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The dynamic behaviors in a droop model for phytoplankton growth in a chemostat with nutrient
periodically pulsed input are studied. A series of new criteria on the boundedness, permanence,
extinction, existence of positive periodic solution and global attractivity for the model are
established. Finally, an example is given to demonstrate the effectiveness of the results in this
paper.

1. Introduction

The chemostat is a very important apparatus used to study the growth of microorganisms in a
continuous cultured environment in a laboratory (see [1]). It may be viewed as a laboratory
model of a simple lake with continuous stirring. Chemostat models have attracted widely
the attention of the scientific community, since they have a wide range of applications,
for example, waste-water treatment, production by genetically altered organisms (like
production of insulin), and so forth. The growth in a chemostat is described by the systems
of ordinary differential equations or functional differential equations. Many important and
interesting results can be found in articles [2–10] and the references cited therein.

The droop model [11, 12] of phytoplankton growth is essential in theoretical phy-
toplankton ecology. The droop model takes into consideration that phytoplankton cells store
nutrient and that the growth rate depends on the stored nutrient. Algae can uptake nutrient
in excess of current needs and continue to grow during nutrient poor conditions. These
nutrients are supplied from an external reservoir; in several earlier works, this concentration
is assumed to be constant. The droop model of phytoplankton growth in a chemostat has
been widely investigated in many literatures (see [13–19]). As in [16], the classical chemostat
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equations modeling phytoplankton population dynamics originally related the growth rate
of the cells to the nutrient concentration in the medium. It is assumed that the nutrient
uptake rate is proportional to the rate of reproduction. The constant of proportionality that
converts units of nutrient to units of organisms is called the yield constant. Because of
the assumed constant value of the yield, the classical Monod model is referred to as the
constant-yield model in [15]. In [17], both uniform persistence and the existence of periodic
coexistence state are established for a periodically forced droop model on two phytoplankton
species competition in a chemostat under some appropriate conditions. In [18], the authors
considered the nonautonomous droop model for phytoplankton growth in a chemostat in
which the nutrient input varies nonperiodically. It is assumed that growth rate varies with
the internal nutrient level of the cell and the uptake rate of phytoplankton depends on both
the external and the internal nutrient concentrations. A series of new criteria on the positivity,
boundedness, permanence, and extinction of the population is established.

This work was motivated by [19], where the droop model was presented with general
functions for growth and uptake, which takes the following forms:

dS(t)
dt

= D
(
S0(t) − S

)
−N(t)ρ(S,Q),

dQ(t)
dt

= ρ(S,Q) − μ(Q)Q,

dN(t)
dt

= N
(
μ(Q) −D

)
.

(1.1)

The author proved that the periodically forced droop model has precisely two dynamic
regimes depending on a threshold condition involving the dilution rate. If the dilution rate
is such that the subthreshold condition hold, the phytoplankton population is washed out of
the chemostat. If the superthreshold condition holds, then there is a unique periodic solution
to which all solutions approach asymptotically.

As well known, countless organisms live in seasonally or diurnally forced environ-
ment, in which the populations obtain food, so the effects of this forcing may be quite
profound. Recently, many papers studied chemostat model with variations in the supply of
nutrients or thewashout. The chemostat models with impulsive input perturbation have been
studied in many articles, see [20–30] and the references cited therein, where many important
and interesting results on the persistence, permanence and extinction of microorganisms,
global stability, the existence of periodic oscillation and dynamical complexity of the systems
are discussed.

However, we find that, up to now, few papers consider the droop model with nutrient
periodically pulsed input. From the above discussion, this subject has broad biological
significance. In pulse case, we will give some good extensions of the corresponding results
given by Smith in [19]. We introduce the following droop model for phytoplankton growth
in a chemostat with nutrient periodically pulsed input

dS(t)
dt

= −DS −N(t)ρ(S,Q),

dQ(t)
dt

= ρ(S,Q) − μ(Q)Q, t /=nT,

dN(t)
dt

= N
(
μ(Q) −D

)
,
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S(t+) = S(t) + p,

Q(t+) = Q(t), t = nT, n ∈ N,

N(t+) = N(t).

(1.2)

For model (1), we will investigate the permanence and extinction of the species, and the
existence of positive T -periodic solution and global attractivity of the model. We also will
give an example and numerical simulations to demonstrate the effectiveness of the results in
this paper.

This paper is organized as follows. In the following section we will firstly introduce
some basic assumption for model (1). Furthermore, we also will give several useful lemmas.
In Section 3, we will state and prove an ultimate boundedness theorem of solutions for model
(1). In Section 4, we will state and prove the sufficient condition on the permanence of species
for model (1). In Section 5, the sufficient condition on the extinction of species for model (1)
is given. In Section 6, the existence of positive T -periodic solution and the global attractivity
of solutions for model (1) are established. Finally, in Section 7, we will discuss an example
and give some numerical simulations.

2. Preliminaries

In model (1),N(t) denotes the phytoplankton cells at biomass concentration, S(t) denotes the
nutrient at concentration in a growthmedium. Each phytoplankton cell is assumed to possess
an internal pool of stored nutrient, also called quotaQ(t).D > 0 is the input and output flow,
and its referred to as the dilution rate; p > 0 is the amount of the substrate concentration
pulsed each nT , where T > 0 is a constant. Function μ(Q) denotes the phytoplankton growth
rate, function ρ(S,Q) denotes the nutrient uptake rate. In this paper, for model (1), we always
assume that the following condition holds.

(H1) Function μ(Q) is continuously differentiable and dμ(Q)/dQ > 0 for all Q ≥ Qmin,
μ(Qmin) = 0, where Qmin is some given positive constant.

(H2) Function ρ(S,Q) is continuously differentiable and ∂ρ(S,Q)/∂S > 0,
∂ρ(S,Q)/∂Q ≤ 0 for all S > 0 and Q > Qmin. Further, ρ(0, Q) ≡ 0 for all
Q ≥ Qmin.

The initial condition in model (1) is given in the following form:

S(0+) = S0 > 0, Q(0+) = Q0 ≥ Qmin, N(0+) = N0 > 0. (2.1)

Firstly, on the positivity of solutions for model (1), we have the following result.

Lemma 2.1. Any solution (S(t), Q(t),N(t)) of model (1) with initial condition (2.1) is positive,
that is, S(t) > 0, Q(t) ≥ Qmin and N(t) > 0 for all t > 0.

Proof. Obviously, for any t > 0, we have

N(t) = N(0+) exp
∫ t

0

(
μ(Q(s)) −D

)
ds > 0. (2.2)
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We consider S(t). If the conclusion is not true, then from S(0+) > 0 and p > 0 we can
obtain that there is a t1 > 0 such that S(t1) = 0 and S(t) > 0 for all t ∈ (0, t1). From the
mean-value theorem and assumption (H2), for any t ∈ (0, t1), there is a ξ(t) ∈ (0, S(t)) such
that

ρ(S(t), Q(t)) =
∂ρ(ξ(t), Q(t))

∂S
S(t). (2.3)

Hence, from the first equation of model (1), we obtain

dS(t)
dt

= −
(
D +N(t)

∂ρ(ξ(t), Q(t))
∂S

)
S(t) ∀t ∈ (0, t1], t /=nT. (2.4)

Choose an integer n0 ≥ 0 such that t1 ∈ (n0T, (n0+1)T]. Obviously, S(n0T
+) > 0 and integrating

(2.4) from n0T to t1,

S(t1) = S(n0T
+) exp

(
−
∫ t1

n0T

(
D +N(u)

∂ρ(ξ(u), Q(u))
∂S

))
du > 0, (2.5)

which leads to a contradiction.
Now, we consider Q(t). We have Q(0+) ≥ Qmin and μ(Qmin) = 0. If Q(0+) = Qmin, then

since right derivative

dQ(t)
dt

∣∣∣∣
t=0+

= ρ(S(0+), Qmin) > 0, (2.6)

there is a t1 > 0 such thatQ(t) > Qmin for all t ∈ (0, t1]. If there is a t2 > t1 such thatQ(t2) = Qmin

andQ(t) > Qmin for all t ∈ (0, t2), then left derivative dQ(t)/dt|t=t−2 . But from assumption (H2),
we have

dQ(t)
dt

∣∣∣∣
t=t−2

= ρ(S(t2), Qmin) > 0, (2.7)

which leads to a contradiction. IfQ(0+) > Qmin, then similarly to the above, we also can obtain
a contradiction. This completes the proof of Lemma 2.1.

Now, we consider the following linear impulsive differential equation

dω(t)
dt

= −Dω(t) − η, t /=nT,

ω(t+) = ω(t) + p, t = nT, n ∈ N,
(2.8)

where D and p are defined in model (1) and η is a constant. Clearly,

ω∗(t) = − η

D
+ S∗(t), t ∈ (nT, (n + 1)T], n ∈ N (2.9)



Discrete Dynamics in Nature and Society 5

is the T -periodic solution of (2.8), where

S∗(t) =
pe−D(t−nT)

1 − e−DT
, t ∈ (nT, (n + 1)T], n ∈ N. (2.10)

We say that ω∗(t) is globally uniformly attractive if for any constantsM > 0 and ε > 0 there is
a constant T(M,ε) > 0 such that for any initial time t0 ≥ 0 and initial value ω0 with |ω0| ≤ M,
one has

|ω(t, t0, ω0) −ω∗(t)| < ε ∀t ≥ t0 + T(M,ε), (2.11)

where ω(t, t0, ω0) is the solution of (2.8) with initial condition ω(t0) = ω0. We have following
result.

Lemma 2.2 (see [27]). T -periodic solution ω∗(t) of (2.8) is globally uniformly attractive.

For (2.8), when η = 0, we obtain the subsystem of model (1) withN(t) = 0 as follows:

dS(t)
dt

= −DS(t), t /=nT,

S(t+) = S(t) + p, t = nT, n ∈ N.
(2.12)

Clearly, S∗(t) is the positive T -periodic solution of (2.12). From Lemma 2.2, we obtain that for
any solution S(t) of (2.12), one has

S(t) − S∗(t) −→ 0 as t −→ ∞. (2.13)

Putting S(t) = S∗(t) in the second equation of model (1), we obtain

dQ(t)
dt

= ρ(S∗(t), Q(t)) − μ(Q(t))Q(t). (2.14)

From the expression of S∗(t), we can choose a constant 0 < α0 < pe−DT/(1 − e−DT) such that

inf
t≥0

S∗(t) − α0 ≥
pe−DT

1 − e−DT
− α0 > 0. (2.15)

For any α ∈ [−α0, α0], we consider the following equation:

dQ(t)
dt

= ρ(S∗(t) + α,Q(t)) − μ(Q(t))Q(t). (2.16)

For any initial points t0 ≥ 0 and Q0 ≥ Qmin, let Q0(t) and Qα(t) be the solutions of (2.14) and
(2.16) satisfying initial conditions Q0(t0) = Q0 and Qα(t0) = Q0, respectively. We have the
following result.
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Lemma 2.3. (a) There are constants M1 > 1 and such that for any t0 ≥ 0, Q0 ≥ Qmin and α ∈
[−α0, α0]

Qmin ≤ lim inf
t→∞

Qα(t) ≤ lim inf
t→∞

Qα(t) ≤ M1. (2.17)

(b) For each α ∈ [−α0, α0], (2.16) has a positive and globally uniformly attractive T -periodic
solution Q∗

α(t).
(c) Q∗

α(t) converges to Q
∗
0(t) uniformly for t ∈ [0, T] as α → 0.

Proof. Firstly, inequality Q(t) ≥ Qmin for all t ∈ [0,∞) can be proved by using the similar
argument as in the proof of Lemma 2.1.

From assumptions (H1) and (H2), there are positive constants K and δ such that for
any α ∈ [−α0, α0]

∫T

0

[
ρ(S∗(u) + α,K)

K
− μ(K)

]
du < −δ. (2.18)

If Qα(t) ≥ K for all t ≥ t0, then integrating (2.16), for any t ≥ t0, we have

Qα(t) = Qα(t0) exp
∫ t

t0

[
ρ(S∗(u) + α,Qα(u))

Qα(u)
− μ(Qα(u))

]
du

≤ Qα(t0) exp
∫ t

t0

[
ρ(S∗(u) + α,K)

K
− μ(K)

]
du

≤ Qα(t0) exp[−δ(t − t0)].

(2.19)

Hence, Qα(t) → 0 as t → ∞, which leads to a contradiction. Therefore, there is a t1 > t0 such
that Qα(t1) < K. Further, if there are t2 > t3 > t1 such that Qα(t2) > K exp(M∗T), Qα(t3) = K,
and Qα(t) > K for all t ∈ (t3, t2], where

M∗ = sup
t∈R+

{
ρ(S∗(t) + α0, K)

K
+ μ(K)

}
, (2.20)

then we can choose an integer q ≥ 0 such that t2 ∈ (t3 + qT, t3 + (q+ 1)T] and integrating (2.16)
to obtain

K exp(M∗T) < Qα(t2)

= Qα(t3) exp
∫ t2

t3

[
ρ(S∗(u) + α,Qα(u))

Qα(u)
− μ(Qα(u))

]
du

≤ K exp

(∫ t2+qT

t3

+
∫ t2

t3+qT

)[
ρ(S∗(u) + α,K)

K
− μ(K)

]
du

≤ K exp
∫ t2

t3+qT

[
ρ(S∗(u) + α,K)

K
− μ(K)

]
du

≤ K exp(M∗T),

(2.21)
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which also leads to a contradiction. Therefore, we finally have

Qα(t) ≤ K exp(M∗T) ∀t ≥ t1. (2.22)

Choose constant M1 = K exp(M∗T), then we have lim supt→∞Qα(t) ≤ M1 for all α ∈
[−α0, α0]. Thus, conclusion (a) is proved.

From conclusion (a), directly using the main results given by Teng and Chen in [31],
we can obtain that (2.16) for each α ∈ [−α0, α0] has a positive T -periodic solution Q∗

α(t).
For any constant η0 > 1 and t0 ≥ 0, let Qα(t) be a solution of (2.16) with initial value

Qα(t0) ∈ [η−1
0 , η0]. By conclusion (a), there is a constant M1 > 1 such that

M−1
1 ≤ Q∗

α(t) ≤ M1, M−1
1 ≤ Qα(t) ≤ M1 ∀t ≥ t0. (2.23)

Consider Liapunov function

V (t) = |lnQα(t) − lnQ∗
α(t)|. (2.24)

Calculating the Dini derivative D+V (t), from

sign(Qα(t) −Q∗
α(t))

[
ρ(S∗(t) + α,Qα(t))

Qα(t)
− ρ(S∗(t) + α,Q∗

α(t))
Q∗

α(t)

]
≤ 0, (2.25)

we can obtain for any t ≥ t0 and t /=nT

D+V (t) ≤ sign(Qα(t) −Q∗
α(t))

[
μ(Q∗

α(t)) − μ(Qα(t))
]
. (2.26)

Using the mean-value theorem, we further obtain

D+V (t) ≤ −dμ(ξ(t))
dQ

|Q∗
α(t) −Qα(t)|, (2.27)

where ξ(t) is situated between Q∗
α(t) and Qα(t). When t = nT and n ∈ N, we obviously have

V (t+) = V (t). Hence

V (t) ≤ V (t0) ∀t ≥ t0. (2.28)

Consequently, by (2.23) we have

|lnQα(t)| ≤ |lnQ∗
α(t)| + V (t0) ≤ ln

(
η0M

2
1

)
, (2.29)

for all t ≥ t0. Hence

η−1
0 M−2

1 ≤ Qα(t) ≤ η0M
2
1 for all t ≥ t0. (2.30)
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Further, from (2.23)we obtain

η−1
0 M−2

1 V (t) ≤ |Q∗
α(t) −Qα(t)| ≤ η0M

2
1V (t), (2.31)

for all t ≥ t0. Consequently, from (2.27) it follows that

D+V (t) ≤ −η−1
0 M−2

1
dμ(ξ(t))

dQ
V (t) ≤ −M0V (t), (2.32)

where

M0 = η−1
0 M−2

1 min
{
dμ(ξ(t))

dQ
: η−1

0 M−2
1 ≤ Q ≤ η0M

2
1

}
. (2.33)

Hence, we further have

V (t) ≤ V (t0)e−M0(t−t0) ≤ ln
(
η0M1

)
e−M0(t−t0), ∀t ≥ t0. (2.34)

For any constant ε > 0, from (2.34), choose

T
(
η0, ε

)
= − 1

M0
ln

ε

η0M
2
1 ln

(
η0M1

) , (2.35)

then for any t ≥ t0 + T(η0, ε) we can obtain

V (t) <
ε

η0M
2
1

∀t ≥ t0 + T
(
η0, ε

)
. (2.36)

Therefore,

|Q∗
α(t) −Qα(t)| < ε ∀t ≥ t0 + T

(
η0, ε

)
. (2.37)

This shows solution Q∗
α(t) is globally uniformly attractive. Thus, conclusion (b) is proved.

Finally, we prove conclusion (c). From assumptions (H1) and (H2), we can easily
prove that the right hand of model (1) satisfies the uniform Lipschitz condition with respect
to α ∈ [−α0, α0]. Hence, by the continuity of solutions with respect to parameter α, we can
obtain that Q∗

α(t) → Q∗
0(t) uniformly for t ∈ [0, T] as α → 0. Thus, conclusion (c) is proved.

This completes the proof of Lemma 2.3.

When α = 0, (2.16) degenerates into (2.14), from Lemma 2.3 we have the following
result.

Corollary 2.4. Equation (2.14) has a unique positive T -periodic solutionQ∗
0(t) which is globally uni-

formly attractive.
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The following lemma will be used in the proof of the result on the global attractivity
of model (1).

Lemma 2.5. Let function f(t) be continuous on [0,+∞) and differentiable for any t /=nT ( n ∈ N),
where T > 0 is a constant. If there exist a constant M > 0, such that |df(t)/dt| < M for any
t /=nT(n ∈ N), then f(t) is uniformly continuous on [0,+∞).

The proof of Lemma 2.1 is simple, we hence omit it here.

3. Boundedness

On the ultimate boundedness of all positive solutions of model (1), we have the following
result.

Theorem 3.1. Let (S(t), Q(t),N(t)) be any positive solution of model (1), then we have that there
exists a constant M3 > 0, which is independent of any positive solution of model (1), such that

lim sup
t→∞

S(t) < M3, lim sup
t→∞

Q(t) < M3, lim sup
t→∞

N(t) < M3. (3.1)

Proof. Let (S(t), Q(t),N(t)) be any positive solution of model (1) with initial condition (2.1).
Since

dS(t)
dt

≤ −DS(t), t /=nT,

S(t+) = S(t) + p, t = nT, n ∈ N,
(3.2)

by Lemma 2.2 we directly have

lim sup
t→∞

S(t) ≤ lim sup
t→∞

S∗(t) ≤ p

1 − e−DT
. (3.3)

For any constant ε > 0, there is a T0 > 0 such that

S(t) ≤ p

1 − e−DT
+ ε ∀t ≥ T0. (3.4)

From the second equation of model (1), we have

dQ(t)
dt

≤ ρ

(
p

1 − e−DT
+ ε,Q(t)

)
− μ(Q(t))Q(t) (3.5)

for all t ≥ T0. Using the similar argument as in the proof of Lemma 2.3, we have that there is a
positive constantMQ > 0, andMQ is independent of any solution (S(t), Q(t),N(t)) of model
(1), such that

lim sup
t→∞

Q(t) ≤ MQ. (3.6)
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Define a function U(t) as follows:

U(t) = S(t) +Q(t)N(t). (3.7)

Calculating the derivative ofU(t) along solution (S(t), Q(t),N(t)) of model (1), we have

dU(t)
dt

= −DU(t), t /=nT,

U(t+) = U(t) + p, t = nT, n ∈ N.
(3.8)

From Lemma 2.2, we obtain

lim sup
t→∞

U(t) ≤ lim sup
t→∞

S∗(t) ≤ p

1 − e−DT
. (3.9)

From Lemma 2.1, we have Q(t) ≥ Qmin for all t ≥ 0. Hence, by (3.9) we can obtain that N(t)
is ultimately bound. This completes the proof of Theorem 3.1.

Remark 3.2. Obviously, Theorem 3.1 is new and can serve as an extension of corresponding
result given by Smith in [19].

4. Permanence

On the permanence of species for model (1), we have the following result.

Theorem 4.1. Suppose

∫T

0

[
μ
(
Q∗

0(t)
) −D

]
dt > 0. (4.1)

Then model (1) is permanent.

Proof. From Lemma 2.1 we directly have lim inft→∞Q(t) ≥ Qmin > 0. Hence,Q(t) is obviously
permanent. We now prove the permanence of N(t). From (4.1), we can choose a constant
ε0 > 0 small enough such that

∫T

0

[
μ
(
Q∗

0(t) − ε0
) −D

]
dt > ε0. (4.2)

Let (S(t), Q(t),N(t)) be any solution of model (1) with initial condition (2.1). From
Theorem 3.1, for any constant ε > 0 there is a T0 > 0 such that

S(t) ≤ M3 + ε, Q(t) ≤ M3 + ε, N(t) ≤ M3 + ε (4.3)
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for all t ≥ T0. For any α ∈ [−α0, α0], we consider the following assistant equation:

dQ(t)
dt

= ρ(S∗(t) + α,Q(t)) − μ(Q(t))Q(t). (4.4)

By Lemma 2.3, we obtain that (4.4) has a unique positive T -periodic solution Q∗
α(t), which is

globally uniformly attractive and Q∗
α(t) converges to Q∗

0(t) uniformly for t ∈ R+ as α → 0.
Hence, there is an α∗ > 0 and α∗ < ε0 such that

Q∗
α(t) > Q∗

0(t) −
ε0
2

∀t ∈ R+, |α| < α∗. (4.5)

Choose positive constants ε1 and ε2 such that

inf
t∈R+

S∗(t) − ε2 −
ε1ρ(M3 + ε,Qmin)

D
> 0, (4.6)

ε2 +
ε1ρ(M3 + ε,Qmin)

D
< α∗. (4.7)

We first proof that

lim
t→∞

supN(t) > ε1 (4.8)

for any solution (S(t), Q(t),N(t)) of model (1) with initial condition (2.1).
In fact, if (4.8) is not true, then there is a solution (S(t), Q(t),N(t)) of model (1) such

that lim supt→∞N(t) ≤ ε1. Hence, there is a T1 > T0 such that N(t) < ε1, for all t ≥ T1. From
the fist equation of model (1) and (4.3), we have

dS(t)
dt

≥ −DS(t) − ε1ρ(M3 + ε,Qmin), t ≥ T1, t /=nT,

S(t+) = S(t) + p, t = nT, n ∈ N.

(4.9)

From the comparison theorem of impulsive differential equations and Lemma 2.2, for above
ε2 > 0, there is an n1 ∈ N and n1T > T1 such that

S(t) ≥ −ε1ρ(M3 + ε,Qmin)
D

+ S∗(t) − ε2 ∀t > n1T. (4.10)

From the second equation of model (1), we have

dQ(t)
dt

≥ ρ

(
S∗(t) − ε1ρ(M3 + ε,Qmin)

D
− ε2, Q(t)

)
− μ(Q(t))Q(t) (4.11)
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for all t > n1T . Let α1 = −ε1ρ(M3 + ε,Qmin)/D − ε2, from Lemma 2.3 and the comparison
theorem, there exists an n2 > n1 such that

Q(t) ≥ Q∗
α1
(t) − ε0

2
≥ Q∗

0(t) − ε0 ∀t > n2T. (4.12)

Then, from the third equation of model (1), we have

dN(t)
dt

≥ N(t)
(
μ
(
Q∗

0(t) − ε0
) −D

) ∀t > n2T. (4.13)

Integrating (4.13) from n2T to t > n2T , we obtain

N(t) ≥ N(n2T) exp
∫ t

n2T

(
μ
(
Q∗

0(s) − ε0
) −D

)
ds. (4.14)

Obviously, from (4.2) and (4.14), we obtain N(t) → ∞ as t → ∞, which leads to a con-
tradiction. Therefore, (4.8) is true.

Now, we prove that there is a constant m1 > 0 such that

lim inf
t→∞

N(t) ≥ m1 (4.15)

for any solution (S(t), Q(t),N(t)) of model (1) with initial condition (2.1).
Assume that (4.15) is not true, then there exists a sequence of initial values zk =

(Sk,Qk,Nk), which satisfy Sk > 0, Qk ≥ Qmin, and Nk > 0 such that for solution
(S(t, zk), Q(t, zk),N(t, zk)) of model (1) with initial condition S(0+, zk), Q(0+, zk), and
N(0+, zk)

lim inf
t→∞

N(t, zk) <
ε1
k2

∀k = 1, 2, . . . . (4.16)

From (4.8) and (4.16), we obtain that there exist two sequences {v(k)
q } and {t(k)q } such that for

each k = 1, 2, . . .

0 < v
(k)
1 < t

(k)
1 < v

(k)
2 < t

(k)
2 < · · · < v

(k)
q < t

(k)
q < · · · ,

v
(k)
q −→ ∞, v

(k)
q −→ ∞ as q −→ ∞,

(4.17)

N
(
t
(k)
q , zk

)
=

ε1
k2

, N
(
v
(k)
q , zk

)
=

ε1
k
, (4.18)

η

k2
< N(t, zk) <

ε1
k

∀t ∈
(
v
(k)
q , t

(k)
q

)
. (4.19)

From Theorem 3.1, there is a T (k) ≥ T0 such that

S(t, zk) ≤ M3 + ε, Q(t, zk) ≤ M3 + ε, N(t, zk) ≤ M3 + ε (4.20)
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for all t ≥ T (k). Further for each k, from (4.17) there is an integer K(k) > 0 such that v(k)
q > T (k)

for all q > K(k). Hence for any t ∈ [v(k)
q , t

(k)
q ] and q > K(k), we have

dN(t, zk)
dt

= N(t, zk)
(
μ(Q(t, zk)) −D

)

≥ −γN(t, zk),
(4.21)

where γ = D + μ(M3 + ε). Therefore, for any q ≥ K(k) and k = 1, 2, . . ., integrating (4.21) on
[v(k)

q , t
(k)
q ], we obtain from (4.18)

ε1
k2

= N
(
t
(k)
q , zk

)

≥ N
(
v
(k)
q , zk

)
exp

[
−γ

(
t
(k)
q − v

(k)
q

)]

=
ε1
k

exp
[
−γ

(
t
(k)
q − v

(k)
q

)]
.

(4.22)

Consequently,

t
(k)
q − v

(k)
q ≥ ln k

γ
∀q ≥ K(k), k = 1, 2, . . . . (4.23)

Consider the following equation:

du(t)
dt

= −Du(t) − ε1ρ(M3 + ε0, Qmin), t /=nT,

u(t+) = u(t) + p, t = nT.
(4.24)

From Lemma 2.2, there is a constant T ∗ > 0 such that for any t0 ≥ 0 and 0 ≤ u0 ≤ M3 + ε

u(t) ≥ S∗(t) − ε1ρ(M3 + ε,Qmin)
D

− ε2 ∀t ≥ t0 + T ∗, (4.25)

where u(t) is the solution of (4.24)with initial value u(t0) = u0.
Further consider the following equation:

dv(t)
dt

= ρ(S∗(t) + α1, v(t)) − μ(v(t))v(t). (4.26)

From Lemma 2.3, there is a constant T ∗∗ > 0 such that for any t0 ≥ 0 and 0 ≤ v0 ≤ M3 + ε

v(t) ≥ Q∗
α1
(t) − ε0

2
∀t ≥ t0 + T ∗∗, (4.27)

where v(t) is the solution of (4.26) with initial value v(t0) = v0.
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From (4.23), we can choose an integer N0 > 0 such that

t
(k)
q − v

(k)
q > T ∗ + T ∗∗ + T ∀k > N0, q > K(k). (4.28)

Since for any integer k, q ≥ K(k), t ∈ [v(k)
q , t

(k)
q ] and q ≥ K(k) we have

dS(t, zk)
dt

= −DS(t, zk) −N(t, zk)ρ(S(t, zk), Q(t, zk))

≥ −DS(t, zk) − ε1ρ(M3 + ε,Qmin), t /=nT,

S(t+, zk) = S(t, zk) + p, t = nT,

(4.29)

from the comparison theorem and inequality (4.25), we have

S(t, zk) ≥ u(t) ≥ −ε1ρ(M3 + ε,Qmin)
D

+ S∗(t) − ε2 = S∗(t) + α1 (4.30)

for all t ∈ [v(k)
q + T ∗, t(k)q ] and q ≥ K(k). Further, since

dQ(t, zk)
dt

≥ ρ(S∗(t) + α1, Q(t, zk)) − μ(Q(t, zk))Q(t, zk) (4.31)

for all t ∈ [v(k)
q + T ∗, t(k)q ] and q ≥ K(k). From the comparison theorem and inequality (4.27),

Q(t, zk) ≥ Q∗
α1
(t) − ε0

2
≥ Q∗

0(t) − ε0, (4.32)

for all t ∈ [v(k)
q +T ∗+T ∗∗, t(k)q ] and q ≥ K(k). Hence, for any q ≥ K(k), k ≥ N0 and t ∈ [t(k)q −T, t(k)q ],

we have

dN(t, zk)
dt

= N(t, zk)
(
μ(Q(t, zk) −D)

)

≥ N(t, zk)
(
μ
(
Q∗

0(t) − ε0
) −D

)
.

(4.33)

Integrating (4.33) from t
(k)
q − T to t

(k)
q , by (4.19) we obtain

ε1
k2

= N
(
t
(k)
q , zk

)

≥ N
(
t
(k)
q − T, zk

)
exp

∫ t
(k)
q

t
(k)
q −T

(
μ
(
Q∗

0(t) − ε0
) −D

)
dt

≥ ε1
k2

exp(ε0)

>
ε1
k2

,

(4.34)
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which is contradictory. This contradiction shows that (4.15) is true for any positive solution
(S(t), Q(t),N(t)) of model (1).

Next, we prove that S(t) in model (1) is permanent. Let (S(t), Q(t),N(t)) be any
solution of model (1) with initial condition (2.1). From the assumption of ρ(S,Q) and the
mean-value theorem, for any t ≥ 0, there exists a ξ(t) ∈ (0, S(t)) such that

ρ(S(t), Q(t))
S(t)

=
ρ(S(t), Q(t)) − ρ(0, Q(t))

S(t)
=

∂ρ(ξ(t), Q(t))
∂S

. (4.35)

Further, from assumption (H2) and the boundedness of solution (S(t), Q(t),N(t)), there
exists a constant Ms > 0 such that

ρ(S(t), Q(t))
S(t)

=
∂ρ(ξ(t), Q(t))

∂S
< Ms ∀t ≥ 0. (4.36)

From the first equation of model (1), we obtain

dS(t)
dt

= −DS(t) −N(t)ρ(S(t), Q(t))

≥ −(D + (M3 + ε)Ms)S(t),
(4.37)

for all t ≥ T0 and t /=nT , and

S(t+) = S(t) + p, t = nT, n ∈ N. (4.38)

Using the comparison theorem and Lemma 2.2, we can obtain

lim inf
t→∞

S(t) ≥ p exp(−(D + (M3 + ε)Ms)T)
−(D + (M3 + ε)Ms)T

. (4.39)

This shows that S(t) is permanent. This completes the proof of Theorem 4.1.

5. Extinction

On the extinction of species of model (1), we have the following result.

Theorem 5.1. Suppose

∫T

0

[
μ
(
Q∗

0(t)
) −D

]
dt < 0. (5.1)

Then for any positive solution (S(t), Q(t),N(t)) of model (1)

lim
t→∞

S(t) = S∗(t), lim
t→∞

Q(t) = Q∗
0(t), lim

t→∞
N(t) = 0. (5.2)
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Proof. From (5.1), there exists a constant ε0 > 0 such that

∫T

0

[
μ
(
Q∗

0(t) + ε0
) −D

]
dt < 0. (5.3)

For any α ∈ [−α0, α0], we consider the following equation:

dQ(t)
dt

= ρ(S∗(t) + α,Q(t)) − μ(Q(t))Q(t). (5.4)

By Lemma 2.3, we obtain that positive T -periodic solutionQ∗
α(t) of (5.4) is globally uniformly

attractive and Q∗
α(t) converges to Q∗

0(t) uniformly for t ∈ R+ as α → 0. Hence, there is an
α∗ > 0 and α∗ < ε0 such that

Q∗
α(t) < Q∗

0(t) + ε0 ∀t ∈ R+, |α| < α∗. (5.5)

Let (S(t), Q(t),N(t)) be any solution of model (1)with initial condition (2.1). Since

dS(t)
dt

≤ −DS(t), t /=nT,

S(t+) = S(t) + p, t = nT,

(5.6)

for any constant 0 < ε1 < α∗, from Lemma 2.2, there is a T0 > 0 such that

S(t) ≤ S∗(t) + ε1, t ≥ T0. (5.7)

From the second equation of model (1), we have

dQ(t)
dt

≤ ρ(S∗(t) + ε1, Q(t)) − μ(Q(t))Q(t) ∀t ≥ T0. (5.8)

From Lemma 2.3 and the comparison theorem, there exists a function β(t) : R+ → R
satisfying β(t) → 0 as t → ∞ such that

Q(t) ≤ Q∗
ε1(t) + β(t) ≤ Q∗

0(t) + β(t) + ε0 ∀t ≥ T0. (5.9)

Since limt→∞β(t) = 0, we can obtain

lim
t→∞

∫ t+T

t

[
μ
(
Q∗

0(t) + β(t) + ε0
) −D

]
dt =

∫T

0

[
μ
(
Q∗

0(t) + ε0
) −D

]
dt < 0. (5.10)
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Hence, there exist constants η > 0 and T1 > T0 such that when t ≥ T1

∫ t+T

t

[
μ
(
Q∗

0(t) + β(t) + ε0
) −D

]
dt ≤ −η (5.11)

and |β(t)| < 1.
For any t ≥ T1, from the third equation of model (1), we have

dN(t)
dt

≤ N(t)
[
μ
(
Q∗

0(t) + β(t) + ε0
) −D

] ∀t ≥ T1. (5.12)

We choose an integer rt ≥ 0 such that t ∈ (T1 + rtT, T1 +(rt +1)T]. Then, integrating (5.12) from
T1 to t, we obtain

N(t) ≤ N(T1) exp
∫ t

T1

[
μ
(
Q∗

0(t) + β(t) + ε0
) −D

]
dt

≤ N(T1) exp

{(∫T1+rtT

T1

+
∫ t

T1+rtT

)[
μ
(
Q∗

0(t) + β(t) + ε0
) −D

]
dt

≤ N(T1) exp
(−ηrt

)
exp

([
μ(M1 + 1 + ε0) −D

]
T
)
.

(5.13)

Therefore, by (5.11)we have N(t) → 0 as t → ∞.
For any constant ε > 0, there is a T ∗ > 0 such that S(t) ≤ M3 + ε and N(t) ≤ ε for all

t > T ∗. When t > T ∗, from model (1)we obtain

dS(t)
dt

≤ −DS(t), t /=nT,

S(t+) = S(t) + p, t = nT, n ∈ N,
dS(t)
dt

≥ −DS(t) − ερ(M3 + ε,Qmin), t /=nT,

S(t+) = S(t) + p, t = nT, n ∈ N.

(5.14)

Using the comparison theorem and Lemma 2.2, we can obtain that there is a T > T ∗ such that

−ερ(M3 + ε,Qmin)
D

+ S∗(t) − ε ≤ S(t) ≤ S∗(t) + ε (5.15)

for all t ≥ T . From the arbitrariness of ε, we finally obtain

S(t) −→ S∗(t) as t −→ ∞. (5.16)

Finally, from Lemma 2.3, we can easily obtain

Q(t) −→ Q∗
0(t) as t −→ ∞. (5.17)

This completes the proof of Theorem 5.1.
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Remark 5.2. Obviously, system (1) has a semitrivial T -periodic solution (S∗(t), Q∗
0(t), 0)

at which microorganism culture fails. Theorem 5.1 shows that T -periodic solution
(S∗(t), Q∗

0(t), 0) of system (1) is global attractivity.

Remark 5.3. The biological meaning of Theorems 3.1–5.1 is very significant, which can be seen
in [18] (see Remarks 3 and 5 in [18]).

Remark 5.4. We notice that it is quite difficult to obtain the sufficient and necessary conditions
on the extinction and permanence of species N. So, we take this problem in the future.

6. Global Attractivity

Now, we discuss the global attractivity of all positive solutions and the existence of positive
T -periodic solution of model (1); we have the following result.

Theorem 6.1. Suppose inequality (4.1) holds. Then model (1) has a unique positive T -periodic
solution, which is globally attractive.

Proof. Define Liapunov function W(t) as follows:

W(t) = S(t) +Q(t)N(t). (6.1)

From the proof of Theorem 3.1, we haveW(t) → S∗(t) as t → ∞. Hence,W(t) = S∗(t) + α(t),
where α(t) is defined on R+ with limt→∞α(t) = 0. Substitute S(t) = S∗(t) + α(t) − Q(t)N(t)
into model (1), we obtain

dQ(t)
dt

= ρ(S∗(t) + α(t) −Q(t)N(t), Q(t)) − μ(Q(t))Q(t),

dN(t)
dt

= N(t)
(
μ(Q(t)) −D

)
.

(6.2)

Further, let u(t) = Q(t)N(t); then system (6.2) changes into the following form:

du(t)
dt

= u(t)
[
ρ(S∗(t) + α(t) − u(t), Q(t))

Q(t)
−D

]
,

dQ(t)
dt

= ρ(S∗(t) + α(t) − u(t), Q(t)) − μ(Q(t))Q(t).
(6.3)

Let (u1(t), Q1(t)) and (u2(t), Q2(t)) be any two positive solutions of system (6.3), for any
constant ε0 > 0 with m − ε0 > 0, from Theorems 4.1 and 5.1, there exits a constant T0 > 0
such that

m − ε0 ≤ Qi(t) ≤ M3 + ε0,
(
m − ε0

)2 ≤ ui(t) ≤ (M3 + ε0)2, i = 1, 2, (6.4)

for all t ≥ T0. Define the Liapunov function as follows:

V (t) = |lnu1(t) − lnu2(t)| + |lnQ1(t) − lnQ2(t)|. (6.5)
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Obviously, V (t+) = V (t) for all t = nT and n ∈ N. Calculating the Dini derivative of V (t), for
any t ≥ T0 and t /=nT , we have

D+V (t) = sign(u1(t) − u2(t))

×
[
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

]

+ sign(Q1(t) −Q2(t))

×
[
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

+μ(Q2(t)) − μ(Q1(t))
]

=
(
sign(u1(t) − u2(t)) + sign(Q1(t) −Q2(t))

)

×
[
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

]

− dμ(ξ(t))
dQ

|Q1(t) −Q2(t)|,

(6.6)

where ξ(t) is situated between Q1(t) and Q2(t). We claim that

(
sign(u1(t) − u2(t)) + sign(Q1(t) −Q2(t))

)

×
[
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

]
≤ 0.

(6.7)

In fact, there are the following several possible cases:

(1) u1(t) < u2(t), Q1(t) < Q2(t),

(2) u1(t) < u2(t), Q1(t) = Q2(t),

(3) u1(t) < u2(t), Q1(t) > Q2(t),

(4) u1(t) = u2(t), Q1(t) < Q2(t),

(5) u1(t) = u2(t), Q1(t) = Q2(t),

(6) u1(t) = u2(t), Q1(t) > Q2(t),

(7) u1(t) > u2(t), Q1(t) < Q2(t),

(8) u1(t) > u2(t), Q1(t) = Q2(t),

(9) u1(t) > u2(t), Q1(t) > Q2(t).

We only need to prove case (1). Cases (2)–(8) can be easily proved and case (9) can be proved
similarly to case (1). For case (1), we have

sign(u1(t) − u2(t)) + sign(Q1(t) −Q2(t)) = −2. (6.8)
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From assumption (H2), we have

ρ(S∗(t) + α(t) − u1(t), Q1(t))
Q1(t)

− ρ(S∗(t) + α(t) − u2(t), Q2(t))
Q2(t)

=
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q1(t))

Q1(t)

+
ρ(S∗(t) + α(t) − u2(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

≥ ρ(S∗(t) + α(t) − u2(t), Q1(t))
Q1(t)

− ρ(S∗(t) + α(t) − u2(t), Q2(t))
Q2(t)

≥ 0.

(6.9)

Hence, (6.7) is true. Therefore,

D+V (t) ≤ −dμ(ξ(t))
dQ

|Q1 −Q2| ≤ −A|Q1 −Q2|, (6.10)

for all t ≥ T0 and t /=nT , where

A = inf
{
dμ(Q(t))

dQ
: m − ε0 ≤ Q(t) ≤ M3 + ε0

}
. (6.11)

For any t ≥ T0, integrating from T0 to t, we have

V (t) +
∫ t

T0

A|Q1(s) −Q2(s)|ds ≤ V (T0). (6.12)

Hence,

∫∞

T0

|Q1(s) −Q2(s)|ds < ∞. (6.13)

From Theorem 3.1 and system (6.3), we easily see that dQi(t)/dt (i = 1, 2) are bounded for
t ≥ T0 and t /=nT . Since |Q1(t)−Q2(t)| is continuous for all t ≥ T0, by Lemma 2.5, |Q1(t)−Q2(t)|
is uniformly continuous on [T0,∞). Therefore, from Barbalat lemma, we obtain

lim
t→∞

(Q1(t) −Q2(t)) = 0. (6.14)

Let

G(S,Q) =
ρ(S,Q)

Q
,

α = inf
{
∂ρ(S,Q)

∂S
: S ∈ [

m − ε0,M3 + ε0
]
, Q ∈ [

m − ε0,M3 + ε0
]}

,

β = sup
{∣∣∣∣

∂G(S,Q)
∂Q

∣∣∣∣ : S ∈ [
m − ε0,M3 + ε0

]
, Q ∈ [

m − ε0,M3 + ε0
]}

.

(6.15)
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From assumption (H2), we have α > 0 and β > 0. Further, we consider the following Liapunov
function:

V1(t) = |lnu1(t) − lnu2(t)|. (6.16)

Obviously, V1(t+) = V1(t) for all t = nT and n ∈ N. Calculating the Dini derivative of V1(t),
for any t ≥ T0 and t /=nT , from the mean-value theorem, we have

D+V1(t) = sign(u1(t) − u2(t))

×
[
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

]

= sign(u1(t) − u2(t))

×
[
ρ(S∗(t) + α(t) − u1(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q1(t))

Q1(t)

+
ρ(S∗(t) + α(t) − u2(t), Q1(t))

Q1(t)
− ρ(S∗(t) + α(t) − u2(t), Q2(t))

Q2(t)

]

≤ −∂ρ(ξ1(t), Q1(t))
Q1(t)∂S

|u1(t) − u2(t)|

+
∣∣∣∣
∂G(S∗(t) + α(t) − u2(t), ξ2(t))

∂Q

∣∣∣∣|Q1(t) −Q2(t)|

≤ −α(m − ε0
)2|lnu1(t) − lnu2(t)| + δ(t)

= −α(m − ε0
)2
V1(t) + δ(t),

(6.17)

where ξ1(t) is situated between S∗(t) + α(t) − u1(t) and S∗(t) + α(t) − u2(t), ξ2(t) is situated
between Q1(t) and Q2(t) and δ(t) = β|Q1(t) − Q2(t)|. By the comparison theorem and the
formula of variational constant for one-order linear differential equations, we can obtain

V1(t) ≤ V (T0)e−α(m−ε0)2(t−T0) +
∫ t

T0

δ(s)eα(m−ε0)2(s−t)ds, (6.18)

for all t ≥ T0. From limt→∞δ(t) = 0, we easily obtain V1(t) → 0 as t → ∞. Consequently,

lim
t→∞

(u1(t) − u2(t)) = 0. (6.19)

For any two positive solutions (Si(t), Qi(t),Ni(t)) (i = 1, 2), from Ni(t) = ui(t)/Qi(t) and
Si(t) = S∗(t) + α(t) −Qi(t)Ni(t) (i = 1, 2), we can further obtain

lim
t→∞

(S1(t) − S2(t)) = 0, lim
t→∞

(N1(t) −N2(t)) = 0. (6.20)

This shows that all solutions of model (1) is globally attractive.
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Let X(t, z) = (S(t, z), Q(t, z),N(t, z)) be some positive solution of model (1) with
initial condition (S(0), Q(0),N(0)) = z, where z = (z1, z2, z3). From Theorems 3.1 and 5.1,
there exist two constants M > m > 0 such that

m ≤ lim inf
t→∞

S(t, z) ≤ lim sup
t→∞

S(t, z) ≤ M,

m ≤ lim inf
t→∞

Q(t, z) ≤ lim sup
t→∞

Q(t, z) ≤ M,

m ≤ lim inf
t→∞

N(t, z) ≤ lim sup
t→∞

N(t, z) ≤ M.

(6.21)

Hence, there exists an integer n0 > 0 such that sequence of vectors {X(nT, z) ∈ R3 : n ≥ n0} is
bounded. Hence, there exists a subsequence {nk} and a z∗ ∈ R3 such that

lim
k→∞

X(nkT, z) = z∗. (6.22)

Let X(t, z∗) = (S(t, z∗), Q(t, z∗),N(t, z∗)) be the solution of model (1) with initial condition
(S(0), Q(0),N(0)) = z∗. By the continuity of solutions of system (2.1) with respect to initial
values, we obtain

lim
k→∞

X((nk + 1)T, z) = lim
k→∞

X(T,X(nkT, z)) = X(T, z∗). (6.23)

On the other hand, we easily prove that X(t + T, z) also is the solution of model (1). Hence,
from the global attractivity of system (1) we can obtain

lim
t→∞

(X(t, z) −X(t + T, z)) = 0. (6.24)

Consequently,

lim
k→∞

(X(nkT, z) −X((nk + 1)T, z)) = 0. (6.25)

Further from (6.22) and (6.23), we obtain X(T, z∗) = z∗. This shows that X(t, z∗) is a positive
T -periodic solution of model (1).

Finally, from above discussion we obtain that model (1) has a unique positive T -
periodic solution, which is globally attractive. This completes the proof of Theorem 6.1.

Remark 6.2. According to Theorem 6.1, we can find that model (1) has a unique positive T -
periodic solution that is globally attractive as long as it is only permanent.

Remark 6.3. We easily find that Theorem 6.1 is a very good extension in pulse case of the
corresponding results given by Smith in [19].
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Figure 1: Time series of Q∗
0(t).
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Figure 2: Dynamical behavior of system (1).

7. Numerical Examples

In this section, we will give an example to demonstrate the effectiveness of our main results.
We consider model (1)with the following parameters:

μ(Q) = 2
(
1 − 0.8

Q

)
, ρ(S,Q) = 2

S

1 + S
, p = 2, D = 0.6, T = 2. (7.1)

Obviously, assumptions (H1) and (H2) hold. We consider the following subsystem:

dS(t)
dt

= −DS(t),

dQ(t)
dt

= ρ(S(t), Q(t)) − μ(Q(t))Q(t),
t /=nT,

S(t+) = S(t) + p,
Q(t+) = Q(t),

t = nT, n ∈ N.

(7.2)



24 Discrete Dynamics in Nature and Society

From Lemmas 2.2 and 2.3, system (7.2) has a periodic solution (S∗(t), Q∗
0(t)). Further, let

I =
∫T

0

[
μ
(
Q∗

0(t)
) −D

]
dt. (7.3)

Since the precise expression of Q∗
0(t) is quite complex, it is hard to determine the value of I.

Therefore, here we will use the method of numerical simulation. Applying MatLab software,
we can obtain the numerical simulation of Q∗

0(t), see Figure 1.
Furthermore, by numerical calculation, we can obtain

∫T

0

[
μ
(
Q∗

0(t)
) −D

]
dt ≈ 0.93. (7.4)

Therefore, we have I > 0. Thus, by Theorem 6.1 we finally obtain that model (1) has a unique
positive T -periodic solution, which is globally attractive, see Figure 2.
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