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We study the traffic states and fundamental diagram of vehicular traffic controlled by a series
of traffic lights using a deterministic cellular automaton (CA) model. The CA model is not
described by a set of rules but is given by a difference equation. The vehicular traffic varies
highly with both signal’s characteristics and vehicular density. The dependence of fundamental
diagram on the signal’s characteristics is derived. At a low value of cycle time, the fundamental
diagram displays the typical trapezoid, while it shows a triangle at a high value of cycle time. The
dynamic transitions among distinct traffic states depend greatly on the signal’s characteristics. The
dependence of the transition points on the cycle time split and offset time is found.

1. Introduction

Mobility is nowadays one of the most significant ingredients of a modern society. Recently,
transportation problems have attracted much attention in the fields of physics [1–4]. Physics
and other sciences meet at the frontier area of interdisciplinary research. The traffic flow,
pedestrian flow, and bus-route problem have been studied from a point of view of statistical
mechanics and nonlinear dynamics [5–7]. The interesting dynamic behaviors have been
found in the transportation system. The jams, chaos, and pattern formation are typical
signatures of the complex behavior of transportation [8, 9]. The cellular automaton (CA)
model has been used extensively for the traffic dynamics [1, 3]. The CAmodel for traffic flow
is a typical system of discrete dynamics.

The traffic light is an essential element for managing the transportation network. In
urban traffic, vehicles are controlled by traffic lights to give priority for a road because the
city traffic networks often exceed the capacity and one avoids a collision between vehicles.
Brockfeld et al. have studied optimizing traffic lights for city traffic by using a CA traffic
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model [10]. They have clarified the effect of signal control strategy on vehicular traffic. Also,
they have shown that the city traffic controlled by traffic lights can be reduced to a simpler
problem of a single-lane roadway. D. W. Huang and W. N. Huang have studied the traffic
flow controlled by signals on a single-lane roadway by using Nagel-Schreckenberg model
[11]. Sasaki and Nagatani have investigated the traffic flow on a single-lane roadway with
traffic lights by using the optimal velocity model [12]. They have derived the relationship
between the road capacity and jamming transition. Until now, one has studied the periodic
traffic controlled by a few traffic lights. It has been concluded that the periodic traffic
does not depend on the number of traffic lights. Very recently, Lammer and Helbing have
studied the vehicular flow by the self-control of traffic signals in urban road networks
[13].

In real traffic, the vehicular traffic depends highly on the configuration of traffic
lights and the priority of roadways. In the dilute limit of vehicular density, a few works
have been done for the traffic of vehicles moving through an infinite series of traffic lights
with the same interval. The effect of cycle time on vehicular traffic has been clarified by
using the nonlinear-map models [14–18]. Also, it has been shown that the heterogeneity
of signal’s interval and irregular split have the important effects on vehicular traffic
[19].

The deterministic CA model has been presented for the vehicular traffic through a
series of traffic lights at the synchronized strategy for various values of vehicular density
[20]. The dependence of the travel time on both cycle time and density has been clarified.
The effect of a slow vehicle on the traffic flow through a series of signals has been
investigated [21]. Also, it has been shown that the fundamental diagram depends a little
on the cycle time for an intermediate value of the cycle time [20]. It has been found
that the dynamic transition occurs from the undersaturated traffic, through the saturated
traffic, to the oversaturated traffic [20]. However, it is little known how the dynamic
transition depends on the signal’ characteristics for the traffic flow through a series of
signals. Also, it is unknown how the dynamic transition varies with the cycle time at the
green-wave strategy. It will be necessary and important to study the dynamic transition and
the fundamental diagram for the traffic flow through a series of signals at the green-wave
strategy.

Until now, the traffic flow controlled by a few signals has been studied. Also, the traffic
flow through the series of signals controlled by split 0.5 and zero offset has been investigated
with the use of CA model. The effects of split and offset on traffic flow through the series of
signals are known little. Also, the dependence of the fundamental diagram on the cycle time,
the split, and the offset is unclear.

In order to study the effect of offset on the traffic flow, it is necessary to take into
account the series of signals because the phase shift varies from signal to signal at the green-
wave strategy.

In this paper, we take into account the split and offset. We clarify the effect of split
and offset on the traffic flow. We study the fundamental diagram and dynamic transitions
for traffic flow through a series of traffic lights at the synchronized and green-wave strategies
by using the CA model described by the difference equation. We clarify the dependence of
dynamic transition on the signal’s characteristics. We show how the fundamental diagram
and transition points vary with the cycle time, split, and phase shift of signals. Especially,
we investigate the dynamic transitions and fundamental diagram at a high value of the cycle
time.
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2. CA Model and Difference Equation

We consider the flow of vehicles going through the series of traffic lights on one-dimensional
lattice. Each vehicle does not pass over other vehicles. The traffic lights are positioned
homogeneously on a roadway. The interval between signals has a constant value and is
given by l. All traffic lights change from red (green) to green (red) with a fixed time period
(1 − sp)ts (spts). The period of green is spts and the period of red is (1 − sp)ts. Time ts is called
the cycle time and fraction sp represents the split which indicates the ratio of green time to
cycle time.

We apply the Fukui-Ishibashi model to the vehicular motion [22]. The Fukui-Ishibashi
model is not stochastic but deterministic. We use the deterministic CA model in place of the
stochastic Nagel-Schreckenberg model [3] because the dynamic transition occurs clearly in
the deterministic model. We extend the deterministic CA model to take into account traffic
lights. We define the position of vehicle i at time t as xi(t)where x, i, and t are an integer. The
velocity takes the integer value ranging from 0 to vmax. The velocity depends on the headway.
If headway Δxi(t)(= xi+1(t) − xi(t)) is larger than the maximum velocity, the vehicle moves
with the maximum velocity. If the headway is less than the maximum velocity, the vehicle
moves with velocity Δxi(t) − 1.

When a vehicle arrives at a traffic light and the traffic light is red, the vehicle stops at
the position of the traffic light. Then, when the traffic light changes from red to green, the
vehicle goes ahead. On the other hand, when a vehicle arrives at a traffic light and the traffic
light is green, the vehicle does not stop and goes ahead without changing speed. The position
of the closest signal before vehicle i at time t is given by

xi,s(t) =
{
int

(
xi(t)
l

)
+ 1

}
l. (2.1)

We set split as sp = 0.5. Then, the position of vehicle i at time t + 1 is given by

xi(t + 1) = min[xi(t) + vmax, xi+1(t) − 1]
{
1 − ϑ

(
sin

(
2πt
ts

))}

+min[xi(t) + vmax, xi+1(t) − 1, xi,s(t) − 1]ϑ
(
sin

(
2πt
ts

))
.

(2.2)

Here, ϑ(t) is the step function. It takes one if t > 0 and zero if t ≤ 0. min[A,B] is a minimum
function and takes the minimum value within A and B.

If the signal just before vehicle i is green, ϑ(sin(2πt/ts)) = 0 and xi(t+ 1) = min[xi(t) +
vmax, xi+1(t) − 1]. Otherwise, if the signal just before vehicle i is red, ϑ(sin(2πt/ts)) = 1 and
xi(t + 1) = min[xi(t) + vmax, xi+1(t) − 1, xi,s(t) − 1]. Then, if the headway is larger than vmax,
vehicle i stops at site xi,s(t) − 1 just before the signal. Also, if xi+1(t) is higher than xi,s(t),
vehicle i stops at site xi,s(t) − 1 just before the signal. Thus, (2.2) presents the CA model
for the vehicular traffic through a series of traffic lights. Equation (2.2) is a single difference
equation. Until now, the CA model for the signal traffic has been described by a set of CA
rules. However, model (2.2) is of great advantage to simulate the traffic flow because the
difference equation is simple.

We extend (2.2) to take into account the phase shift and split. The signal timing is
controlled by offset time toffset. The offset time means the difference of phase shifts between
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Figure 1: Schematic illustration of periodic functions. (a) Sine wave. (b) Generalized periodic function.

two successive signals. In the green wave (delayed) strategy, the phase shift of signal n is
given by tphase(n) = ntoffset where the phase shift is indicated by tphase(n). Then, the signal
switches from red to green in green wave way. The phase shift increases with signal n.

The position of vehicle i at time t + 1 is given by

xi(t + 1) = min[xi(t) + vmax, xi+1(t) − 1]

×
{
1 − ϑ

[
t + tphase(n) − ts

{
int

(
t + tphase(n)

ts

)}
− spts

]}

+min[xi(t) + vmax, xi+1(t) − 1, xi,s(t) − 1]

× ϑ

[
t + tphase(n) − ts

{
int

(
t + tphase(n)

ts

)}
− spts

]
.

(2.3)

Periodic function sin(2πt/ts) in (2.2) is replaced by generalized periodic function [t +
tphase(n) − ts{int((t + tphase(n))/ts)} − spts] in (2.3). In the generalized periodic function, the
phase shifts are included explicitly. However, if one extends periodic function sin(2πt/ts)
to take into account the split, one cannot include the split explicitly. Figure 1(a) shows the
schematic illustration of traffic sign given by a sine wave in (2.2). The cycle time is given
by ts. The split is sp = 0.5. Figure 1(b) shows the schematic illustration of the generalized
periodic function in (2.3). The split is set explicitly by any value sp. Also, the phase shift
is displayed by tphase. The green and red signs are illustrated by the green and red colors,
respectively.

When sp = 0.5 and tphase = 0, (2.3) reduces to (2.2). If there are no signals on the
roadway, (2.3) reduces to the CA model of Fukui and Ishibashi

xi(t + 1) = min[xi(t) + vmax, xi+1(t) − 1], (2.4)

where vmax is the maximum velocity and an integer.
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It will be expected that the vehicular traffic exhibits a complex behavior by dynamic
transitions. We study how the vehicular traffic changes by varying the cycle time, split, phase
shift, and vehicular density.

Until now, CA models with no signals and with a few signals have been proposed.
In the previous work [20], we have presented the CA model with the series of signals at the
synchronized strategy. The split and the offset (phase shift) have been not taken into account.
Generally, it is necessary and important to take into account the split and the offset (phase
shift). In this study, we have proposed the CA model with the series of signals to take into
account the split and the offset of signals. The conventional CA model is described in terms
of the set of rules. However, our CA model is given by the difference equation (2.3). The
difference equation (2.3) is the first for the traffic flow controlled by the series of signals.

3. Simulation Result

We investigate the fundamental diagram, the traffic states, and the dynamic transitions by
using (2.3). First, we study the traffic flow at the synchronized strategy for the signal control.
Second, we investigate the traffic flow controlled by signals at the green-wave strategy.

We consider the city traffic network controlled by traffic signals. There always exist
signals at a crossing. Vehicles move ahead through a series of signals at a street. We simulate
the traffic flow on a single-lane roadway with many signals. We set the direction of vehicle
flow as x-axis. A signal changes alternately from green (red) to red (green). We ignore the
yellow signal. We consider the periodic boundary for the vehicular flow on a single-lane
roadway. When vehicles reach the right edge of the roadway, they return the left edge of the
roadway. We calculate the positions of all vehicles using (2.3).

3.1. Synchronized Strategy

In the synchronized strategy, all signals change simultaneously. We calculate the current
(flow) versus density for various values of cycle time ts. We set the interval between signals
as l = 40 and the maximal velocity as vmax = 4. We define the dimensionless cycle time
as Ts = tsvmax/l. It is the ratio of cycle time to the moving time between a signal and its
next signal. This means that the unit of time is the moving time over the interval between
two signals. It has an advantage that the dimensionless cycle time does not vary even if the
interval between two signals or maximum velocity changes. Also, the dimensionless offset
time is defined as τ = toffsetvmax/l. Figure 2(a) shows the plots of mean current against density
for dimensionless cycle time Ts = 3.0 where the split is sp = 0.5, the offset time is τ = 0.0, and
the road length is L = 4000. The solid curve indicates the current profile. For comparison, the
current for the vehicular traffic with no signals is shown by the chain line. The current profile
changes from the triangle to the trapezoid by adding the signals. The traffic states change
from the undersaturated traffic, through the saturated traffic, to the oversaturated traffic. In
the unsaturated traffic region between points 0–b, the current increases with density, two
distinct states occur, and the traffic state changes at point a. In the saturated traffic region
between points b-c, the current keeps a constant value. In the oversaturated traffic region
between points c-1, the current decreases with increasing density, two distinct states appear,
and the traffic state changes at point d. Thus, there exist five distinct traffic states and dynamic
transitions occur at four points a–d for dimensionless cycle time Ts = 3.0.
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Figure 2: (a) Plots of mean current against density for Ts = 3.0 where the split is sp = 0.5, the offset time is
τ = 0.0, and the road length is L = 4000. The solid curve indicates the current profile. For comparison, the
current for the vehicular traffic with no signals is shown by the chain curve. (b) Fundamental diagrams
for the dimensionless cycle times Ts = 4.0, 5.0, 8.0, 10.0.

We study the variation of fundamental diagram with the dimensionless cycle time.
Figure 2(b) shows the fundamental diagrams for the dimensionless cycle times Ts = 4.0,
5.0, 8.0, 10.0. The fundamental diagram depends greatly on the dimensionless cycle time.
Especially, the fundamental diagram at high values of dimensionless cycle time is definitely
different from that at low value of the cycle time. With increasing the cycle time, the current
profile changes from the typical trapezoid to the triangle.

We study the traffic pattern (vehicular trajectories) for various values of density at
dimensionless cycle time Ts = 3.0. Figure 3 shows the trajectories of vehicles between x =
400 and x = 600 at various values of density for cycle time Ts = 3.0 where the road length
is L = 4000, the interval between signals is l = 40, and the maximal velocity is vmax = 4.
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Figure 3: Trajectories of vehicles between x = 400 and x = 600 at various values of density for cycle time
Ts = 3.0 where the road length is L = 4000, the interval between signals is l = 40, and the maximal velocity
is vmax = 4. Diagrams (a)–(e) are obtained, respectively, at densities (a) ρ = 0.05, (b) ρ = 0.15, (c) ρ = 0.35,
(d) ρ = 0.6, and (e) ρ = 0.8 for the fundamental diagram in Figure 2(a).

Diagrams (a)–(e) are obtained, respectively, at densities (a) ρ = 0.05, (b) ρ = 0.15, (c) ρ = 0.35,
(d) ρ = 0.6, and (e) ρ = 0.8 for the fundamental diagram in Figure 2(a). In diagram (a), a pair
of two vehicles move together and stop every two signals. The traffic pattern (a) is typical for
the traffic state at the region 0-a in Figure 2(a). In diagram (b), a group of six vehicles move
together. However, the group breaks up into two subgroups at a signal and merges again
at the next to next signal. The breakup and coalescence are repeated. The traffic pattern (b)
is typical for the traffic state at the region a-b in Figure 2(a). The traffic state (a) changes to
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the traffic state (b) at transition point b in Figure 2(a). In diagram (c), the stop- and go-wave
is induced by stopping at the signal. The vehicles stop temporarily by the stop- and go-wave
before they reach the signal. The stop- and go-wave disappears within the interval between
two signals. In the traffic state (c), the traffic current saturates and keeps the maximum value.
The traffic pattern (c) is typical for the traffic state at the region b-c in Figure 2(a). At the
transition point b, the traffic state (b) changes to the traffic state (c). In diagrams (d) and (e),
the stop- and go-wave propagates backward through signals. In diagram (d), the region of the
moving vehicles breaks up and coalescences, while the region of moving vehicles propagates
backward with no breakup in diagram (e). At transition point c in Figure 2(a), the traffic state
(c) changes to the traffic state (d). The traffic state (d) changes to the traffic state (e) at the
transition point d. Thus, the traffic state changes at the transition points a–d. The vehicular
trajectories change highly with density.

We study the dependence of the maximum current on the dimensionless cycle time.
Also, we study the effect of the split sp on the maximum current Qmax and the dynamic
transitions. Figure 4(a) shows the plot of the maximum currents Qmax against dimensionless
cycle time Ts at splits sp = 0.25, 0.5, 0.75. The squares, circles, and triangles indicate,
respectively, the maximum currents at sp = 0.25, 0.5, 0.75. At split sp = 0.5, the maximum
current goes up and down with increasing dimensionless cycle time and the width decreases
with increasing dimensionless cycle time. The profile displays a saw-toothed shape. When
Ts approaches to an infinity, the maximum current approaches to 0.4. With increasing the
split, the maximum current increases. When the split goes to infinity, the maximum currents
at sp = 0.25, 0.5, 0.75 approach, respectively, to 0.2, 0.4, 0.6. We rescale the profiles of the
maximum current versus the dimensionless cycle time as Figure 4(b).

Figure 4(b) shows the plots of rescaled maximum current Qmax/2sp against rescaled
dimensionless cycle time Tssp for Figure 4(a). All rescaled maximum currents collapse on a
single curve. The maximum current scales as

Qmax = 2spf
(
Tssp

)
, (3.1)

where f(x) is the scaling function.
In the synchronized strategy, the maximum current is proportional to the split. Also,

the dependence of the maximum current on both cycle time and split is determined only
by the product Tssp. It is important how the saturated traffic disappears with density. We
study the dependence of transition points b and c on the dimensionless cycle time. Also,
we study the dependence of transition points b and c on the split sp. Figure 5(a) shows
the plots of the transition densities ρc,b and ρc,c against dimensionless cycle time at splits
sp = 0.25, 0.5, 0.75. The open squares, open circles, and open triangles indicate, respectively,
the transition density ρc,b of the dynamic transition from the undersaturated traffic to the
saturated traffic at splits sp = 0.25, 0.5, 0.75. The full squares, full circles, and full triangles
represent, respectively, the transition density ρc,c of the dynamic transition from the saturated
traffic to the oversaturated traffic at splits sp = 0.25, 0.5, 0.75.

At split sp = 0.5, the transition point ρc,b keeps constant value 0.2 for Ts > 1.8. The
transition point ρc,c varies up and down for Ts < 4, then decreases linearly with increasing
Ts, and keeps the constant value 0.2 for Ts > 7.8. The transition point ρc,c coalescences
with the transition point ρc,b at Ts = 7.8. The saturated traffic disappears at Ts = 7.8 for
sp = 0.5. In the result, the fundamental diagram changes from the trapezoid to the triangle
at dimensionless cycle time Ts = 7.8. We rescale the profiles of the transition points versus
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Figure 4: (a) Plot of the maximum currentsQmax against dimensionless cycle time Ts at splits sp = 0.25, 0.5,
0.75. The squares, circles, and triangles indicate, respectively, the maximum currents at sp = 0.25, 0.5, 0.75.
(b) Plots of rescaled maximum current Qmax/2sp against rescaled dimensionless cycle time Tssp for (a).

the dimensionless cycle time as Figure 5(b). Figure 5(b) shows the plots of transition points
ρc,b and ρc,c against rescaled dimensionless cycle time Tssp for Figure 5(a). The transition
points ρc,b at sp = 0.25, 0.5, 0.75 collapse on a single curve. Also, the transition points ρc,c at
sp = 0.25, 0.5, 0.75 collapse on a single curve. The transition points ρc,b and ρc,c scale as

ρc,b = g1
(
Tssp

)
,

ρc,c = g2
(
Tssp

)
,

(3.2)

where g1(x) and g2(x) are the scaling functions for the two dynamic transitions.
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(a) (b)

Figure 5: (a) Plots of the transition densities ρc,b and ρc,c against dimensionless cycle time Ts at splits
sp = 0.25, 0.5, 0.75. The open squares, open circles, and open triangles indicate, respectively, the transition
density ρc,b of the dynamic transition from the undersaturated traffic to the saturated traffic at splits sp =
0.25, 0.5, 0.75. The full squares, full circles, and full triangles represent, respectively, the transition density
ρc,c of the dynamic transition from the saturated traffic to the oversaturated traffic at splits sp = 0.25, 0.5,
0.75. (b) Plots of transition points ρc,b and ρc,c against rescaled dimensionless cycle time Tssp for (a).

In the synchronized strategy, the transition points ρc,b and ρc,c depend only on the
rescaled cycle time Tssp. If the product Tssp of dimensionless cycle time Ts by split sp is the
same value, the dynamic transition between the undersaturated traffic and the saturated
traffic occurs at the same value of the transition density. Also, when the product Tssp of
dimensionless cycle time Ts by split sp is the same value, the dynamic transition between
the saturated traffic and the oversaturated traffic occurs at the same value of the transition
density. Thus, the dynamic transitions are governed only by the product Tssp.

3.2. Green-Wave Strategy

We study the traffic flow controlled by signals at the green-wave strategy. We investigate
the effect of the offset time (phase shift difference) on the traffic flow. Signals vary from the
upstream to the downstream and vice versa with constant value toffset of the phase shift
difference. We define the dimensionless offset time as τ = toffsetvmax/l. We calculate the
current (flow) versus density for various values of cycle time ts at dimensionless offset time
τ = 1.0. We set the interval between signals as l = 40 and the maximal velocity as vmax = 4.
The dimensionless cycle time is defined as Ts = tsvmax/l. Figure 6(a) shows the plots of mean
current against density at offset time τ = 1.0 and Ts = 3.0 where the split is sp = 0.5 and
the road length is L = 4000. The solid curve indicates the current profile. For comparison,
the current for the vehicular traffic with no signals is shown by the chain curve. Figure 6(a)
is compared with Figure 2(a) at the synchronized strategy. The traffic states change from
the undersaturated traffic, through the saturated traffic, to the oversaturated traffic. In the
unsaturated traffic region between points 0–b, the current increases with density, only a state
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Figure 6: (a) Plots of mean current against density at offset time and where the split is sp = 0.5 and
the road length is L = 4000. The solid curve indicates the current profile. For comparison, the current
for the vehicular traffic with no signals is shown by the chain curve. (b) Fundamental diagrams for the
dimensionless cycle times.

occurs, and the traffic state does not change at point a in Figure 2(a). In the saturated traffic
region between points b-c, the current keeps a constant value. In the oversaturated traffic
region between points c–1, the traffic state does not change at point d in Figure 2(a). Thus,
there exist three distinct traffic states and dynamic transitions occur at two points b and c
for dimensionless cycle time Ts = 3.0. Thus, the fundamental diagram in Figure 2(a) for the
synchronized strategy changes to that in Figure 6(a) for τ = 1.0.

We study the variation of fundamental diagram at τ = 1.0 with the dimensionless cycle
time. Figure 6(b) shows the fundamental diagrams at τ = 1.0 for the dimensionless cycle
times Ts = 4.0, 5.0, 8.0, 10.0. Figure 6(b) is compared with Figure 2(b) at the synchronized
strategy. The fundamental diagram depends greatly on the dimensionless cycle time.
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Especially, the fundamental diagram at high values of dimensionless cycle time is definitely
different from that at low value of the cycle time. With increasing the cycle time, the current
profile changes from the typical trapezoid to the triangle. However, the dependence of tran-
sition densities on the dimensionless cycle time is definitely different from that in Figure 2(b)
at the synchronized strategy.

We study the dependence of transition points b and c on the split sp at τ = 1.0.
Figure 7(a) shows the plots of the transition densities ρc,b and ρc,c against dimensionless
cycle time at splits sp = 0.25, 0.5, 0.75 at τ = 1.0. The open squares, open circles, and
open triangles indicate, respectively, the transition density ρc,b of the dynamic transition
from the undersaturated traffic to the saturated traffic at splits sp = 0.25, 0.5, 0.75. The full
squares, full circles, and full triangles represent, respectively, the transition density ρc,c of the
dynamic transition from the saturated traffic to the oversaturated traffic at splits sp = 0.25,
0.5, 0.75. We rescale the profiles of the transition points versus the dimensionless cycle time
as Figure 7(b). Figure 7(b) shows the plots of rescaled transition points ρc,b − (1 − sp)/5 and
ρc,c − (1 − sp)/5 against rescaled dimensionless cycle time Tssp for Figure 7(a). The rescaled
transition points scale as those at the synchronized strategy in Figure 5(b). The transition
points ρc,b at sp = 0.25, 0.5, 0.75 collapse on a single curve. Also, the transition points ρc,c at
sp = 0.25, 0.5, 0.75 collapse on a single curve. The transition points ρc,b and ρc,c scale as

ρc,b =
1 − sp

5
+ g3

(
Tssp

)
,

ρc,c =
1 − sp

5
+ g4

(
Tssp

)
,

(3.3)

where g3(x) and g4(x) are the scaling functions for the two dynamic transitions.
All rescaled transition points keep 0.2 for Tssp ≥ 3.0. The fundamental diagram

changes from the trapezoid to the triangle at point ρc,bc (Tssp = 3.0).
We calculate the current (flow) versus density for various values of cycle time ts at

a negative value of dimensionless offset time τ = −1.0. Figure 8 shows the fundamental
diagrams at τ = −1.0 for the dimensionless cycle times Ts = 4.0, 5.0, 8.0, 10.0. Figure 8
is compared with Figure 2(b) at the synchronized strategy and Figure 6(b) at τ = 1.0. The
fundamental diagram depends greatly on the dimensionless offset time τ . The fundamental
diagram at τ = −1.0 is definitely different from that at τ = 0.0 and that at τ = 1.0. With
increasing the cycle time, the current profile changes from the typical trapezoid to the triangle.
However, the dependence of transition densities on the dimensionless cycle time is definitely
different from that in Figure 6(b) at τ = 1.0.

We study the dependence of transition points b and c on the split sp at τ = −1.0.
Figure 9(a) shows the plots of the transition densities ρc,b and ρc,c against dimensionless cycle
time at splits sp = 0.25, 0.5, 0.75 at τ = −1.0. We rescale the profiles of the transition points
versus the dimensionless cycle time as Figure 9(b). Figure 9(b) shows the plots of rescaled
transition points ρc,b + (1 − sp)/5 and ρc,c + (1 − sp)/5 against rescaled dimensionless cycle
time Tssp for Figure 9(a). The transition points ρc,b at sp = 0.25, 0.5, 0.75 collapse on a single
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Figure 7: (a) Plots of the transition densities ρc,b and ρc,c against dimensionless cycle time at splits sp = 0.25,
0.5, 0.75 at τ = 1.0. (b) Plots of rescaled transition points ρc,b−(1−sp)/5 and ρc,c−(1−sp)/5 against rescaled
dimensionless cycle time Tssp for (a).

curve. Also, the transition points ρc,c at sp = 0.25, 0.5, 0.75 collapse on a single curve. The
transition points ρc,b and ρc,c scale as

ρc,b = −1 − sp

5
+ g5

(
Tssp

)
,

ρc,c = −1 − sp

5
+ g6

(
Tssp

)
,

(3.4)

where g5(x) and g6(x) are the scaling functions for the two dynamic transitions.
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Figure 8: Fundamental diagrams at τ = −1.0 for the dimensionless cycle times Ts = 4.0, 5.0, 8.0, 10.0.

We study the dependence of the transition points ρc,b and ρc,c on the dimensionless
cycle time for various values of the offset time τ . Figure 10(a) shows the plots of transition
densities ρc,b and ρc,c against the dimensionless cycle time for τ = 0.0, 1.0, 2.0, 3.0 at split
sp = 0.5. Figure 10(b) shows the plot of the rescaled transition density ρc,b−τ(1−sp)/5 against
the rescaled cycle time Tssp − τ for Figure 10(a). The transition points ρc,b for τ = 0.0, 1.0, 2.0,
3.0 collapse on a single curve. Figure 10(c) shows the plot of the rescaled transition density
ρc,c−τ(1−sp)/5 against the rescaled cycle time Tssp+ τ for Figure 10(a). The transition points
ρc,c for τ = 0.0, 1.0, 2.0, 3.0 approach to a single curve. The transition points ρc,b and ρc,c scale
for 0 ≤ τ ≤ 3.0 as

ρc,b =
τ
(
1 − sp

)
5

+ gb
(
Tssp − τ

)
, (3.5)

ρc,c =
τ
(
1 − sp

)
5

+ gc
(
Tssp + τ

)
, (3.6)

where gb(x) and gc(x) are the scaling functions for the two dynamic transitions.
The transition points ρc,b and ρc,c scale for −1.0 ≤ τ ≤ 0.0 as (3.5) and (3.6). The scaling

forms (3.5) and (3.6) of transition points ρc,b and ρc,c hold only for −1.0 ≤ τ ≤ 3.0. The scaling
forms are not satisfied for the values of the dimensionless offset time except for −1.0 ≤ τ ≤ 3.0
but the profiles of the transition points versus the dimensionless cycle time deviate from the
scaling forms for τ < −1.0 and τ > 3.0.

Thus, we obtain the following finding. The transition point from the undersaturated
traffic to the saturated traffic scales as (3.5) for any values of split and offset time. Also, the
transition point from the saturated traffic to the oversaturated traffic scales as (3.6) for any
values of split and offset time.
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Figure 9: (a) Plots of the transition densities ρc,b and ρc,c against dimensionless cycle time at splits sp =
0.25, 0.5, 0.75 at τ = −1.0. (b) Plots of rescaled transition points ρc,b + (1 − sp)/5 and ρc,c + (1 − sp)/5 against
rescaled dimensionless cycle time Tssp for (a).

4. Summary

The deterministic cellular automaton model was presented for vehicular traffic through the
series of traffic signals. The CA model is described by the difference equation. We have
studied the effect of both vehicular density and signal’s characteristics on dynamic behavior
of vehicles by using the CAmodel. The fundamental diagramwas derived for various values
of the cycle time. The effect of the dimensionless cycle time on the fundamental diagram was
clarified. It was found that the fundamental diagram changes from the typical trapezoid to
the triangle with increasing the dimensionless cycle time. It was shown that the fundamental



16 Discrete Dynamics in Nature and Society

0.8

0.6

0.4

0.2

0
1086420

Ts

ρ
c,
b
,ρ

c,
c

sp = 0.5

ρc,c : τ = 0
ρc,c : τ = 1
ρc,c : τ = 2
ρc,c : τ = 3

ρc,b
ρc,b
ρc,bc,b
ρc,b

c,b

(a)

ρ
c,
b
−τ

(1
−s

p
)/

5

0.8

0.6

0.4

0.2

0
543210

sp = 0.5

τ = 0
τ = 1

τ = 2
τ = 3

Tssp − τ

(b)

ρ
c,
c
−τ

(1
−s

p
)/

5

0.8

0.6

0.4

0.2

0
543210

Tssp + τ

τ = 0
τ = 1

τ = 2
τ = 3

sp = 0.5

(c)

Figure 10: (a) Plots of transition densities ρc,b and ρc,c against the dimensionless cycle time for τ = 0.0,1.0,
2.0, 3.0 at split sp = 0.5. (b) Plot of the rescaled transition density ρc,b −τ(1−sp)/5 against the rescaled cycle
time Tssp − τ for (a). (c) Plot of the rescaled transition density ρc,c − τ(1 − sp)/5 against the rescaled cycle
time Tssp + τ for (a).

diagram also depends highly on the split and the dimensionless offset time. It was found that
the transition densities from the undersaturated traffic to the saturated traffic and from the
saturated traffic to the oversaturated traffic scale as (3.5) and (3.6) for various values of both
split and offset time.

The deterministic CA model proposed by this paper will be useful for studying the
traffic flow through a series of signals controlled by the cycle time, the split, and the offset
time because it is described by the difference equation. The study for the dependence of the
dynamic transitions on the cycle time, the split, and the offset time is the first. Especially, the
change of the fundamental diagram from the trapezoid to the triangle will be interesting.
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