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We study the nonlinear nonhomogeneous n-point generalized Sturm-Liouville fourth-order p-
Laplacian boundary value problem by using Leray-Schauder nonlinear alternative and Leggett-
Williams fixed-point theorem.

1. Introduction

In this paper, we prove the existence of one and multiple positive solutions of the following
differential equations:

(
φp
(
u′′(t)

))′′ − k2φp
(
u′′(t)

)
= g(t)f(t, u(t)), t ∈ [0, 1],

u′′(0) = φq(a), u′′(1) = φq(b),

αu(0) − βu′(0) =
n−2∑

i=1

aiu(ξi),

γu(1) + δu′(1) =
n−2∑

i=1

biu(ξi),

(1.1)
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where φp is p-Laplacian operator, that is, φp(u) = |u|p−2u, p > 1, φ−1
p = φq, 1/p+1/q = 1m, k /= 0,

α, β, γ, δ � 0, ξi ∈ (0, 1), a, b, ai, bi ∈ (0,∞) (i = 1, 2, . . . , n − 2), f ∈ C([0, 1] × [0,∞), [0,∞)),
f(t, 0)/≡ 0, g(t) ∈ C([0, 1], [0,∞)).

Recently, much attention has been paid to the existence of positive solutions for
nonlocal nonlinear boundary value problems (BVPs for short), see [1–4] and references
therein. Such problems have potential applications in physics, biology, chemistry, and so
forth. For example, a second-order three-point is used as a model for the membrane response
of a spherical cap in nonlinear diffusion generated by nonlinear sources and in chemical
reactor theory.

At the same time, the boundary value problems with p-Laplacian operator have been
discussed extensively, for example, see [1–3, 5–7].

In [1], Feng et al. researched the boundary value problem

(
φp
(
u′
))′(t) = q(t)f(t, u(t)), 0 � t � 1,

u(0) =
m∑

i=1

aiu(ξi), u(1) =
m∑

i=1

biu(ξi);
(1.2)

they obtained at least one or two positive solutions under some assumptions imposed on the
nonlinearity of f by applying Krasnoselskii fixed-point theorem.

Zhou andMa studied the existence and iteration of positive solutions for the following
third-order generalized right-focal boundary value problemwith p-Laplacian operator in [3]:

(
φp
(
u′′
))′(t) = q(t)f(t, u(t)), 0 � t � 1,

u(0) =
m∑

i=1

αiu(ξi), u′
(
η
)
= 0, u′′(1) =

n∑

i=1

βiu
′′(θi);

(1.3)

they established a corresponding iterative scheme for (1.4) by employing the monotone itera-
tive technique.

We would also like to mention the work of Zhang and Liu in [7], in which they con-
sidered the existence of positive solutions for

(
φp
(
u′′(t)

))′′ = f(t, u(t)), 0 < t < 1,

u(0) =
n−2∑

i=1

aiu(ξi), u(1) = 0, u′′(0) =
n−2∑

i=1

biu
′′(ξi), u′′(1) = 0,

(1.4)

by virtue of monotone iterative techniques, and they established a necessary and sufficient
condition of positive solutions for their problem.

However, to the best of our knowledge, there are not many results concerning about
the existence and multiple solutions of fourth-order p-Laplacian generalized Sturm-Liouville
n-point boundary value problems. In this paper, motivated by the study of [4, 8], we commit-
ted to consider the fourth-order p-Laplacian generalized Sturm-Liouville nonlocal boundary
value problem without assuming any monotonicity condition on the nonlinearity f .

The rest of the paper is arranged as follows. We state some definitions and several
preliminary results in Section 2 that we will use in the sequel. Then in Section 3 we present
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the existence of one positive solution of BVP (1.1) by Leray-Schauder nonlinear alternative.
In Section 4 we get three solutions by Leggett-Williams fixed-point theorem.

2. Preliminaries and Some Lemmas

The basic space used in this paper is E = C[0, 1]. It is well known that E is a real Banach space
with the norm ‖u‖ = maxt∈[0,1]|u(t)|.

Denote

ϕ(t) = β + αt, ψ(t) = γ + δ − γt, t ∈ [0, 1], ρ = αγ + βγ + αδ,

Δ =

∣
∣
∣
∣
∣
∣
∣∣

−
n−2∑

i=1
aiϕ(ξi) ρ −

n−2∑

i=1
aiψ(ξi)

ρ −
n−2∑

i=1
biϕ(ξi) −

n−2∑

i=1
biψ(ξi)

∣
∣
∣
∣
∣
∣
∣∣

.
(2.1)

Definition 2.1. A function u is said to be a solution of the boundary value problem (1.1) if
u ∈ C2[0, 1] satisfies (1.1) and φp(u) ∈ C2[0, 1]. In addition, u is said to be a positive solution
if u(t) > 0 for t ∈ (0, 1), and u is a solution of BVP (1.1).

Throughout the paper, we assume the following condition is satisfied:

(H0) ρ > 0, ρ − ∑n−2
i=1 aiψ(ξi) > 0, ρ − ∑n−2

i=1 biϕ(ξi) > 0, Δ < 0, f(t, u(t)) � k2(a + b)/
mint∈[0,1]g(t).

Let y(t) = −φp(u′′(t)), then BVP (1.1) is divided into the following two parts:

−y′′ + k2y = g(t)f(t, u(t)), t ∈ (0, 1),

y(0) = a, y(1) = b,
(2.2)

u′′ + φq
(
y
)
= 0, t ∈ (0, 1),

αu(0) − βu′(0) =
n−2∑

i=1

aiu(ξi), γu(1) + δu′(1) =
n−2∑

i=1

biu(ξi).
(2.3)

It is not difficult that we can transform (2.2) into the following differential equations:

−y′′ + k2y = g(t)f(t, u(t)) − k2a(1 − t) − k2bt, t ∈ (0, 1),

y(0) = 0, y(1) = 0.
(2.4)

By routine calculations we can get the following three Lemmas.

Lemma 2.2. The BVP (2.4) has a unique solution

y(t) =
∫1

0
G1(t, s)

[
g(s)f(s, u(s)) − k2a(1 − s) − k2bs

]
ds, (2.5)
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where

G1(t, s) =
1
ρ

⎧
⎪⎪⎨

⎪⎪⎩

sinh ks · sinh k(1 − t)
k sinh k

, 0 � s � t � 1,

sinh kt · sinh k(1 − s)
k sinh k

0 � t � s � 1.

(2.6)

Lemma 2.3. The BVP (2.3) has a unique solution

u(t) =
∫1

0
G2(t, s)φq

(
y(s)

)
ds +Aϕ(t) + Bψ(t), (2.7)

where

G2(t, s) =
1
ρ

{
ψ(t)ϕ(s), 0 � s � t � 1,
ψ(s)ϕ(t), 0 � t � s � 1,

A =
1
Δ

∣∣∣∣∣∣∣∣∣∣∣

n−2∑

i=1

ai

∫1

0
G2(ξi, s)φq

(
y(s)

)
ds ρ −

n−2∑

i=1

aiψ(ξi)

n−2∑

i=1

bi

∫1

0
G2(ξi, s)φq

(
y(s)

)
ds −

n−2∑

i=1

aiψ(ξi)

∣∣∣∣∣∣∣∣∣∣∣

,

B =
1
Δ

∣∣∣∣∣∣∣∣∣∣∣∣

−
n−2∑

i=1

aiϕ(ξi)
n−2∑

i=1

ai

∫1

0
G2(ξi, s)φq

(
y(s)

)
ds

ρ −
n−2∑

i=1

aiϕ(ξi)
n−2∑

i=1

bi

∫1

0
G2(ξi, s)φq

(
y(s)

)
ds

∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.8)

The proof of Lemma 2.3 is similar to that of Lemma 5.5.1 in [8], so we omit it here.
From Lemmas 2.2 and 2.3 we can get that u(t) is a solution of BVP (1.1) if and only if

u(t) =
∫1

0
G2(t, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]}

ds

+A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t),

(2.9)

where

A
(
φq
(
y
))

=
1
Δ

∣∣∣∣∣∣∣∣∣∣∣∣

n−2∑

i=1

ai

∫1

0
G2(ξi, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ))−k2a(1 − τ)−k2bτ

]
dτ

)

ds ρ−
n−2∑

i=1

aiψ(ξi)

n−2∑

i=1

bi

∫1

0
G2(ξi, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ))−k2a(1 − τ)−k2bτ

]
dτ

)

ds −
n−2∑

i=1

aiψ(ξi)

∣∣∣∣∣∣∣∣∣∣∣∣

,
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B
(
φq
(
y
))

=
1
Δ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−
n−2∑

i=1

aiϕ(ξi)
n−2∑

i=1

ai

∫1

0
G2(ξi, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ))−k2a(1 − τ)−k2bτ

]
dτ

)

ds

ρ−
n−2∑

i=1

aiϕ(ξi)
n−2∑

i=1

bi

∫1

0
G2(ξi, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ))−k2a(1 − τ)−k2bτ

]
dτ

)

ds

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(2.10)

Lemma 2.4. Consider,

Gi(t, s) � Gi(s, s), t, s ∈ [0, 1], i = 1, 2,

G1(t, s) � Λ0G1(s, s), t ∈ [ε, 1 − ε], s ∈ [0, 1],

G2(t, s) � ΛG2(s, s), t ∈ [ε, 1 − ε], s ∈ [0, 1],

(2.11)

where

Λ0 =
sinh kε

sinh k
, ε ∈

(
0,

1
2

)
,

Λ = min
{
ϕ(ε)
ϕ(1)

,
ψ(1 − ε)
ψ(0)

}
, ε ∈

(
0,

1
2

)
.

(2.12)

Denote

Λ1 = max
{∥∥ϕ

∥∥,
∥∥ψ

∥∥}, Λ2 = min
{

min
t∈[ε,1−ε]

ϕ(t), min
t∈[ε,1−ε]

ψ(t)
}
, λ = min

{
Λ,

Λ2

Λ1

}
. (2.13)

Lemma 2.5. Let

K =
{
u | u ∈ C[0, 1], u(t) � 0, ∀t ∈ [0, 1], min

t∈[ε,1−ε]
u(t) � λ‖u‖

}
,

Tu(t) =
∫1

0
G2(t, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]}

ds

+A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t),

(2.14)

then

T(K) ⊆ K. (2.15)

Proof. Firstly, we prove that Tu(t) � 0. For f ∈ C([0, 1]× [0,∞), [0,∞), g(t) ∈ C([0, 1], [0,∞)),
then we can get φq(y) = φq(

∫1
0 G1(s, τ)[g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ]dτ) > 0, for all

u ∈ K. Furthermore, condition (H0) leads to A(φq(y)) � 0, and B(φq(y)) � 0, thus, we get
Tu(t) � 0.
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Secondly, for t ∈ [ε, 1 − ε], we can get

min
t∈[ε,1−ε]

Tu(t)

= min
t∈[ε,1−ε]

{∫1

0
G2(t, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

)

ds

+ A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t)

}

� Λ
∫1

0
G2(s, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

)

ds

+A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t)

� Λ
∫1

0
G2(s, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

)

ds

+
Λ2

Λ1
Λ1
[
A
(
φq
(
y
))

+ B
(
φq
(
y
)])

� λ

{∫1

0
G2(s, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

)

ds

+ Λ1
[
A
(
φq
(
y
))

+ B
(
φq
(
y
))]

}

= λ‖Tu‖.

(2.16)

Thus we can get that mint∈[ε,1−ε]Tu(t) � λ‖Tu‖, which means T(K) ⊆ K.

We present here several definitions.
Given a coneK in a real Banach spaceE, a map α is said to be a nonnegative continuous

concave (resp., convex) functional on K provided that α : K → [0,+∞) is continuous and

α
(
tx + (1 − t)y) � tα(x) + (1 − t)α(y),

(
resp., α

(
tx + (1 − t)y) � tα(x) + (1 − t)α(y)),

(2.17)

for all, x, y ∈ K and t ∈ [0, 1].
Let 0 < a < b be given, and let α be a nonnegative continuous concave functional on

K. Define the convex sets Pr and P(α, a, b) by

Pr = {x ∈ K | ‖x‖ < r}, P(α, a, b) = {x ∈ K | a � α(x), ‖x‖ � b}. (2.18)

For the convenience of the reader, we present here the Leggett-Williams fixed-point
theorem and the Leray-Schauder nonlinear alternative theorem.
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Lemma 2.6 (see [9], Leggett-Williams fixed-point theorem). Let A : Pc → Pc be a completely
continuous operator, and let α be a nonnegative continuous concave functional onK such that α(x) �
‖x‖ for all x ∈ Pc. Suppose there exist 0 < a < b < d � c such that

(A1) {x ∈ P(α, b, d) : α(x) > b}/= ∅, and α(Ax) > b for x ∈ P(α, b, d);
(A2) ‖Ax‖ < a for ‖x‖ � a;

(A3) α(Ax) > b for x ∈ P(α, b, c) with ‖Ax‖ > d.
ThenA has at least three fixed points x1, x2, and x3 and such that ‖x1‖ < a, b < α(x2) and ‖x3‖ > a,
with α(x3) < b.

Now we cite the Leray-Schauder nonlinear alternative.

Lemma 2.7 (see [10]). Let F be a Banach space and Ω a bounded open subset of F, 0 ∈ Ω. T : Ω →
F be a completely continuous operator. Then, either there exists x ∈ ∂Ω, λ > 1 such that T(x) = λx,
or there exists a fixed point x∗ ∈ Ω.

3. Results of One Nontrivial Solution

In this section, we study the existence of one nontrivial solution of BVP (1.1) by Leray-
Schauder nonlinear alternative.

Denote

H1 = φq

(∫1

0
G1(τ, τ)g(τ)p(τ)dτ

)

,

H2 = φq

(∫1

0
G1(τ, τ)g(τ)r(τ)dτ

)

,

Â =
1
Δ

∣∣∣∣∣∣∣∣∣∣

n−2∑

i=1

ai ρ −
n−2∑

i=1

aiψ(ξi)

n−2∑

i=1

bi −
n−2∑

i=1

aiψ(ξi)

∣∣∣∣∣∣∣∣∣∣

,

B̂ =
1
Δ

∣∣∣∣∣∣∣∣∣∣

−
n−2∑

i=1

aiϕ(ξi)
n−2∑

i=1

ai

ρ −
n−2∑

i=1

aiϕ(ξi)
n−2∑

i=1

bi

∣∣∣∣∣∣∣∣∣∣

,

N =M · 2q−1
(
1 + ÂΛ1 + B̂Λ1

)
,

l =
NH2

1 −NH1
, Ω = {u ∈ C[0, 1], ‖u‖ < l}.

(3.1)

Theorem 3.1. Assume NH1 < 1, f(t, 0)/≡ 0, and there exist nonnegative functions p, r ∈ L1[0, 1]
such that |f(t, u)| � p(t)|u|p−1 + r(t), a.e. (t, u) ∈ [0, 1] × [0,+∞), then BVP (1.1) has a nontrivial
solution u∗ ∈ Ω.
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Proof. If there exist two nonnegative functions p, r ∈ L1[0, 1] such that |f(t, u)| � p(t)|u|p−1 +
r(t), a.e. (t, u) ∈ [0, 1] × [0,+∞), we can get that

φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

)

� φq

(∫1

0
G1(s, τ)g(τ)f(τ, u(τ))dτ

)

� φq

[∫1

0
G1(τ, τ)g(τ)

(
p(τ)|u|p−1 + r(τ)

)
dτ

]

= 2q−1
[

‖u‖φq
(∫1

0
G1(τ, τ)g(τ)p(τ)dτ + φq

(∫1

0
G1(τ, τ)a(τ)r(τ)

)

dτ

)]

= 2q−1(‖u‖H1 +H2),

(3.2)

thus, we get

∫1

0
G2(ξi, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

)

ds

�
∫1

0
G2(ξi, s)φq

(∫1

0
G1(s, τ)g(τ)f(τ, u(τ))dτ

)

ds

� M · 2q−1(‖u‖H1 +H2).

(3.3)

In the same way, we obtain

A
(
φq
(
y
))

� M · 2q−1(‖u‖H1 +H2)Â,

B
(
φq
(
y
))

� M · 2q−1(‖u‖H1 +H2)B̂.
(3.4)

Thus we have

‖Tu‖ = max
0�t�1

|Tu(t)|

= max
0�t�1

∣∣∣∣∣

∫1

0
G2(t, s)φq

(∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

])

ds

+ A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t)

∣∣∣∣∣
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� max
0�t�1

∣
∣
∣
∣
∣

∫1

0
G2(t, s)φq

(∫1

0
G1(s, τ)g(τ)f(τ, u(τ))dτ

)

ds

+ A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t)

∣
∣
∣
∣
∣

� M · 2q−1(‖u‖H1 +H2) +M · 2q−1(‖u‖H1 +H2)
(
ÂΛ1 + B̂Λ1

)

=M · 2q−1(‖u‖H1 +H2)
(
1 + ÂΛ1 + B̂Λ1

)
=N(‖u‖H1 +H2).

(3.5)

Suppose that there exists μ > 1 such that

Tu = μu, u ∈ ∂Ω. (3.6)

Therefore,

μl = μ‖u‖ = ‖Tu‖ � l

(
NH1 +

NH2

l

)
, (3.7)

which leads to μ � NH1 + NH2/l = 1, and this contradicts μ > 1, then by Lemma 2.7, T
has a fixed point u∗ ∈ Ω; since f(t, 0)/≡ 0, the BVP (1.1) has a nontrivial solution u∗ ∈ Ω. This
completes the proof of Theorem 3.1.

4. Results of Multiple Positive Solutions

In the following parts, we will study the existence of multiple positive solutions of BVP (1.1)
by using Leggett-Williams fixed-point theorem.

Denote

Pc = {u ∈ K | ‖u‖ < c}. (4.1)

Define the nonnegative continuous concave functional on K by

α(u) = min
ε�t�1−ε

u(t). (4.2)

It is obvious that for each u ∈ K, α(u) � ‖u‖.
Let M = max0�t�1

∫1
0 G2(t, s)ds, m =

∫1−ε
ε G2(s, s)ds, h = φq(

∫1−ε
ε k2(a + b)G1(τ, τ)dτ),

and Â, B̂, Λ, Λ0, Λ1 be defined in Sections 2 and 3.
We list the following three hypotheses:

(H1) f(t, u) < φp(c/M(1 + Λ1Â + Λ1B̂))/
∫1
0 G1(τ, τ)g(τ)dτ , for all t ∈ [0, 1], 0 � u � c;

(H2) f(t, u) < φp(a/M(1 + Λ1Â + Λ1B̂))/
∫1
0 G1(τ, τ)g(τ)dτ , for all t ∈ [0, 1], 0 � u � a;

(H3) f(t, u) > φp(2q−1(b/mΛ(1+Λ1Â+Λ1B̂)+h))/Λ0
∫1−ε
ε G1(τ, τ)g(τ)dτ , for all t ∈ [0, 1],

b � u � b/λ.
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Theorem 4.1. Assume (H1)–(H3) hold, then BVP (1.1) has at least three positive solutions u1, u2,
and u3, such that ‖u1‖ < a, b < min[ε,1−ε]u2(t), and ‖u3‖ > a, withmin[ε,1−ε]u3(t) < b.

Proof. Firstly, we prove that T : Pc → Pc. The operator T is completely continuous.
From condition (H1), we can get

∫1

0
G2(ξi, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

}

ds

� Mφq

(∫1

0
G1(τ, τ)g(τ)f(τ, u(τ))dτ

)

� c

1 + Λ1Â + Λ1B̂
.

(4.3)

Hence,

‖Tu‖ = max
0�t�1

|Tu(t)|

= max
0�t�1

∣∣∣∣∣

∫1

0
G2(t, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)) − k2a(1 − τ) − k2bτ

]
dτ

}

ds

+ A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t)

∣∣∣∣∣

� max
0�t�1

∣∣∣∣∣

∫1

0
G2(t, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f(τ, u(τ)]dτ

]
}

ds

+ A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ(t)

∣∣

� c

1 + Λ1Â + Λ1B̂
+

c

1 + Λ1Â + Λ1B̂
Λ1Â +

c

1 + Λ1Â + Λ1B̂
Λ1B̂ = c.

(4.4)

Thus we get ‖Tu‖ � c; therefore, T : Pc → Pc. The operator T is completely continuous by an
application of Ascoli-Arzela theorem.

In the same way, condition (H2) implies that condition (A2) of Lemma 2.6 is satisfied.
In the following, we show that condition (A1) of Lemma 2.6 is satisfied.

Let

u0(t) =
b

λ
, t ∈ [0, 1], (4.5)

then

u0 ∈ P
(
α, b,

b

λ

)
, α(u0) =

b

λ
> b, (4.6)

thus, {u ∈ P(α, b, b/λ) | α(u) > b}/= ∅.
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If u ∈ P(α, b, b/λ), then b � u(s) � b/λ, s ∈ [ε, 1 − ε].
By condition (H3), we obtain

∫1

0
G2(ξi, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f

(
τ, u(τ) − k2a(1 − τ) − k2bτ

)]
dτ

}

ds

� Λ
∫1−ε

ε

G2(s, s)

[
1

2q−1
φq

(∫1−ε

ε

G1(s, τ)g(τ)f(τ, u(τ))

)]

dτ ds

− φq
(∫1−ε

ε

G1(s, τ)
(
k2a(1 − τ) + k2bτ

)
dτ

]

ds

� Λ
∫1−ε

ε

G2(s, s)

[
1

2q−1
φq

(∫1−ε

ε

G1(s, τ)g(τ)f(τ, u(τ))

)]

dτ ds

− φq
(∫1−ε

ε

G1(τ, τ)
(
k2a(1 − τ) + k2bτ

)
dτ

]

ds

� Λ
∫1−ε

ε

G2(s, s)

[
1

2q−1
φq

(∫1−ε

ε

G1(s, τ)g(τ)f(τ, u(τ))

)]

dτ

− φq
(∫1−ε

ε

G1(τ, τ)
(
k2a + k2b

)
dτ

]

ds

� b

1 + Λ1Â + Λ1B̂
.

(4.7)

Thus we get

α(Tu(t)) = min
t∈[ε,1−ε]

Tu(t)

� min
t∈[ε,1−ε]

(∫1−ε

ε

G2(s, s)φq

{∫1

0
G1(s, τ)

[
g(τ)f

(
τ, u(τ) − k2a(1 − τ) − k2bτ

])
dτ

})

ds

+A
(
φq
(
y
))
ϕ(t) + B

(
φq
(
y
))
ψ((t))

� b

1 + Λ2Â + Λ2B̂
+

b

1 + Λ2Â + Λ2B̂
Λ2Â +

b

1 + Λ2Â + Λ2B̂
Λ2B̂ = b.

(4.8)

Therefore, condition (A1) of Lemma 2.6 is satisfied.
Finally, we show that condition (A3) of Lemma 2.6 is satisfied.
If u ∈ P(α, b, c), and ‖Tu‖ > b/λ, then α(Tu(t)) = minε�t�1−εTu(t) � λ‖Tu‖ > b.
Therefore, condition (A3) of Lemma 2.6 is also satisfied. By Lemma 2.6, there exist

three positive solutions u1, u2, and u3 such that ‖u1‖ < a, b < mint∈[ε,1−ε]u2(t), and ‖u3‖ > a,
with mint∈[ε,1−ε]u3(t) < b. Thus we completed the proof.
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