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A more realistic two-stage model for binge drinking problem is introduced, where the youths with
alcohol problems are divided into those who admit the problem and those who do not admit it.
We also consider the direct transfer from the class of susceptible individuals towards the class
of admitting drinkers. Mathematical analyses establish that the global dynamics of the model
are determined by the basic reproduction number, R0. The alcohol-free equilibrium is globally
asymptotically stable, and the alcohol problems are eliminated from the population if R0 < 1.
A unique alcohol-present equilibrium is globally asymptotically stable if R0 > 1. Numerical
simulations are also conducted in the analytic results.

1. Introduction

Young people’s binge drinking problem is a major concern to public health. Recently, US
surveys indicate that approximately 90% of college students have consumed alcohol at least
once [1], and more than 40% of college students have engaged in binge drinking [2, 3]. The
binge drinking refers to youths in 17–30 age group who drink a large amount of alcohol and
become so drunk; they are likely to exhibit antisocial behavior [4]. Although there have been
many attempts to reduce the problem, alcohol abuse by college students has persisted and
in some cases increased over the past several decades [5]. Prior studies have indicated that
heavy alcohol drinkers are likely to engage in risky sexual behaviours and more likely to get
sexually transmitted infection than social drinkers [6, 7]. There is a strong medical evidence
that treatment of individuals with alcohol problems is a major issue [8–10].

Thus, it is very important to use a mathematical method to study the binge drinking
problems in youths. A simple model for alcohol treatment is presented by Sanchez et al.
[11]. Since then, there have been numerous studies investigating campus drinking and



2 Discrete Dynamics in Nature and Society

the associated consequences [12–15]. Manthey et al. [12] focus on a college campus, divide
the student population into three classes: nondrinkers, social drinkers and problem drinkers,
and show that campus alcohol abuse may be reduced by minimizing the ability of problem
drinkers to directly recruit nondrinkers. Cintron-Arias et al. [13] focus on situations where
relapse rates are high and conclude that the systematic removal of individuals from high-
risk environments, or the development of programs that limit access or reduce the residence
times in such environments (or both approaches combined), may reduce the level of alcohol
abuse. Mubayi et al. [14] show that if the relative residence times of moderate drinkers
are distributed randomly between low- and high-risk environments, then the proportion of
heavy drinkers is likely to be higher than expected. Mulone and Straughan [15] investigate a
model for binge drinking taking into account admitting and nonadmitting drinkers. But the
global stability of binge drinking model is not discussed in the literature.

Motivated by the binge drinkingmodel in [15], we develop amore realistic model with
two stages. Drinking is often encouraged by peer pressure. A susceptible individual acquires
alcohol problems through the direct contact with the admitting drinker or the nonadmitting
drinker. The new drinker can become either the admitting drinker or the nonadmitting
drinker. So we consider the direct transfer from the class of susceptible individuals towards
the class of admitting drinkers; furthermore, we study the global dynamics of the model. The
reason to introduce this new direct transfer is that about one-third of the American population
admit to drinking problems, 17.8% of the population admit to the binge drinking problem
[16]. Therefore, this fact cannot be neglected in the binge drinking model.

The organization of this paper is as follows. In the next section, the binge drinking
model with two stages and some basic properties are derived. In Section 3, the existence and
the global stability of equilibria are investigated. Some numerical simulations are given in
Section 4. Some discussions are given in Section 5.

2. The Model

2.1. System Description

The total population is divided into four compartments, namely, the susceptible compartment
of those who do not drink or drink onlymoderately, denoted by S(t), those who drink heavily
at least some of the time but do not admit having a problem, denoted by A1(t), those who
drink heavily and admit having a problem, denoted by A2(t), and those people in treatment,
denoted by R(t). The total number of population at time t is given by

N(t) = S(t) +A1(t) +A2(t) + R(t). (2.1)

The model structure is shown in Figure 1. The transfer diagram leads to the following system
of ordinary differential equations:

Ṡ = μN − S
(
βA1 + γA2

)

N
− μS,

Ȧ1 =

(
1 − p

)
S
(
βA1 + γA2

)

N
− (

α + μ
)
A1,
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μA1

A1

S
μN

ηR

μS

μA2

RA2

πA2

μR

(1−p)S(βA1+γA2)
N

pS(βA1+γA2)
N

αA1

Figure 1: Transfer diagram of model (2.2).

Ȧ2 =
pS

(
βA1 + γA2

)

N
+ ηR + αA1 −

(
π + μ

)
A2,

Ṙ = πA2 −
(
μ + η

)
R,

(2.2)

where μN is the number of individuals entering into the system in a given time interval (say
each year), so μ represents the rate of entry. Since we are dealing with youths, we assume that
the death rate is negligible, and so the leaving rate is also μ. A susceptible individual can be
turned to drink through direct contact with an admitting drinker or a nonadmitting drinker. β
is the transmission coefficient for the individuals who do not admit to have alcohol problems,
γ is the transmission coefficient for the individuals who admit to have these problems. We
assume that β > γ due to the fact that they are more likely to be unaware of their condition.
α is the rate at which represents those with the alcohol problems admitting to have these
problems and then transferring from class A1 to A2, π is that fraction of A2 who go into
treatment, η is that fraction of R who relapse into admitting drinkers (we adopt a linear
relapse term rather than peer pressure since we argue that the relapse is primarily due to
the person), p is the probability of a new drinker to admit having the problem. We may
show that N = S + A1 + A2 + R is constant, and then we introduce the fractions of S,A1, A2,
and R:

s =
S

N
, a1 =

A1

N
, a2 =

A2

N
, r =

R

N
, (2.3)

with s + a1 + a2 + r = 1. Then the system (2.2) becomes

ṡ = μ − s
(
βa1 + γa2

) − μs,

ȧ1 =
(
1 − p

)
s
(
βa1 + γa2

) − (
α + μ

)
a1,

ȧ2 = ps
(
βa1 + γa2

)
+ ηr + αa1 −

(
π + μ

)
a2,

ṙ = πa2 −
(
η + μ

)
r.

(2.4)

As system (2.4) is equivalent to system (2.2), we only need to study system (2.4).
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2.2. Basic Properties

2.2.1. Invariant Region

Adding all the equations of system (2.4) gives

dN

dt
= 0. (2.5)

Thus, the total population N is a constant. Since system (2.4) monitors human
population, it is plausible to assume that all its state variables and parameters are nonnegative
for all t ≥ 0. Further, it can be shown that the region

Ω =
{
(s(t), a1(t), a2(t), r(t)) ∈ R4

+ : s(t) + a1(t) + a2(t) + r(t) ≤ 1
}

(2.6)

is positively invariant. Thus, each solution of system (2.4), with initial conditions in Ω,
remains there for t ≥ 0. Therefore, the ω-limit sets of the solutions of system (2.4), in Ω,
are contained in Ω. Furthermore, in Ω, the usual existence, uniqueness, and continuation
results hold for the system, so that the system (2.4) is well posed mathematically and
epidemiologically [17]. So we consider the dynamics of system (2.4) on the set Ω in this
paper.

2.2.2. Positivity of Solutions

For system (2.4), it is necessary to prove that all the state variables are positive, so that the
solutions of the system with positive initial conditions remain positive for all t ≥ 0. We thus
state the following lemma.

Lemma 2.1. If s(0) > 0, a1(0) > 0, a2(0) > 0, and r(0) > 0, the solutions s(t), a1(t), a2(t), and
r(t) of system (2.4) are positive for all t ≥ 0.

Proof. Under the given initial conditions, it is easy to prove that the solutions of system (2.4)
are positive; if not, we assume a contradiction: that there exists a first time t1 such that

s(t1) = 0, s′(t1) < 0, a1(t) > 0, a2(t) > 0, r(t) > 0, 0 < t < t1, (2.7)

there exists a t2,

a1(t2) = 0, a′
1(t2) < 0, s(t) > 0, a2(t) > 0, r(t) > 0, 0 < t < t2, (2.8)

there exists a t3,

a2(t3) = 0, a′
2(t3) < 0, s(t) > 0, a1(t) > 0, r(t) > 0, 0 < t < t3, (2.9)
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and there exists a t4,

r(t4) = 0, r ′(t4) < 0, s(t) > 0, a1(t) > 0, a2(t) > 0, 0 < t < t4. (2.10)

In the first case, we have

s′(t1) = μ > 0, (2.11)

which is a contradiction, meaning that s(t) > 0, t ≥ 0. In the second case, we have

a′
1(t2) =

(
1 − p

)
γa2(t)s(t) > 0, (2.12)

which is a contradiction, meaning that a1(t) > 0, t ≥ 0. Similarly, it can be shown that a2(t) > 0
and r(t) > 0 for all t ≥ 0.

Thus, the solutions s(t), a1(t), a2(t), and r(t) of system (2.4) remain positive for all
t > 0.

3. Analysis of the Model

There are one alcohol-free equilibrium E0 and one alcohol-present equilibrium E∗ for system
(2.4).

3.1. Alcohol-Free Equilibrium and the Reproduction Number

The model has an alcohol-free equilibrium given by

E0 = (1, 0, 0, 0). (3.1)

In the following, the basic reproduction number of system (2.4)will be obtained by the next-
generation matrix method formulated in [18].

Let x = (a1, a2, r, s)T , then system (2.4) can be written as

dx

dt
= F(x) − V(x), (3.2)
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where

F(x) =

⎛

⎜
⎜
⎝

(
1 − p

)(
βa1 + γa2

)
s

p
(
βa1 + γa2

)
s

0
0

⎞

⎟
⎟
⎠,

V(x) =

⎛

⎜
⎜
⎝

(
α + μ

)
a1(

π + μ
)
a2 − αa1 − ηr(

η + μ
)
r − πa2

μs +
(
βa1 + γa2

)
s − μ

⎞

⎟
⎟
⎠.

(3.3)

The Jacobian matrices of F(x) and V(x) at the alcohol-free equilibrium E0 are, respectively,

DF(E0) =
(
F3×3 0
0 0

)
, DV(E0) =

(
V3×3 0

β β 0 μ

)
, (3.4)

where

F =

⎛

⎝

(
1 − p

)
β

(
1 − p

)
γ 0

pβ pγ 0
0 0 0

⎞

⎠, V =

⎛

⎝
α + μ 0 0
−α π + μ −η
0 −π η + μ

⎞

⎠. (3.5)

The model reproduction number, denoted by R0, is thus given by

R0 = ρ
(
FV −1

)
=

(
1 − p

)
βμ

(
π + η + μ

)
+
(
1 − p

)
γα

(
η + μ

)
+ pγ

(
α + μ

)(
η + μ

)

μ
(
α + μ

)(
π + η + μ

) . (3.6)

Following Theorem 2 of [18], we have the following result on the local stability of E0.

Theorem 3.1. The alcohol-free equilibrium E0 is locally asymptotically stable for R0 < 1 and unstable
otherwise.

3.2. Global Stability of E0

Theorem 3.2. For system (2.4), the alcohol-free equilibrium E0 is globally asymptotically stable if
R0 < 1.

Proof. We use the comparison theorem to prove the global stability of the alcohol-free
equilibrium. The rate of change of the variables (a1, a2, r) of system (2.4) can be rewritten
as

⎛

⎝
ȧ1

ȧ2

ṙ

⎞

⎠ = (F − V )

⎛

⎝
a1

a2

r

⎞

⎠ − (1 − s)

⎛

⎝

(
1 − p

)
β

(
1 − p

)
γ 0

pβ pγ 0
0 0 0

⎞

⎠

⎛

⎝
a1

a2

r

⎞

⎠, (3.7)
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where F and V are defined in (3.5). Since s ≤ 1 for all t ≥ 0 in Ω, then

⎛

⎝
ȧ1

ȧ2

ṙ

⎞

⎠ ≤ (F − V )

⎛

⎝
a1

a2

r

⎞

⎠. (3.8)

Since the eigenvalues of the matrix F − V all have negative real parts (this comes from the
local stability results in Lemma 1 in [18]), then system (2.4) is stable whenever R0 < 1.
So, (a1, a2, r) → (0, 0, 0) as t → ∞. By the comparison theorem [19], it follows that
(a1, a2, r) → (0, 0, 0) and s → 1 as t → ∞. The (s, a1, a2, r) → E0 as t → ∞. So, E0 is
globally asymptotically stable for R0 < 1.

3.3. Alcohol-Present Equilibrium

3.3.1. Existence of the Alcohol-Present Equilibrium

If R0 > 1, system (2.4) has a unique alcohol-present equilibrium E∗(s∗, a∗
1, a

∗
2, r

∗), where

s∗ =
1
R0

,

a∗
1 =

μ
(
1 − p

)

α + μ

(
1 − 1

R0

)
,

a∗
2 =

p
(
α + μ

)(
η + μ

)
+ α

(
1 − p

)(
η + μ

)

(
1 − p

)
μ
(
π + η + μ

) a∗
1,

r∗ =
π

η + μ
a∗
2.

(3.9)

3.3.2. Global Stability of the Alcohol-Present Equilibrium

Theorem 3.3. If R0 > 1, the alcohol-present equilibrium E∗ is globally asymptotically stable.

Proof. To study the global stability of the alcohol-present equilibrium, motivated by [20–22],
we use a Lyapunov function V as follows:

V = x1(s − s∗ ln s) + x2
(
a1 − a∗

1 lna1
)
+ x3

(
a2 − a∗

2 lna2
)
+ x4(r − r∗ ln r). (3.10)

Applying the identity μ = s∗(βa∗
1 + γa∗

2) + μs∗, the derivative of V is given by

V̇ = x1

(
1 − s∗

s

)
ṡ + x2

(
1 − a∗

1

a1

)
ȧ1 + x3

(
1 − a∗

2

a2

)
ȧ2 + x4

(
1 − r∗

r

)
ṙ

= x1

[
μ − s

(
βa1 + γa2

) − μs − μ
s∗

s
+ s∗

(
βa1 + γa2

)
+ μs∗

]
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+ x2

[
(
1 − p

)
s
(
βa1 + γa2

) − (
α + μ

)
a1 −

(
1 − p

)
βa1sa

∗
1

a1

−
(
1 − p

)
γa2sa

∗
1

a1
+
(
α + μ

)
a∗
1

]

+ x3

[
ps

(
βa1 + γa2

)
+ ηr + αa1 −

(
π + μ

)
a2 −

pβa1sa
∗
2

a2

−pγa2sa
∗
2

a2
− ηra∗

2

a2
− αa1a

∗
2

a2
+
(
π + μ

)
a∗
2

]

+ x4

[
πa2 −

(
η + μ

)
r − πa2r

∗

r
+
(
η + μ

)
r∗
]

= x1μs
∗
(
2 − s

s∗
− s∗

s

)

+
[
x1s

∗(βa∗
1 + γa∗

2
)
+ x2

(
α + μ

)
a∗
1 + x3

(
π + μ

)
a∗
2 + x4

(
η + μ

)
r∗
]

−
[

x1
(s∗)2

(
βa∗

1 + γa∗
2

)

s
+ x2

(
1 − p

)
βsa∗

1 + x2

(
1 − p

)
γa2sa

∗
1

a1

+x3
pβa1sa

∗
2

a2
+ x3pγsa

∗
2 + x3

ηra∗
2

a2
+ x3

αa1a
∗
2

a2
+ x4

πa2r
∗

r

]

+ sa1
[−x1β + x2

(
1 − p

)
β + x3pβ

]

+ sa2
[−x1γ + x2

(
1 − p

)
γ + x3pγ

]

+ a1
[
x1βs

∗ + x3α − x2
(
α + μ

)]

+ a2
[
x1rs

∗ − x3
(
π + μ

)
+ x4π

]

+ r
[
x3η − x4

(
μ + η

)]
.

(3.11)

The positive constants x1, x2, x3, and x4 are chosen such that the coefficients of
sa1, sa2, a1, a2, and r are equal to zero, that is,

−x1 + x2
(
1 − p

)
+ x3p = 0,

x1βs
∗ − x2

(
α + μ

)
+ x3α = 0,

x1γs
∗ − x3

(
π + μ

)
+ x4π = 0,

x3η − (
η + μ

)
x4 = 0.

(3.12)
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From (3.12), we have

x1 = 1, x2 =
μ
(
π + μ + η

)
βs∗ + α

(
η + μ

)
γs∗

μ
(
α + μ

)(
η + μ + π

) ,

x3 =

(
η + μ

)
γs∗

μ
(
π + η + μ

) , x4 =
ηγs∗

μ
(
π + η + μ

) .

(3.13)

We regroup terms in V̇ such that V̇ = V̇1 + V̇2 + V̇3, where

V̇1 = μs∗
(
2 − s

s∗
− s∗

s

)
,

V̇2 = x1s
∗(βa∗

1 + γa∗
2
)
+ x2

(
α + μ

)
a∗
1 + x3

(
π + μ

)
a∗
2 + x4

(
η + μ

)
r∗,

V̇3 = − x1(s∗)2
(
βa∗

1 + γa∗
2

)

s
− x2

(
1 − p

)
βsa∗

1 − x3pγsa
∗
2 −

x2
(
1 − p

)
γa2sa

∗
1

a1

− x3pβa1sa
∗
2

a2
− x3αa1a

∗
2

a2
− x3ηra

∗
2

a2
− x4πa2r

∗

r
.

(3.14)

Using the values for x1, x2, x3, and x4 in (3.13), relations in (3.12), and the equilibrium
relations,

(
α + pμ

)(
η + μ

)
a∗
1 =

(
1 − p

)
μ
(
π + η + μ

)
a∗
2,

x3ηr
∗ = x4πa

∗
2.

(3.15)

We can rewrite V̇2 as

V̇2 = 2x2
(
1 − p

)
βs∗a∗

1 + 2x3pγs
∗a∗

2 + 4x3pβs
∗a∗

1 +
3
(
1 − p

)
αγs∗a∗

2

α + pμ
+ 2x4πa

∗
2. (3.16)

Similarly, we can rewrite V̇3 as

V̇3 =

[

−x2
(
1 − p

)
βsa∗

1 −
x2
(
1 − p

)
β(s∗)2a∗

1

s

]

+

[

−x3pγsa
∗
2 −

x3pγ(s∗)2a∗
2

s

]
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+

[

−yx2
(
1 − p

)
γa2sa

∗
1

a1
− x3αa1a

∗
2

a2
− y

x2
(
1 − p

)
γa∗

2(s
∗)2

s

]

+

[

−(1 − y
)x2

(
1 − p

)
γa2sa

∗
1

a1
− x3pβa1sa

∗
2

a2

−(1 − y
)x2

(
1 − p

)
γa∗

2(s
∗)2

s
− x3pβa

∗
1(s

∗)2

s

]

+
[
−x3ηra

∗
2

a2
− x4πa2r

∗

r

]
,

(3.17)

where

y =
α

(
α + pμ

)
x2

, 1 − y =
pβs∗

(
α + pμ

)
x2

. (3.18)

Let V̇3 = V̇a + V̇b + V̇c + V̇d + V̇e, with each term representing the expression enclosed in a pair
of big square brackets. Using the arithmetic-geometric mean inequality, we obtain

V̇a = − x2
(
1 − p

)
βsa∗

1 −
x2
(
1 − p

)
β(s∗)2a∗

1

s

≤ − 2
[
x2
2
(
1 − p

)2
β2(s∗)2

(
a∗
1

)2]1/2

= − 2x2
(
1 − p

)
βs∗a∗

1,

V̇b = − x3pγsa
∗
2 −

x3pγ(s∗)2a∗
2

s

≤ − 2
[
x2
3p

2γ2(s∗)2
(
a∗
2
)2]1/2 = −2x3pγs

∗a∗
2,

V̇c = − y
x2
(
1 − p

)
γa2sa

∗
1

a1
− x3αa1a

∗
2

a2
− y

x2
(
1 − p

)
γa∗

2(s
∗)2

s

≤ − 3
[
x2
2
(
1 − p

)2
x3αa

∗
1y

2(s∗)2γ2
(
a∗
2
)2]1/3 = −3

(
1 − p

)
αs∗γa∗

2

α + pμ
,

V̇d = − (
1 − y

)x2
(
1 − p

)
γa2sa

∗
1

a1
− x3pβa1sa

∗
2

a2
− (

1 − y
)x2

(
1 − p

)
γa∗

2(s
∗)2

s
− x3pβa

∗
1(s

∗)2

s

≤ − 4
[
x2
2
(
1 − p

)2
p2x2

3
(
1 − y

)2
γ2
(
a∗
1

)2
β2
(
a∗
2
)2(s∗)4

]1/4
= −4x3pβs

∗a∗
1,

V̇e = − x3ηra
∗
2

a2
− x4πa2r

∗

r

≤ − 2
[
x3ηr

∗x4πa
∗
2
]1/2 = −2x4πa

∗
2.

(3.19)
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Table 1: Description and estimation of parameters.

Parameter Description Estimated
value

Date
source

μ Recruitment rate of the population 0.25 year−1 [15]
β Transmission coefficient of the nonadmitting compartment 0.3 year−1 [15]
γ Transmission coefficient of the admitting compartment 0.25 year−1 Estimate
α The fraction of S being infected by A1 and entering A2 Variable

π The fraction of A2 going into treatment 0.05 year−1 [15]
η The fraction of Rwho relapse into A2 0.8 year−1 [15]

p
Probability of a newly infected individual who is admitting the
problem Variable

1 − p
Probability of a newly infected individual who is not admitting the
problem Variable

From (3.19), we have

V̇3 ≤ −2x2
(
1 − p

)
βs∗a∗

1 − 2x3pγs
∗a∗

2 − 4x3pβs
∗a∗

1 −
3
(
1 − p

)
αγs∗a∗

2

α + pμ
− 2x4πa

∗
2. (3.20)

From (3.16) and (3.20), we have V̇2 + V̇3 ≤ 0. Therefore, V̇ ≤ 0. Furthermore, V̇ = 0 if and
only if V̇1 = 0 and V̇2 + V̇3 = 0. We can show that V̇ = 0 ⇔ (s, a1, a2, r) = (s∗, a∗

1, a
∗
2, r

∗). Thus,
V̇ is a negative definite with respect to P ∗. So the alcohol-present equilibrium E∗ is globally
asymptotically stable.

4. Numerical Simulation

To illustrate the analytic results obtained above, we give some simulations using the
parameter values in Table 1. Numerical results are displayed in the following figures. First,
we choose p = 0.8,α = 0.2; numerical simulation gives R0 = 0.4091 < 1, then Theorem 3.2
indicates that youths do not have alcohol problems. Figure 2 confirms this conclusion.
Second, we choose p = 0.1, α = 0.4; numerical simulation gives R0 = 1.8031 > 1; then
Theorem 3.3 shows that alcohol problems persist. Figure 3 further validates the conclusion.
Finally, we choose α = 0.1; numerical simulation gives the relation between p and R0. Figure 4
confirms that R0 shows a decline, while the number of admitting drinkers increases. From the
figures above, we find that making more people admit having alcohol problems can reduce
the alcohol problems. Then, the treatment of admitting drinkers is an effective measure in
alcohol problems.

5. Discussion

We have formulated a binge drinking model with two stages and investigated their
dynamical behaviors. Depending on the basic reproduction number R0, the steady state is
either the alcohol free or the alcohol-present. By using the comparison theorem, we prove
that all solutions converge to E0 when the basic reproduction number is less than one, that is,
the alcohol problems disappear eventually. By constructing the Lyapunov function, we prove
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Figure 2: When p = 0.8, α = 0.2, and R0 = 0.4091 < 1, the alcohol-free equilibrium E0 is globally asym-
ptotically stable.
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Figure 3: When p = 0.1, α = 0.4, and R0 = 1.8031 > 1, the alcohol-present equilibrium E∗ is globally
asymptotically stable.

that the unique alcohol-present equilibrium is globally stable, that is, the alcohol problems
will persist in the population, and the number of binge drinking individuals tends to be a
positive constant when the basic reproduction number exceeds one.

To better understand the binge drinking model with two stages, we consider the
more realistic model and investigate the global stability of equilibria of the model for binge
drinking problem. The global stability is not discussed in the literature [15].

The basic reproductive number in this paper is given by

R0 =

(
1 − p

)
βμ

(
π + η + μ

)
+
(
1 − p

)
γα

(
η + μ

)
+ pγ

(
α + μ

)(
η + μ

)

μ
(
α + μ

)(
π + η + μ

) . (5.1)
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If the model has only one transfer from the class of susceptible individuals towards
the class of nonadmitting drinkers (p = 0), then the basic reproductive number is

R1 =
βμ

(
π + η + μ

)
+ γα

(
η + μ

)

μ
(
α + μ

)(
π + η + μ

) . (5.2)

It is similar to the basic reproductive number in [15]. Comparing with the two expressions,
we see that R0 is a function on p. In Figure 4, we find that the basic reproductive number
R0 decreases when the number of admitting drinkers increases. In general, the nonadmitting
drinkers are also unlikely to seek help. Making more people admit to have alcohol problems
through the awareness programs, such as education and media programs is an effective
measure to control the alcohol problems.

In deriving our model (2.2), we consider the direct transfer from the class of
susceptible individuals towards the class of admitting drinkers and assume the relapse from
the class of treatment individuals towards the class of admitting drinkers. However, if we
hope to include another relapse from the class of treatment individuals towards the class of
nonadmitting drinkers, we could modify (2.2) to the following model:

Ṡ = μN − S
(
βA1 + γA2

)

N
− μS,

Ȧ1 =

(
1 − p

)
S
(
βA1 + γA2

)

N
+ ξR − (

α + μ
)
A1,

Ȧ2 =
pS

(
βA1 + γA2

)

N
+ ηR + αA1 −

(
π + μ

)
A2,

Ṙ = πA2 −
(
μ + η + ξ

)
R,

(5.3)
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where ξ represents relapse from the class of treatment individuals towards the class of nona-
dmitting drinkers.

In another way, we might consider the class of quit drinkers and also consider the
following model:

Ṡ = μN − S
(
βA1 + γA2

)

N
− μS,

Ȧ1 =

(
1 − p

)
S
(
βA1 + γA2

)

N
+ ξR − (

α + μ
)
A1,

Ȧ2 =
pS

(
βA1 + γA2

)

N
+ ηR + αA1 −

(
π + μ

)
A2,

Ṙ = πA2 −
(
μ + η + ξ + δ

)
R,

Q̇ = δR − μQ,

(5.4)

where Q(t) represents the population that has stopped drinking permanently at time t, say
quit drinkers. The δ term is the rate from the class of treatment individuals towards the class
of quit drinkers. We leave these works for the future.

Acknowledgments

This work was partially supported by the NNSF of China (10961018), the NSF of Gansu
Province of China (1107RJZA088), the NSF for Distinguished Young Scholars of Gansu
Province of China (1111RJDA003), the Special Fund for the Basic Requirements in the
Research of University of Gansu Province of China, and the Development Program for
HongLiu Distinguished Young Scholars in Lanzhou University of Technology.

References

[1] L. D. Johnston, P. M. OMalley, and J. G. Bachman, “National survey results on drug use from the
monitoring the future study, 1975–1992,” National Institute on Drug Abuse, Rockville, Md, USA,
1993.

[2] H.Wechsler, J. E. Lee, M. Kuo, andH. Lee, “College binge drinking in the 1990s: a continuing problem.
Results of the Harvard School of Public Health 1999 College Alcohol Study,” Journal of American
College Health, vol. 48, no. 5, pp. 199–210, 2000.

[3] P. M. O’Malley and L. D. Johnston, “Epidemiology of alcohol and other drug use among American
college students,” Journal of Studies on Alcohol, vol. 63, no. 14, pp. 23–39, 2002.

[4] P. Ormerod and G. Wiltshire, ““Binge” drinking in the UK: a social network phenomenon,”Mind and
Society, vol. 8, no. 2, pp. 135–152, 2009.

[5] H.Wechsler, J. E. Lee, T. F. Nelson, andM. Kuo, “Underage college students’ drinking behavior, access
to alcohol, and the influence of deterrence policies: findings from the Harvard School of Public Health
College Alcohol Study,” Journal of American College Health, vol. 50, no. 5, pp. 223–236, 2002.

[6] S. Mushayabasa and C. P. Bhunu, “Modelling the effects of heavy alcohol consumption on the
transmission dynamics of gonorrhea,” Nonlinear Dynamics, vol. 66, pp. 695–706, 2011.

[7] G. Thomas and E. M. Lungu, “The influence of heavy alcohol consumption on HIV infection and
progression,” Journal of Biological Systems, vol. 17, no. 4, pp. 685–712, 2009.

[8] L. Deacon, S. Hughes, K. Tocque, and M. A. Bellis, Eds., “Indications of public health in English
regions. 8,” Alcohol, Association of Public Health Observatories, York, UK, 2007.



Discrete Dynamics in Nature and Society 15

[9] G. Hay, M. Gannon, J. MacDougall, T. Millar, C. Eastwood, and N. McKeganey, “Local and national
estimates of the prevalence of opiate use and/or crack cocaine use,” in Measuring Different Aspects of
Problem Drug Use: Methodological Developments, N. Singleton, R. Murray, and L. Tinsley, Eds., Online
report OLR 16/06, London, UK, 2006.

[10] M. S. Goldman, G. M. Boyd, and V. Faden, “College drinking, what is it, and what to do about it: a
review of the state of the science,” Journal of Studies for Alcohol, vol. 14, pp. 1–250, 2002.

[11] F. Sanchez, X. H. Wang, C. Castillo-Chavez, D. M. Gorman, and P. J. Gruenewald, “Drinking as an
epidemica simple mathematical model with recovery and relapse,” in Therapists Guide to Evidence-
Based Relapse Prevention: Practical Resources for the Mental Health Professional, K. A. Witkiewitz and G.
A. Marlatt, Eds., pp. 353–368, Academic Press, Burlington, Vt, USA, 2007.

[12] J. L. Manthey, A. Y. Aidoo, and K. Y. Ward, “Campus drinking: an epidemiological model,” Journal of
Biological Dynamics, vol. 2, no. 3, pp. 346–356, 2008.

[13] A. Cintron-Arias, F. Sanchez, X. H. Wang, C. Castillo-Chavez, D. M. Gorman, and P. J. Gruenewald,
“The role of nonlinear relapse on contagion amongst drinking communities,” in Mathematical and
Statistical Estimation Approaches in Epidemiology, pp. 343–360, Springer, New York, NY, USA, 2009.
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