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The existence and uniqueness of the solutions to the Dirichlet boundary value problem in the
Banach spaces is discussed by using the fixed point theory of condensing mapping, doing precise
computation of measure of noncompactness, and calculating the spectral radius of linear operator.

1. Introduction

This paper is mainly concerned with the following second-order Dirichlet boundary value
problem:

−u′′(t) = f(t, u(t)), t ∈ I = [0, 1],

u(0) = u(1) = θ,
(1.1)

in a Banach space E, where f(t, x) ∈ C(I × E, E), θ is the zero element of E.
In the last several decades, there has been much attention focused on the boundary

value problems for various nonlinear ordinary differential equations, difference equations,
and functional differential equations, see [1–20] and the references therein. The existence
of solutions for Neumann boundary value problems has been considerably investigated in
many publications such as [2–5, 8–10]. Dirichlet boundary value problems have deserved the
attention of many researchers, see [11–20] and the references therein.
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In particular, the authors in [11] have studied the following two-point boundary value
problem:

x′′ = H
(
t, x, x′), 0 < t < 1, ax(0) − bx′(0) = x0, cx(1) + dx′(1) = x1, (1.2)

where a, b, c, d ≥ 0 and ad + bc > 0. They obtained the existence of solutions by means of the
Darbo fixed point theorem and properties of the measure of noncompactness.

We would like to mention the results due to [11]. First, we point out that many authors
applied the famous Sadovskii’s fixed point theorem to investigate similar problems and used
the following hypothesis with respect to the Kuratowski measure of noncompactness α(·):
there exists a constant k > 0 such that for any bounded and equicontinuous setA,B ⊂ C(I, E)
and t ∈ I, α(H(I × A × B)) ≤ kmax{α(A), α(B)}. What is more, they required a stronger
condition, that is, ‖H(t, x, y)‖ ≤ L for (t, x, y) ∈ I × E × E and the constant k satisfies 0 <
k < 1/2 (see Remarks 3.2–3.6).

The authors in [15, 18] have studied the following boundary value problem:

x′′ = f
(
t, x, x′), c1x(a) − d1x

′(a) = x1, c2x(b) + d2x
′(b) = x2, (1.3)

where X is a real Banach space, J = [a, b] ⊂ R, f : J × X2 → X is continuous, ci, di ∈ R,
and xi ∈ X for i = 1, 2. They obtained the existence of solutions by means of Sadovskii’s fixed
point theorem and properties of the measure of noncompactness.

Motivated by the above-mentioned work [11, 15, 18], the main aim of this paper is to
study the existence and uniqueness of solutions for the problem (1.1) under the new condi-
tions. The main new features presented in this paper are as follows First, the existence and
uniqueness of solutions to Banach space’s Dirichlet boundary value problem is proved pre-
cisely calculating the spectral radius of linear operation. Second, the conditions imposed on
the BVP (1.1) are weak. Third, the main tools used in the analysis are Sadovskii’s fixed point
theorem and precise computation of measure of noncompactess. Our results can be seen as a
supplement of the results in [11] (see Remarks 3.2–3.6).

This paper is organized as follows. In Section 2, we provide some basic definitions, pre-
liminaries facts, and various lemmas which will be used throughout this paper. In Section 3,
we give main results in this paper.

2. Preliminaries and Lemmas

Let E be a real Banach space and P be a cone in E which defines a partial ordering in E by
x ≤ y if and only if y − x ∈ P · P is said to be normal if there exists a positive constantN such
that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes the zero element of E, and the smallest
N is called the normal constant of P (it is clear, N ≥ 1). If x ≤ y and x /=y, we write x < y.
For details on cone theory, see the monograph [7].

Let I = [0, 1]. By C(I, E) we denote the Banach space of all continuous functions from
I into E with the norm

∥∥y
∥∥
c := max

{∣∣y(t)
∣∣ : t ∈ I

}
. (2.1)
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Definition 2.1 (see [7]). Assume that S is a bounded set in E. Let α(S) = inf{δ > 0 : S be
expressed as the union S = ∪m

i=1Si of a finite number of sets Si with diameter diam(Si) ≤
δ}.

α(S) is said to be the Kuratowski measure of noncompactness and is called the non-
compactness measure for short. For details and properties of the noncompactness measure
see [7].

Definition 2.2 (see [7]). The mappingA is said to be a condensing operator ifA is continuous,
bounded, and for any nonrelatively compact and bounded set S ⊂ D,

α(A(S)) < α(S). (2.2)

The following lemmas are of great importance in the proof of our main results.

Lemma 2.3. Suppose that M /∈ {−n2π2 | n = 1, 2, 3, . . .}. Then for any h ∈ C(I, E), the linear
boundary value problem

−u′′(t) +Mu(t) = h(t), t ∈ I = [0, 1],

u(0) = u(1) = θ,
(2.3)

has a unique solution u := TMh ∈ C2(I, E), and TM : C(I, E) 
→ C(I, E) is bounded linear operator.

Proof. Note that M /∈ {−n2π2 | n = 1, 2, 3, . . .}, which assures second-order boundary value
problem

−γ ′′(t) +Mγ(t) = 0,

γ(0) = γ(1) = 0,
(2.4)

has only a zero solution. To obtain a solution of the problem (2.3), we require a mapping
whose kernel GM(t, s) : I × I → R is the Green’s function of the boundary value problem
(2.4). Let β =

√
|M|, we consider three cases.

Case 1. ifM > 0, we have

GM(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinh
(
βt
)
sinh

(
β(1 − s)

)

β sinh β
, if 0 ≤ t ≤ s ≤ 1,

sinh
(
βs
)
sinh

(
β(1 − t)

)

β sinh β
, if 0 ≤ s ≤ t ≤ 1.

(2.5)

Case 2. ifM = 0, we have

G0(t, s) =

⎧
⎨

⎩

t(1 − s), if 0 ≤ t ≤ s ≤ 1,

s(1 − t), if 0 ≤ s ≤ t ≤ 1.
(2.6)
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Case 3. ifM < 0, M/= − n2π2, n = 1, 2, 3, . . ., we have

GM(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin
(
βt
)
sin
(
β(1 − s)

)

β sin β
, if 0 ≤ t ≤ s ≤ 1,

sin
(
βs
)
sin
(
β(1 − t)

)

β sin β
, if 0 ≤ s ≤ t ≤ 1.

(2.7)

After direct computations, it is easy to see that

u(t) =
∫1

0
GM(t, s)h(s)ds := (TMh)(t) (2.8)

is continuously differentiable, and u(t) is a solution of (2.3).
We now claim that solution of the boundary value problem (2.3) is unique. The proof

is as follows. If possible, suppose that v(t) ∈ C2(I, E) is another solution of the problem (2.3).
For any ϕ ∈ E∗ (E∗ denotes the dual space of E), let p(t) = ϕ(u(t) − v(t)), thus we obtain
p(t) ∈ C2(I), p′′(t) = ϕ(u′′(t) − v′′(t)). By (2.3), we have

−p′′(t) +Mp(t) = 0,

p(0) = p(1) = 0,
(2.9)

that is, p(t) is a solution of the boundary value problem (2.4). However, on the other hand,
problem (2.4) has only a zero solution, therefore we have ϕ(u(t)−v(t)) = 0. Thus, we get u(t)−
v(t) = θ, hence u(t) ≡ v(t) in I, which implies that solution of the problem (2.3) is unique,
say, u := TMh, and TM : C(I, E) → C(I, E).

It is easy to see that TM is bounded linear operator. This completes the proof.

Remark 2.4. IfM > −π2, it is easy to see that GM(t, s) ≥ 0.

Lemma 2.5. Assume that M > −π2, and TM : C(I, E) 
→ C(I, E) is given by (2.8). Then

(1) the spectral radius r(TM) = 1/(M + π2);

(2) If E is an ordered Banach space, then TM is a positive operator, that is, if h ≥ 0, then
TMh ≥ 0.

Proof. (1) Define operator L : D(L) 
→ C(I, E) by

Lu := −u′′ +Mu, (2.10)

where D(L) = {u ∈ C2(I, E) | u(0) = u(1) = θ}. By Lemma 2.3, we have that TM is bounded
invertible operator of L, and if λ/=M + n2π2, n = 1, 2, 3, . . ., then L − λI has a bounded
invertible operator, thus λ ∈ ρ(L).
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Let λ = λn = M + n2π2, λn is a eigenvalue of L. For any x ∈ E, x /= θ, since
sin

√
M + n2π2t is eigenvector of λn, then the spectrum of operator L is σ(L) = {M + n2π2 |

n = 1, 2, 3, . . .}. By the spectral mapping theorem [21], we get

σ(TM) = {θ} ∪
{

1
M + n2π2

| n ∈ N
}
, (2.11)

so r(TM) = 1/(M + π2).
(2) If h ≥ 0, by definition of GM(t, s) and M > −π2, then we get GM(t, s) ≥ 0, so by

(2.8), we have TMh ≥ 0, that is, TM is a positive operator. This achieves the proof.

Remark 2.6. In particular. If E = R
1, M = 0, then by (1) of Lemma 2.5, we get r(T0) = 1/π2,

where T0 is an operator in C(I):

(
T0ϕ
)
(t) =

∫1

0
G0(t, s)ϕ(s)ds, (2.12)

and ‖T0‖c = 1/8. In fact:

∣∣(T0ϕ
)
(t)
∣∣ =

∣∣∣∣∣

∫1

0
G0(t, s)ϕ(s)ds

∣∣∣∣∣
≤
∫1

0
G0(t, s)ds ·

∥∥ϕ
∥∥
c =

1
2
t(t − 1) · ∥∥ϕ∥∥c ≤

1
8
· ∥∥ϕ∥∥c.

(2.13)

This means that ‖T0ϕ‖c ≤ (1/8)‖ϕ‖c, therefore ‖T0‖c ≤ 1/8. However, on the other hand,
‖T0(1)‖c = 1/8. As a result, we obtain ‖T0‖c = 1/8.

Lemma 2.7. Let J = [a, b], u ∈ C(J, E), ϕ ∈ C(J,R+). Then

∫b

a

ϕ(s)u(s)ds ∈
(∫b

a

ϕ(s)ds

)

· cou(J), (2.14)

where u(J) = {u(t) | t ∈ J}, cou(J) is closed convex hull of u(J).

Proof. If
∫b
a ϕ(s)ds = 0, then (2.14) is true. We suppose that

∫b
a ϕ(s)ds > 0, and take a partition

of [a, b]:

Δn : a = t
(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
m = b. (2.15)

LetΔt
(n)
i = t

(n)
i − t(n)i−1, ‖Δn‖ = max{Δt

(n)
i : 1 ≤ i ≤ mn}, by definition of Riemann integral, we get

∫b

a

ϕ(s)u(s)ds = lim
n→∞

mn∑

n=1

ϕ
(
t
(n)
i

)
u
(
t
(n)
i

)
Δt

(n)
i ,

∫b

a

ϕ(t)dt = lim
n→∞

mn∑

n=1

ϕ
(
t
(n)
i

)
Δt

(n)
i .

(2.16)
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We take n sufficiently large, such that ‖Δn‖ → 0, then we get

∫b
a ϕ(s)u(s)ds
∫b
a ϕ(s)ds

= lim
n→∞

mn∑

n=1

ϕ
(
t
(n)
i

)
u
(
t
(n)
i

)
Δt

(n)
i

∑mn

n=1 ϕ
(
t
(n)
i

)
Δt

(n)
i

∈ cou(J). (2.17)

This finishes the proof.

Lemma 2.8. Suppose thatD is a bounded set in E, then there exists a countable subsetD1 ofD, such
that

α(D) ≤ 2α(D1). (2.18)

Proof. Let α(D) > 0,D/= ∅. For rn = α(D)(1−1/n), take x(n)
1 ∈ D, thenD \B(x(n)

1 , rn/2) is not a
cover ofD. Take x(n)

2 ∈ D\B(x(n)
2 , rn/2), then B(x(n)

2 , rn/2) is not a cover ofD. Continuing this
process, take x(n)

k+1 ∈ D \ ∪k
i=1B(x

(n)
i , rn/2), then B(x(n)

i , rn/2) (i = 1, 2, 3, . . . , k) is not a cover of
D.

Set Dn = {x(n)
k

| k = 1, 2, 3, . . .}, then we get d(s, t) ≥ rn/2, where d(s, t) denote the
distance between two points s and t of Dn. Thus it follows that α(Dn) ≥ rn/2.

Setting D1 = ∪∞
i=1Dn, choose n sufficiently large such that α(D1) ≥ α(Dn) ≥ rn/2 →

α(D)/2, that is, α(D) ≤ 2α(D1). The proof is completed.

Lemma 2.9. If B is a bounded set in C(I, E), B(I) = {u(t) | u ∈ B, t ∈ I} ⊂ E. Then

α(B(I)) ≤ 2α(B). (2.19)

Proof. For any ε > 0, there exists a partition B = ∪n
i=1Bi such that

diam(Bi) < α(B) + ε, (2.20)

for i = 1, 2, 3, . . . , n. Choose ui ∈ Bi (i = 1, 2, 3, . . . , n). Since ui is uniformly continuous on I,
there exists δ > 0, such that t′, t′′ ∈ I, and |t′ − t′′| < δ, we have

∥∥ui

(
t′
) − ui

(
t′′
)∥∥ < ε. (2.21)

Let Δ : 0 = t0 < t1 < t2 < t3 < · · · < tm = 1 be a partition of I, and ‖Δ‖ < δ. Set
Ij = [tj−1, tj], Dij = Bi(Ij) = {u(t) | u ∈ Bi, t ∈ Ij}. Clearly, we have

D = B(I) =
n⋃

i=1

Bi(I) =
m⋃

j=1

n⋃

i=1

Bi

(
Ij
)
. (2.22)
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For any u, v ∈ Bi and t, s ∈ Ij , it follows from (2.20) and (2.21) that

‖u(t) − v(s)‖ ≤ ‖u(t) − ui(t)‖ + ‖ui(t) − ui(s)‖ + ‖v(s) − ui(s)‖
≤ ‖u − ui‖c + ε + ‖v − ui‖c
≤ 2diam(Bi) + ε

< 2α(B) + 3ε.

(2.23)

So,

diam
(
Dij

)
= sup

u,v∈Bi; t,s∈Ij
‖u(t) − v(s)‖ ≤ 2α(B) + 3ε. (2.24)

Thus it follows that α(D) ≤ 2α(B) + 3ε. Therefore, by using the arbitrariness of ε, we have
α(B(I)) ≤ 2α(B). The lemma is proved.

Lemma 2.10 (see [7]). Assume that H ⊂ C[J, E] is bounded and equicontinuous. Then α(H(t)) is
continuous on J and

α

({∫

J

x(t)dt : x ∈ H

})

≤
∫

J

α(H(t))dt. (2.25)

Lemma 2.11 (see [7]). Suppose that H is a countable family of strongly measurable functions x :
J 
→ E. If there exists a function M ∈ L[J,R+] such that ‖x(t)‖ ≤ M(t) for a.e. t ∈ J , then
α(H(t)) ∈ L[J,R+] and

α

({∫

J

x(t)dt : x ∈ H

})

≤ 2
∫

J

α(H(t))dt. (2.26)

Lemma 2.12. Assume that Ω1 is equicontinuous in C(I, E). Then co(Ω1) is equicontinuous.

Proof. For any ε > 0, it follows from the equicontinuity of Ω1 that there exists δ > 0 such that
|t1 − t2| < δ implies ‖u(t1) − u(t2)‖ < ε/3 for all t1, t2 ∈ I and u ∈ Ω1.

For any h ∈ co(Ω1), by virtue of definition of co(Ω1), we have

∀u1, u2, . . . , un ∈ Ω1, λ1, λ2, . . . , λn > 0,
n∑

i=1

λi = 1,

∥∥∥∥∥

n∑

i=1

λiui − h

∥∥∥∥∥
c

<
ε

3
. (2.27)
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Thus, we get

‖h(t1) − h(t2)‖ ≤
∥
∥
∥
∥
∥
h(t1) −

n∑

i=1

λiui(t1)

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n∑

i=1

λiui(t2) − h(t2)

∥
∥
∥
∥
∥

+

∥
∥
∥∥
∥

n∑

i=1

λi[ui(t1) − ui(t2)]

∥
∥
∥∥
∥

≤ 2

∥
∥
∥
∥
∥

n∑

i=1

λiui − h

∥
∥
∥
∥
∥
c

+
n∑

i=1

λi‖ui(t1) − ui(t2)‖

<
2
3
ε +

n∑

i=1

λi · 13ε

= ε.

(2.28)

Hence, co(Ω1) is equicontinuous. This finishes the proof.

Lemma 2.13 (see [7]). If H ⊂ C[I, E] is bounded and equicontinuous, then α(B(t)) is continuous
in I and α(B) = α(B(I)) = maxx∈I α(B(t)).

Lemma 2.14 (see [7] (Sadovskii’s Theorem)). Assume thatD is a nonempty bounded, closed, and
convex set. If a mapping A : D 
→ D is condensing, then A has a fixed point in D.

3. Main Results

In this section, we present and prove our main results.

Theorem 3.1. Let E be a Banach space. Suppose that f(t, x) ∈ C(I × E, E) and the following condi-
tions hold:

(H1) there exist two positive numbers c0 and c1, such that

∥∥f(t, x)
∥∥ ≤ c0 + c1‖x‖, ∀t ∈ I, x ∈ E, (3.1)

(H2) for any a bounded set D in E, there exists a constant L > 0 such that

α
(
f(I ×D)

) ≤ Lα(D), (3.2)

(H3) there exist two positive numbers c1 and L with c1 < π2, L < 4.

Then problem (1.1) has at least one solution.

Proof. Define the integral operator A : C(I, E) 
→ C(I, E)

(Au)(t) =
∫1

0
G0(t, s)f(s, u(s))ds = T0

(
f(·, u)). (3.3)
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Then A : C(I, E) 
→ C(I, E) is continuous, and it is clear that u is a solution of the problem
(1.1) if and only if u is a fixed point of A.

We now show that A is a condensing operator. Let B be bounded in C(I, E), by (H1),
we claim that {−(Au)′′ | u ∈ B} is bounded. Since (Au)(0) = 0, we know that {(Au)′ | u ∈ B}
is bounded, this means that A(B) is equicontinuous. Therefore, it follows from Lemma 2.13
that α(A(B)) = maxx∈Iα(A(B)(t)).

For any u ∈ B, t ∈ I, from Lemma 2.7, we have

(Au)(t) =
∫1

0
G0(t, s)f(s, u(s))ds

∈
(∫1

0
G0(t, s)ds

)

· co{f(s, u(s)) | s ∈ I
}

⊂
(∫1

0
G0(t, s)ds

)

· co{f(I × B(I))
}
.

(3.4)

Hence,

(A(B))(t) ⊂
(∫1

0
G0(t, s)ds

)

· co{f(I × B(I))
}
. (3.5)

Using the properties of the noncompactness measure together with (H2), we obtain

α(A(B)(t)) ≤
∫1

0
G0(t, s)ds · α

(
f(I × B(I))

)

≤ Lα(B(I)) ·
(∫1

0
G0(t, s)ds

)

=
1
2
t(1 − t) · Lα(B(I))

≤ 1
8
Lα(B(I)).

(3.6)

By Lemma 2.9, we have

α(A(B)(t)) ≤ 1
8
L · α(B(I)) ≤ 1

8
L · 2α(B) = 1

4
L · α(B). (3.7)

Hence,

α(A(B)) ≤ 1
4
L · α(B). (3.8)

By (H3), we get 0 < L/4 < 1, therefore A is condensing.
Let Ω := Bc(θ, R) = {u ∈ C(I, E) : ‖u‖ < R}, we will prove that u − λAu/= θ, 0 < λ ≤ 1,

u ∈ ∂Ω for R sufficiently large. By means of the homotopy invariance theorem, we have
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deg(I −A,Ω, θ) = 1. By virtue of the solvability of Kronecker [6], we know that A has a fixed
point in Ω, and the fixed point of A is a solution of the problem (1.1).

Indeed. If there exists a constant λ0 ∈ (0, 1], λ0 ∈ ∂Ω such that u0 − λ0Au0 = θ, then u0

satisfies

u0 = λ0

∫1

0
G0(t, s)f(s, u0(s))ds. (3.9)

Let ϕ0(t) = ‖u0(t)‖, and T0 is an operator in C(I) defined by

(
T0ϕ
)
(t) =

∫1

0
G0(t, s)ϕ(s)ds. (3.10)

Then by Lemma 2.5 we have r(T0) = 1/π2.
By (3.9) and (H1), we have

ϕ0(t) ≤
∫1

0
G0(t, s)

(
c0 + c1ϕ0(s)

)
ds

= c0T0(1) + c1
(
T0ϕ0

)
(t)

≤ c0‖T0‖ + c1
(
T0ϕ0

)
(t)

≤ c0 + c1
(
T0ϕ0

)
(t).

(3.11)

Thus,

ϕ0 ≤ c0‖T0‖ + c1T0ϕ0 ≤ c0 + c1T0ϕ0, (3.12)

continuing this process, by induction, we obtain

ϕ0 ≤ c0 + c1T0
(
c0 + c1T0ϕ0

)

= c0 + c0c1‖T0‖ + c21T
2
0ϕ0

≤ · · ·

≤ c0
(
1 + c1‖T0‖ + c21

∥∥∥T2
0

∥∥∥ + · · · + cn−11

∥∥∥Tn−1
0

∥∥∥ + cn1
∥∥Tn

0

∥∥ϕ0

)
,

(3.13)

which implies that

ϕ0 ≤ c0
n−1∑

n=0

cn1
∥∥Tn

0

∥∥ + cn1T
n
0 ϕ0. (3.14)

By the Gelfand theorem [22], we have

r(T0) = lim
n→∞

n

√∥∥Tn
0

∥∥ =
1
π2

. (3.15)
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Set c2 = (c1 + π2)/2 ∈ (c1, π2), then we have 1/c2 > 1/π2. By (3.15), there exists an

integer N0, such that n

√
‖Tn

0 ‖ < 1/c2 as n ≥ N0, that is, ‖Tn
0 ‖ < 1/cn2 , this means that cn1‖Tn

0 ‖ <

(c1/c2)
n. In view of series

∑∞
n=0(c1/c2)

n converges, we know that
∑∞

n=0 c
n
1‖Tn

0 ‖ also converges.
Denote R0 = c0

∑∞
n=0 c

n
1‖Tn

0 ‖. By (3.14), we get ϕ0(t) ≤ R0, which implies that ‖u0(t)‖ ≤
R0, hence ‖u0‖c ≤ R0.

TakeR > R0, thenwe have u−λAu/= θ, for all λ ∈ (0, 1], u ∈ ∂Ω. Thus problem (1.1) has
at least one solution. This proves the theorem.

Remark 3.2. In [11], the nonlinear term f(t, u, u′) is bounded, if f(t, u, u′) = f(t, u), in our
result, the nonlinear term f(t, u) may no more than a linear growth.

Remark 3.3. In [11], if f(t, u, u′) = f(t, u), the growth restriction of L for (H2) is 0 < L < 1/2.
However, in our result, L satisfies 0 < L < 4.

Theorem 3.4. Let E be a Banach space, and f(t, x) ∈ C(I × E, E). Assume that condition (H1) and
the following conditions hold:

(H2)
′ for all t ∈ I, for any a bounded set D in E, there exists a constant L > 0 such that

α
(
f(t,D)

) ≤ Lα(D), (3.16)

(H3)
′ there exist two positive numbers c1 and L with 0 < c1 < π2, L < 2.

Then problem (1.1) has at least one solution.

Proof. Assume that the operator A is defined the same as in Theorem 3.1. We show that the
operator A is condensing. In fact, for a bounded set B ∈ C(I, E), there exists a countable sub-
set B1 = {un}, such that α(A(B)) ≤ 2α(A(B1)). However, on the other hand, we have

α(A(B1)) = max
t∈I

α(A(B1)(t)). (3.17)

By Lemma 2.11 and (H2)
′, we obtain

α(A(B1)) = α

({∫1

0
G0(t, s)f(s, un(s))ds | n ∈ N

})

≤ 2
∫1

0
G0(t, s)α

({
f(s, un(s)) | n ∈ N

})
ds

≤ 2
∫1

0
G0(t, s)Lα(B1(s))ds

≤ 2L
∫1

0
G0(t, s)ds · α(B1)

≤ 1
4
Lα(B1).

(3.18)
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Thus,

α(A(B)) ≤ 1
2
Lα(B). (3.19)

By (H3)
′, we get 0 < L/2 < 1, therefore A is condensing. By using the same arguments

of Theorem 3.1, we can obtain the conclusion of Theorem 3.4. The detailed proof is omitted
here. The proof is achieved.

Next, we establish a uniqueness of solution for the problem (1.1).

Theorem 3.5. Let E be a Banach space. Suppose that f(t, x) ∈ C(I × E, E) and that there exists a
constant L with 0 < L < π2 such that

∥∥f(t, u2) − f(t, u1)
∥∥ ≤ L‖u2 − u1‖, ∀u1, u2 ∈ E. (3.20)

Then problem (1.1) has a unique solution.

Proof. Assume that operator A is defined the same as in Theorem 3.1, and the fixed point of
A is a solution of the problem (1.1).

We will prove that for sufficiently large n the operator An is a contraction operator.
Indeed, by the definition of A and (3.20), we have the estimate

‖(Anu2)(t) − (Anu1)(t)‖ =

∥∥∥∥∥

∫1

0
G0(t, s)

[
f
(
s,
(
An−1u2

)
(s)
)
− f
(
s,
(
An−1u1

)
(s)
)]

ds

∥∥∥∥∥

≤ L

∫1

0
G0(t, s)

∥∥∥
(
An−1u2

)
(s) −

(
An−1u1

)
(s)
∥∥∥ds

= LT0
(∥∥∥
(
An−1u2

)
(s) −

(
An−1u1

)
(s)
∥
∥∥
)
.

(3.21)

By induction, we have

‖(Anu2)(t) − (Anu1)(t)‖ ≤ Ln · Tn
0 · ‖u2(s) − u1(s)‖

≤ Ln · ∥∥Tn
0

∥∥ · ‖u2 − u1‖c.
(3.22)

Thus,

‖Anu2 −Anu1‖c ≤ Ln · ∥∥Tn
0

∥∥ · ‖u2 − u1‖c. (3.23)
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Moreover, we can choose n to be sufficiently large such that n

√
‖Tn

0 ‖ tends to r(T0) =

1/π2.
Further, take L1 ∈ (L, π2), there exists an integer N0, such that ‖T0‖ ≤ 1/Ln

1 as n ≥ N0.
By (3.23), we obtain

‖Anu2 −Anu1‖c ≤ Ln · ∥∥Tn
0

∥
∥ · ‖u2 − u1‖c

≤
(

L

L1

)n

· ‖u2 − u1‖c,
(3.24)

which implies that An is a contraction mapping by L/L1 < 1. By the contraction mapping
principle, we conclude that there exists a unique fixed point for A, this proves that problem
(1.1) has a unique solution. This completes the proof.

Remark 3.6. By the direct application of the Banach contraction mapping principle, the con-
clusion of Theorem 3.5 holds true under the condition 0 < L < 8. However, we require the
condition 0 < L < π2, here π2 is optimum.

The following theorem is concerned with the existence of positive solutions for prob-
lem (1.1).

Theorem 3.7. Let E be an ordered Banach space,K be a normal cone with positive elements. Suppose
that f(t, x) ∈ C(I × E, E) satisfy the following conditions:

(P1) there exists a constant c with 0 < c < π2, and h0 ∈ C(I,K), such that

θ ≤ f(t, x) ≤ cx + h0(t), ∀x ≥ θ, (3.25)

(P2) for any a bounded set D in E, there exists a constant L with 0 < L < 8 such that

α
(
f(I ×D)

) ≤ Lα(D). (3.26)

Then problem (1.1) has at least one positive solution.

Proof. Consider the linear boundary value problem

−u′′ − cu = h0, u(0) = u(1) = θ. (3.27)

By Lemma 2.3, the linear boundary value problem (3.27) has unique a positive solution u0 ∈
C(I,K).

Set D = [θ, u0] ⊂ C(I, E), then D is bounded and convex closed set in C(I, E). For any
u ∈ D, by (P1), we have

θ ≤ f(t, u(t)) ≤ cu(t) + h0(t) ≤ cu0(t) + h0(t). (3.28)
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Multiply by G0(t, s) and integrate from 0 to 1, we obtain

θ ≤ Au(t) ≤
∫1

0
G0(t, s)[cu0(s) + h0(s)]ds = u0(t), (3.29)

that is,Au ∈ D, soA(D) ⊂ D. By the proof of Theorem 3.1, it follows thatA is equicontinuous.
Thus, by Lemma 2.12, we know that Ω0 = co(A(D)) is equicontinuous.

Next we show that A : Ω0 → Ω0 is condensing. For any B ⊂ Ω0, then B is bounded
and equicontinuous, therefore A(B) ⊂ Ω0 is bounded and equicontinuous. By Lemma 2.13,
we have

α(A(B)) = max
t∈I

α(A(B(t))). (3.30)

However, on the other hand, we have

α(A(B(t))) = α

({∫1

0
G0(t, s)f(s, u(s))ds | u ∈ B

})

. (3.31)

Thus, For any u ∈ B, t ∈ I, we acquire

Au(t) =
∫1

0
G0(t, s)f(s, u(s))ds

∈
(∫1

0
G0(t, s)ds

)

· co{f(s, u(s)) | s ∈ I
}

⊂
(∫1

0
G0(t, s)ds

)

· co{f(I × B(I))
}
.

(3.32)

Hence,

A(B)(t) ⊂
(∫1

0
G0(t, s)ds

)

· co{f(I × B(I))
}
. (3.33)

Further, we obtain

α(A(B)(t)) ≤
(∫1

0
G0(t, s)ds

)

· α(f(I × B(I))
)

≤ L

2
t(1 − t) · α(B(I))

≤ L

8
· α(B).

(3.34)
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This means that

α(A(B)) ≤ L

8
· α(B). (3.35)

By (P2), we have 0 < L/8 < 1, soA is condensing. Applying Lemma 2.14, we conclude
that A has a fixed point which is a solution of problem (1.1). The proof of the theorem is
completed.
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