eβ, (2.16)

because all the eigenvalues of Bβ + Λβ satisfy | argλj | > 0.5πq (j = 1, 2, . . . , n −m). According
to the stability theory of linear fractional-order systems [22], the equilibrium point ei = 0 (i =
1, 2, . . . , n −m) of system (2.16) is asymptotically stable, which indicates limt→+∞eβ = 0.

According to limt→+∞ eα = 0 and limt→+∞ eβ = 0, the hybrid projective synchronization
between the drive system (2.2) and the response system (2.5) can be achieved. This finishes
the proof.

Remark 2.4. In order to use the stability theory of linear fractional-order systems [22], the
controller Ω(x, y) or μ(x, e) are chosen as

(
Λαeα−h1(x,eα,eβ)
Λβeβ−h22(x,eα,eβ)

)
. Moreover, the nonlinear term

h21(x, eα, eβ) ∈ Rn−m in the error dynamic system (2.13) or response system (2.5) is preserved;
this is different from some previous works [17, 19–21]which need to absorb all the nonlinear
terms of response system or error dynamic system.

Remark 2.5. For the complex fractional-order multiscroll chaotic systems [23–25] and the
complex dynamical network or the small-world dynamical networks [26–28], the hybrid
projective synchronization would be much more complex. Further work on this issue is an
ongoing research topic in our group.

3. Applications

In order to illustrate the effectiveness of the proposed hybrid projective synchronization
scheme obtained in Section 2, two examples are considered in this section, which are HPS for
the fractional-order Chen system and HPS for the fractional-order hyperchaotic Lu system.
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Figure 1: Chaotic attractor of fractional-order Chen chaotic system (3.1) for q = 0.9.

3.1. HPS for the Fractional-Order Chen System

The fractional-order Chen system [23] is described as follows:

dqx1

dtq
= 35(x2 − x1),

dqx2

dtq
= −7x1 + 28x2 − x1x3,

dqx3

dtq
= x1x2 − 3x3.

(3.1)

Tavazoei and Haeri pointed out that fractional-order Chen system (3.1) exhibits
chaotic behavior for q ≥ 0.83 [29]. The chaotic attractor of fractional-order Chen system for
q = 0.9, is depicted in Figure 1.

According to the HPS scheme presented in the previous section, the response system
is described by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dqy1

dtq

dqy2

dtq

dqy3

dtq

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= A−1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

35

(
3∑

j=1
a2jyj −

3∑

j=1
a1jyj

)

−7 ×
3∑

j=1
a1jyj + 28 ×

3∑

j=1
a2jyj −

3∑

j=1
a1jyj ×

3∑

j=1
a3jyj

3∑

j=1
a1jyj ×

3∑

j=1
a2jyj − 3 ×

3∑

j=1
a3jyj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ Ω
(
x, y
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.2)

where A =
( a11 a12 a13

a21 a22 a23
a31 a32 a33

)
is a reversible matrix and A−1 is its reverse matrix.

Now, the term of f(Ay) − f(x) = F(x, e) is yielded firstly:

f
(
Ay
) − f(x) = F(x, e) =

⎛

⎝
35e2 − 35e1

−7e1 + 28e2 − x3e1 − x1e3 − e1e3
x2e1 + x1e2 + e1e2 − 3e3

⎞

⎠. (3.3)
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Figure 2: The HPS result between the drive system (3.1) and its response system (3.2) for q = 0.9.

So, we can choose eα = e1 and eβ = (e2, e3)
T. Therefore, h1(x, eα, eβ) = −35e2,

h21(x, eα, eβ) =
( −7e1−x3e1−e1e3

x2e1+e1e2

)
, h22(x, eα, eβ) =

( −x1e3
x1e2

)
, Bα = −35, and Bβ =

(
28 0
0 −3
)
, respectively.

Obviously, limeα → 0 h21(x, eα, eβ) = 0.
According to Theorem 2.3 in Section 2, the controllerΩ(x, y) can be chosen as follows:

Ω
(
x, y
)
=

(
μα(x, e)

μβ(x, e)

)

=

(
Λαeα − h1

(
x, eα, eβ

)

Λβeβ − h22
(
x, eα, eβ

)

)

, (3.4)

where μα(x, e) = Λαe1 − 35e2, μβ(x, e) = Λβ( e2
e3 ) −

( −x1e3
x1e2

)
, Λα ∈ R1 × 1, and Λβ ∈ R2 × 2,

respectively. Therefore, choose suitable matrix Λα ∈ R1 × 1 and Λβ ∈ R2 × 2. If the eigenvalues
of Bα + Λα satisfy | argλ| > 0.5πq and if all the eigenvalues of Bβ + Λβ satisfy | argλj | > 0.5πq
(j = 1, 2), then hybrid projective synchronization between the drive system (3.1) and its
response system (3.2) can be achieved.

For example, choose reversible matrix

A =

⎛

⎜⎜
⎝

−2 2 0

−1 1 1

0 1 −0.5

⎞

⎟⎟
⎠, Λα = 30, Λβ =

(−24 10

−5 0

)

. (3.5)

So, the eigenvalues of Bα + Λα are −5, and all the eigenvalues of Bβ + Λβ are 0.5 ±
6.1441 j and | argλ(Bβ + Λβ)| = 0.9483 × π/2 > 0.5πq (q = 0.9), respectively. Therefore, the
hybrid projective synchronization between drive system (3.1) and its response system (3.2)
can be achieved. The corresponding numerical result is shown in Figure 2, in which the initial
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Figure 3: Chaotic attractor of fractional-order hyperchaotic Lu system (3.6) for q = 0.95.

conditions are (x10, x20, x30) = (3, 4, 5) for the drive system (3.1), and (y10, y20, y30) = (8, 10,
4) for the response system (3.2), respectively, and ε = (

∑3
i=1 e

2
i )

1/2.

3.2. HPS for Fractional-Order Hyperchaotic Lǔ System

Min et al. reported a fractional-order hyperchaotic Lu system [30, 31] based on the
hyperchaotic Lu system, which is described as follows:

dqx1

dtq
= 36(x2 − x1) + x4,

dqx2

dtq
= 20x2 − x1x3,

dqx3

dtq
= x1x2 − 3x3,

dqx4

dtq
= 1.3x4 + x1x3.

(3.6)

The chaotic attractor of fractional-order hyperchaotic Lu system for q = 0.95, is shown
in Figure 3.

Taking system (3.6) as the drive system, according to the HPS scheme presented in
Section 2, the response system is described by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dqy1

dtq

dqy2

dtq

dqy3

dtq

dqy4

dtq

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= A−1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

36 ×
(

4∑

j=1
a2jyj −

4∑

j=1
a1jyj

)

+
4∑

j=1
a4jyj

20 ×
4∑

j=1
a2jyj −

4∑

j=1
a1jyj ×

4∑

j=1
a3jyj

4∑

j=1
a1jyj ×

4∑

j=1
a2jyj − 3 ×

4∑

j=1
a3jyj

1.3 ×
4∑

j=1
a4jyj +

4∑

j=1
a1jyj ×

4∑

j=1
a3jyj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ Ω
(
x, y
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.7)
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where A =
( a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

)
is a reversible matrix and A−1 is its reverse matrix. As the same as

what is mentioned previously, we can obtain

f
(
Ay
) − f(x) = F(x, e) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

36e2 − 36e1 + e4

20e2 − x3e1 − x1e3 − e1e3

x2e1 + x1e2 + e1e2 − 3e3

1.3e4 + x3e1 + x1e3 + e1e3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.8)

Now, we can choose eα = (e1, e2)
T and eβ = (e3, e4)

T. Therefore, h1(x, eα, eβ) =( e4−x3e1−x1e3−e1e3
)
, h21(x, eα, eβ) =

( x2e1+x1e2+e1e2
x3e1+e1e3

)
, h22(x, eα, eβ) =

( 0
x1e3

)
, Bα =

( −36 36
0 20

)
, and

Bβ =
( −3 0

0 1.3

)
, respectively. Obviously, limeα → 0 h21(x, eα, eβ) = 0.

According to Theorem 2.3 in Section 2, the controllerΩ(x, y) can be chosen as follows:

Ω
(
x, y
)
=

(
μα(x, e)

μβ(x, e)

)

=

(
Λαeα − h1

(
x, eα, eβ

)

Λβeβ − h22
(
x, eα, eβ

)

)

, (3.9)

where μα(x, e) = Λα( e1
e2 ) − ( e4−x3e1−x1e3−e1e3

)
, μβ(x, e) = Λβ( e2

e3 ) − ( 0
x1e3

)
, Λα ∈ R2 × 2 and

Λβ ∈ R2 × 2, respectively. Therefore, choose suitable matrix Λα ∈ R2 × 2, and Λβ ∈ R2 × 2. If
the eigenvalues of Bα + Λα satisfy | argλi| > 0.5πq (i = 1, 2) and if all the eigenvalues of
Bβ +Λβ satisfy | argλj | > 0.5πq (j = 1, 2), then the hybrid projective synchronization between
the drive system (3.6) and its response system (3.7) can be achieved.

For example, choose reversible matrix

A =

⎛

⎜⎜⎜⎜⎜
⎝

0.5 0 0 0

0 −2 2 0

0 −1 1 1

0 0 1 −0.5

⎞

⎟⎟⎟⎟⎟
⎠

, Λα =

(
0 0

0 −30

)

, Λβ =

(
0 0

0 −2.3

)

. (3.10)

So, the eigenvalues of Bα+Λα are −36 and −10, and the eigenvalues of Bβ+Λβ are −3 and
−1, respectively. Therefore, the hybrid projective synchronization between drive system (3.6)
and its response system (3.7) can be achieved. The corresponding numerical result is shown
in Figure 4, in which the initial conditions are (x10, x20, x30, x40) = (3,4,5,6) for the drive
system (3.6) and (y10, y20, y30, y40) = (16,7,12,4) for the response system (3.7), respectively,
and ε = (

∑4
i=1 e

2
i )

1/2.

4. Conclusions

We proposed a new synchronization scheme to achieve hybrid projective synchronization for
two identical fractional-order chaotic systems in this paper. The drive system and response
system could be synchronized up to a vector function factor, and this synchronization
scheme needs not to absorb all the nonlinear terms of response system. The synchronization
technique, based on stability theory of fractional-order systems, is simple and theoretically
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Figure 4: The HPS result between the drive system (3.6) and its response system (3.7) for q = 0.95.

rigorous. Numerical simulations are used to illustrate the effectiveness of the proposed
synchronization method.
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