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In this study, the traffic crash rate, total crash frequency, and injury and fatal crash frequency
were taken into consideration for distinguishing between rural and urban road segment safety.
The GIS-based crash data during four and half years in Pikes Peak Area, US were applied for
the analyses. The comparative statistical results show that the crash rates in rural segments are
consistently lower than urban segments. Further, the regression results based on Zero-Inflated
Negative Binomial (ZINB) regression models indicate that the urban areas have a higher crash
risk in terms of both total crash frequency and injury and fatal crash frequency, compared to
rural areas. Additionally, it is found that crash frequencies increase as traffic volume and segment
length increase, though the higher traffic volume lower the likelihood of severe crash occurrence;
compared to 2-lane roads, the 4-lane roads have lower crash frequencies but have a higher
probability of severe crash occurrence; and better road facilities with higher free flow speed can
benefit from high standard design feature thus resulting in a lower total crash frequency, but they
cannot mitigate the severe crash risk.

1. Introduction

Previous studies have been focused on distinguishing between rural and urban traffic safety
using traffic crash data, but the influence of rural or urban settings on segment safety is
controversial. The fatal traffic crash research indicated that fatality rates in rural areas are
higher than in urban areas [1–3]. The higher fatality and injury rates in rural road facilities
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have been attributed to various reasons, such as longer emergency response time and further
distance to crash locations [3]. The other explanations include higher speed limit and worse
driving habits (e.g., alcohol, a lower rate of seat belt use, and safety precaution use), road
conditions, and accessibility to trauma care [4–6]. On the other hand, some studies reported
that crash frequencies in urban areas were higher than those in rural areas [7, 8], because
urban regions involve more complex traffic conditions, high traffic volume, congestion, poor
pavement conditions, and so forth [9]. While the risk of severe crashes appears higher in rural
segments, no differences were identified in the cause of injury and place of injury between
urban and rural drivers [10].

Neither crash frequencies nor fatality rate can entirely represent the influence of rural
or urban settings on the segments. Many other factors lead to the occurrence of traffic
crashed, such as traffic characteristics, road design characteristics, demographic features,
and pavement maintenance conditions [11–17]. Therefore, numerous cross-sectional studies
have been conducted to characterize the relationships between factors and road segment-
involved crashes. In the prior studies, the Poisson models are the most common ones which
have been widely used [18, 19]. It is known that a Poisson model would be appropriate only
when the mean and the variance of the crash frequencies are approximately equal. However,
this assumption has been proved invalid for modeling traffic crash frequencies [20, 21],
because the variances of crash frequencies were generally greater than means. Therefore, the
negative binomial (NB) regression models were introduced to overcome this overdispersion
problem, which had a more flexible mean-variance equality constraint [16, 22]. Nevertheless,
both Poisson and NB models cannot deal with the property of crash frequency data
with a large density of zeros (no crashes occur on roads during the observation period).
Correspondingly, the zero-inflated count regress models were developed and applied for
analyzing and predicting crash frequencies. The zero-inflated count regression models are
capable of handling the apparent “excess” zeros crash data and generally have a more
statistical suitability for modeling crash data than Poisson and NB regression models [23].

In order to understand the role of rural or urban settings in segment safety, the crash
rate, crash frequencies, and the injury and fatality frequencies are taken into consideration in
this study to distinguish between rural and urban traffic safety. The GIS-based crash data
during four and half years in Pikes Peak Area, USA were applied for analyses. The GIS
techniques for traffic data process have been proved effective to analyze and visualize crash
data [24] and have advantages in data display, clear presentation of spatial relationship,
and convenient query of relevant data [25, 26]. Since previous studies have discussed the
suitability of various models in the prediction of crash frequencies, we adopt zero-inflated
negative binomial (ZINB) regression models for crash frequency analysis and prediction,
because zero-crash segments account for more than 40% of the total data in this study.

2. Methodology
2.1. Data Preparation

Accident data were obtained from the department of revenue (DOR) and were calculated
by the total accidents recorded from 2006 July to 2010 December. It contains useful traffic
information, such as crash location, severity, weather condition, and segment type, and
the data were geocoded into GIS databases by the PPACG (Pikes Peak Area Council of
Governments).

Based on the GIS process of spatial join between whole road network and urban
boundary, the road segments were classified into two categories: rural segments and urban
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Table 1: ZINB models for segment crash frequency analyses and predictions.

Role Variables Types Description
Dependent
variable

Num crsh Continuous Number of crashes (crash frequencies)

ADT 1000 Continuous Average thousand daily traffic (thousand vehicles per day)
Length Continuous The length of a segment (mile)
FFS Continuous Free flow speed in road segment (mph)

Independent
variable

Daily VMT Continuous Average daily Vehicle Mile Traveled (VMT)

RorU Discrete Rural or urban: 0 = urban; 1 = rural

FC Discrete Segment functional classification: 0 = interstate; 1 =
expressway; 2 = arterial; 3 =M Arterial

Numberofla Discrete Number of lanes: 0 = 2 lanes; 1 = 4 lanes

segments. Before analyzing segment crashes, the crashes at intersections were separated from
the databases. Thus, the 200-ft intersection buffers were first created, and the crashes within
these intersection buffers were deleted from the segment crash analyses. Then, with a road-
segment layer separated from the road network geodatabase, the crashes associated with
segments needed to be further separated from all other crashes. Because these segments may
have wide cross-sections, a 150-foot buffer on both sides of an arterial centerline was adopted
to capture most crashes associated with the segments only. After the 150 foot buffers were
created, the crashes within these buffers were selected and aggregated in their corresponding
segments.

Because different categories of road facilities vary by characteristics of highway
design, traffic operation, and environments, the crash data associated with a specific type
of highways needed to be separated from the other types of highways. In this study, the
crash risk was calculated and analyzed not only for the overall segment network, but also
for interstate, expressway, principal arterial, and minor arterial, respectively. The segments
belonging to other road types were excluded from these segments. The combined data set
was further organized according to the following criteria.

(i) These accidents were divided into three categories: fatal, injury, and property-
damage only (PDO) accounting for the accident severity.

(ii) Road segments with 2 and 4 lanes were selected, because 6 lanes segments exist in
urban areas only.

(iii) ADTwas calculated by 1000, because the change in crash frequency with increment
of one vehicle is meaningless.

The cleaned accident data were overlaid with the GIS-based network and distributed into
each segment in rural and urban areas. The segments were first analyzed and compared in
terms of crash rate based on the comparative statistics of the four types of road segments.
Then, ZINB models for segment crash frequency analyses and predictions were developed,
in which variables are described in Table 1.
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2.1.1. Zero-Inflated Negative Binomial Regression

For a Poisson crash frequency model, it assumes that the observed crash count data yi, given
the vector of covariate xi, follows a Poisson distribution. The density function of yi can be
expressed as follows:

P
(
Yi = yi | xi

)
=

e−μiμ
yi

i

yi!
, yi = 0, 1, 2, . . . , (2.1)

where the parameter ui, conditional mean number of events for each covariate xi, is given by

μi = Exp
(
x′
iβ
)
, (2.2)

where β is a (k+1)×1 parameter vector (β0 is the coefficient for intercept, and β1, β1, β2, . . . , βk
are for k regressors).

In the Poisson regression, the conditional variance of the count variable is equal to the
conditional mean as follows:

V
(
yi | xi

)
= E

(
yi | xi

)
= μi, (2.3)

where xi is the covariate of road segment geometric and traffic features in each record
including the intercept; ui is the conditional mean of the crash frequency yi. Since this
assumption is contradict to the fact that the vehicle accident data are always significantly
overdispersed relative to its mean, the NB regression model was developed with a
heterogeneity component accounting for unobserved heterogeneity in the crash count data
as follows:

ui = Exp
(
xiβ + εi

)
= Exp

(
xiβ

)
Exp(εi), (2.4)

where β is the parameter coefficients vector to be estimated for independent variables
including intercept; Exp (εi) is a heterogeneity component accounting for unobserved
heterogeneity in the crash count data, which is independent of xi. However, there is always a
large density of zeros in crash count data, which cannot accurately be predicted by traditional
NB models. For this situation, the zero-inflated regression models were developed in the
crash frequency-related research area.

Zero-inflated count models provide a way of modeling the excess zeros in addition to
allowing for overdispersion. For each road segment, there are two possible data generation
processes. Process 1 is chosenwith probabilityωi and process 2with probability 1−ωi. Process
1 generates only zero counts, whereas process 2 generates counts from either a poisson or a
negative binomial model. In this paper, the probability ωi depends on the geometric and
traffic features of segment i, can be obtained from the logistic function F, as follows:

ωi = F
(
z′iγ

)
= Λ

(
z′iγ
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1 + exp
(
z′iγ

) , (2.5)
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Table 2: Original statistics for the length and mileage.

Area Number Mean length Minimum Maximum Std. deviation Mileage
Rural 374 0.968 0.063 5.998 0.989 362.100
Urban 2387 0.301 0.051 3.992 0.382 719.239
Network 2761 0.392 0.051 5.998 0.525 1081.339

where z′i is the vector of independent variables specified in the logistic regression model
(road facility and traffic features) and intercept; γ is the vector of zero-inflated coefficients to
be estimated.

The probability of crash frequency for segment i can be expressed as follows:

p
(
yi | xi, zi

)
=

{
ωi + (1 −ωi)g

(
yi | xi

)
, yi = 0,

(1 −ωi)g
(
yi | xi

)
, yi > 0,

(2.6)

where g(yi | xi) follows either Poisson distribution or NB distribution; xi is the vector of
covariates of observation i specified in the model.

In this study, ZINB models were used for regression efforts because zero-crash
segments account for more than 40% of the total data.

3. Results

3.1. Comparative Statistical Analyses of Rural and Urban Traffic Safety

During the observation period of four and a half years, there were 9651 crashes occurring
in the study areas, consisting of 1057 records in rural segments and 8594 records in urban
segments. Among the crashes in the rural segments, there were 15 fatal and 176 injured
accidents. On the other hand, 46 fatal and 1038 injury crashes happened in urban areas.
Table 2 shows the descriptive statistics for rural and urban segment lengths, which indicate
that average mileage of rural segments (0.968 mile) is longer than urban segments (0.293
mile) because of a lower density of intersections in rural networks. Figure 1 displays the
road segment crash rate distribution, calculated as the number of crashes per 100 million
VMT, where the double line is the boundary between rural and urban areas. It shows that the
percentage of segments with higher crash rates within the urban region is more than rural
areas.

Table 3 displays the t-test statistics of rural and urban segment comparison for
different types of facilities. It shows that there is a significant difference between rural and
urban in terms of crash rates using both crash per lane∗miles∗year and crash per 100 million
VMT in 2-lane segments. The crash rates in rural segments are consistently lower than urban
segments. The 2-lane expressway is exceptional mainly because of the small sample size of
2-lane rural expressway. However, there is no statistical difference between rural and urban
4-lane arterial segments.
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Figure 1: Road segment crash rate distribution in terms of the number of crashes per 100 million VMT.
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Figure 2: Crash frequencies distribution.

3.2. ZINB Regression Analyses

The crash frequencies distribution histogram (Figure 2) clearly illustrates that there are
excessive zeros (over 40%) in the crash data. The P values in Kolmogorov-Smirnov, Cramer-
von Mises, and Anderson-Darling normality tests are all less than 0.05. Therefore, it strongly
supports the null hypothesis that the crash data do not follow the normal distribution.
Therefore, the ZINB models are suitable to the crash count data regression analyses.

ZINB models were developed using the software SAS 9.2. We chose the crash
frequency in segment (Num crsh) as the dependent variable, and the regressors included
segment length (length), number of lanes (Numberofla), thousand average annual day traffic
(ADT 1000), free flow speed (FFS), and RoU (rural or urban). The segment type was not
considered in this model since it was highly correlated with FFS and RoU.

Table 4 shows the parameter estimates of ZINB model for total crash frequency in
segment, and only significant variables (P < 0.05) were included in the model. The ZINB
model parameter estimates include 2 parts: NB regression and logistic regression. In the NB
regression process, it can be found that the number of lanes, rural or urban, ADT, length, and
FFS are all significantly correlated with the number of crashes. Further, the measure of Alpha
in Table 4 is 1.435, with a P value less than 0.001, displaying a very strong overdispersion
effect and indicating the superiority of the ZINB model over the zero-inflated Poisson (ZIP)
model. ADT 1000 and LENGTH are positive associated with the crash frequency, suggesting
that crash frequencies increase with increments of traffic volume and segment length. The
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Table 3: t-test statistics for rural and urban segment comparison.

Road function Lane Variable District N Mean Standard
deviation

Mean
difference P value

Interstate

2
Per lane

Mile
Rural
Urban

30
86

2.06
4.52

1.12
4.63 −2.456 0.000

Per 100
MVMT

Rural
Urban

30
86

45.31
77.14

25.07
79.69 −31.83 0.001

4
Per lane

Mile
Rural
Urban

1
4

0.00
1.16

—
2.21 −1.167 —

Per 100
MVMT

Rural
Urban

1
4

0.00
30.18

—
56.91 −30.184 —

Expressway

2
Per lane

Mile
Rural
Urban

2
151

0.44
2.31

0.62
3.37 −1.873 0.074

Per 100
MVMT

Rural
Urban

2
151

19.83
75.06

28.05
112.07 −55.233 0.171

4
Per lane

Mile
Rural
Urban

0
77

—
1.26

—
2.34 — —

Per 100
MVMT

Rural
Urban

0
77

—
43.08

—
74.91 — —

P Arterial

2
Per lane

Mile
Rural
Urban

91
162

0.57
1.19

0.76
1.97 −0.621 0.000

Per 100
MVMT

Rural
Urban

91
162

34.01
59.85

44.34
102.08 −25.837 0.006

4
Per lane

Mile
Rural
Urban

9
592

0.54
0.90

0.44
1.79 −0.363 0.546

Per 100
MVMT

Rural
Urban

9
592

23.99
91.62

19.57
357.28 −67.630 0.571

M Arterial

2
Per lane

Mile
Rural
Urban

241
783

0.29
0.60

0.78
1.20 −0.307 0.000

Per 100
MVMT

Rural
Urban

241
783

108.70
133.16

424.56
436.68 −24.454 0.444

4
Per lane

Mile
Rural
Urban

0
532

—
0.59

—
1.41 — —

Per 100
MVMT

Rural
Urban

0
532

—
105.56

—
246.18 — —

Total comparison

Per lane
Mile

Rural
Urban

374
2387

0.51
0.99

0.93
2.07 −0.480 0.000

Per 100
MVMT

Rural
Urban

374
2387

82.64
102.96

343.16
331.91 −20.32 0.133

results are consistent with many previous research conclusions [7, 9, 27]. FFS is negatively
associated with the crash frequency, indicating that crash frequencies are decreasing with
increment of roadway free flow speed. Since FFS is correlated with the design standard of
road facilities, it would be more appropriate to be explained that a better road facility with
higher FFS has a lower crash rate compared to the facilities with lower FFS. In this study,
FFS can be treated as a surrogate of speed limit but it can more accurately reflect the actual
traffic operation status in road segments than speed limit. Previous research finding is less
conclusive about the impact of speed limit on crash frequency [28]. In addition, four-lane
roadways were found to be associated with a lower number of crashes than 2-lane roadways
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Table 4: Parameter estimates of ZINB model for total crash frequency.

Parameter DF Estimate Standard error t value P value
Negative binomial regression part

Intercept 1 0.850 0.161 5.29 <0.0001
Numberofla (2 lane) 0 — — — —
Numberofla (4 lane) 1 −0.438 0.107 −4.10 <0.0001
RoU (rural) 1 −0.270 0.095 −2.84 0.0045
RoU (urban) 0 — — — —
ADT 1000 1 0.075 0.004 18.20 <0.0001
LENGTH 1 0.395 0.070 5.61 <0.0001
FFS 1 −0.011 0.004 −2.99 0.0028

Logistic regression part
Inf Intercept 1 8.214 0.913 8.99 <0.0001
Inf ADT 1 −0.028 0.013 −2.20 0.0277
Inf LENGTH 1 −71.713 8.739 −8.21 <0.0001
Alpha 1 1.435 0.065 22.20 <0.0001

in this model. This is reasonable because this comparison was based on the assumption of
same traffic exposure so that the segments with 4 lanes should have lower traffic volume per
lane. More importantly, the urban regions appear to have a higher crash frequency than rural
areas, which is consistent with the crash rate analyses results. The logistic regression part
of the model predicts the likelihood of zero crash occurrences. The modeling results reveal
that the variables of ADT 1000 and LENGTH are significant in estimating the probability
of segments belonging to the zero crash occurrence group. According to the parameter
coefficients estimated, the higher the traffic exposure (thousand of AADT and segment
length), the lower the possibility of zero crash occurrences, which is consistent with all the
previous study conclusions.

Furthermore, Table 5 shows the parameter estimates of ZINB model for injury and
fatal crash frequency in a segment (Alpha is 1.074, with a P value less than 0.001). The NB
regression indicates that Numberofla, RoU, ADT 1000, and LENGTH are significant variables
to predict injury and fatal crash frequency, which displays a very similar result to that for total
crash frequency except for FFS. It implies that although the better road facilities with higher
FFS benefit from high standard design features resulting in a lower total crash frequency (as
shown in Table 4), they would not mitigate the severe crash risk. A previous study reported
that by controlling the other factors, purely increasing operation speed in road segments by
1%would approximately result in 2% increment in injury crash rate and 4% increment in fatal
crash rate [29]. On the other hand, compared to the total crash frequency model, the logistic
regression results for injury and fatal crash frequency model are quite different though the
effect of LENGTH keeps similarity. First, the number of lanes is a significant variable for
estimating the probability of zero injury and fatal crash occurrence in segment. Compared
to 2-lane roads, the 4-lane roads have a lower severe crash frequency but have a lower
probability of zero crashes. A possible explanation is that changing lane maneuver in 4-lane
segments would increase the severe crash risk. Second, the effect of ADT 1000 in the Logistic
regression of injury and fatal crash model is reverse from the total crash model. It shows that
as traffic volume increases, the likelihood of zero severe crashes decreases. This interesting
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Table 5: Parameter estimates of ZINB model for injury and fatal crash frequency.

Parameter DF Estimate Standard error t value P value
Negative binomial regression part

Intercept 1 −1.272 0.093 −13.73 <0.0001
Numberofla (2 lane) 0 — — — —
Numberofla (4 lane) 1 −0.398 0.098 −4.08 <0.0001
RoU (rural) 1 −0.232 0.118 −1.96 0.0496
RoU (urban) 0 — — — —
ADT 1000 1 0.060 0.004 15.58 <0.0001
LENGTH 1 0.338 0.068 5.00 <0.0001

Logistic regression part
Inf Intercept 1 5.404 0.850 6.35 <0.0001
Numberofla (2 lane) 0 — — — —
Numberofla (4 lane) 1 −0.967 0.352 −2.75 0.0060
Inf ADT 1000 1 0.035 0.016 2.21 0.0268
Inf LENGTH 1 −38.325 6.436 −5.95 <0.0001
Alpha 1 1.073 0.124 8.64 <0.0001

finding is consistent with the previous conclusion in a crash severity study, which explains
that lower ADT could mean higher speeds that more often lead to severe/fatal crashes [30].

4. Conclusion and Discussions

There have been numerous studies to clarify the role of rural or urban settings in segment
safety, but it was still controversial to make a conclusion. Before reaching the common
agreement on the difference between rural and urban traffic safety, it is important to clarify
the definition of “rural.” Generally, to distinguish from urban environments, rural areas have
the attributes associated with demographic features (e.g., low population size and density,
outside boundary of urban area), economic statues (low economic indicators, farming, and
agriculture), social structure (e.g., intimate, informal, and homogeneous forms of social
interaction, limited social resources), cultural characteristics (e.g., traditional, conservative,
provincial, slow to change), and so forth. The above features are often used to explain the
statistical fact that the death rate from many common causes in US is significantly higher in
rural compared to urban areas [1, 6], as well as in different countries [31–33].

However, these thresholds should not be universally applied to make local transporta-
tion safety analyses. Formany developed regions, although districts are clearly separated into
rural and urban regions according to their demographic, economic, or social attributes, the
transportation facilities are well connected to each other and formed more standardized road
networks. Thus, it was reported that there are relatively high numbers of crashes in urban
regions because the heavy traffic volume and complex driving environments in urban lead
to more conflicts between vehicles [34]. Therefore, for a specific safety evaluation project,
this study supports the argument that more detailed crash risk comparisons between rural
and urban transportation road segments should be performed at a comparable level. In this
paper, the crash rate comparison and ZINB regression for both total crash frequency and
injury and fatal crash frequency in road segment were conducted to discriminate between
rural and urban traffic safety. It was found that compared to urban areas, the measures for
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traffic safety in rural areas show lower crash rates, total crash frequencies, and injury and
fatal crash frequencies. The results based on the ZINB regression models also showed the
following.

(i) Segment crash frequencies increase as traffic volume and segment length increase.
However, higher traffic volumewill lower the likelihood of severe crash occurrence.

(ii) Compared to 2-lane roads, the 4-lane roads have a lower crash frequency but have
a higher probability of severe crash occurrence.

(iii) Better road facilities with higher free flow speed benefit from high standard design
feature resulting in a lower total crash frequency but would not mitigate the severe
crash risk.

Finally, it can be concluded that in the research area traffic safety of rural segments is better
than urban segments, which implies that a priority for traffic safety improvement should be
put on the urban highway segments.
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