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Let n be a fixed integer greater than 3 and let λ be a real number with λ/= (n2 − n + 4)/2. We
investigate the Hyers-Ulam stability of derivations on Banach algebras related to the following
generalized Cauchy functional inequality ‖∑ 1≤i<j≤n

1≤kl /= i,j≤n
f((xi + xj)/2 +

∑n−2
l=1 xkl ) + f(

∑n
i=2 xi) +

f(x1)‖ ≤ ‖λf(∑n
i=1 xi)‖.

1. Introduction and Preliminaries

Let A ba a Banach algebra and let X be a Banach A-bimodule. Then X∗, the dual space of X,
is also a Banach A-bimodule with module multiplications defined by

〈x, a · x∗〉 = 〈x · a, x∗〉, 〈x, x∗ · a〉 = 〈a · x, x∗〉, (a ∈ A, x ∈ X, x∗ ∈ X∗). (1.1)

A bounded linear operator D : A → X is called a derivation if

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A). (1.2)

Let x ∈ X. We define δx(a) = a · x − x · a for all a ∈ A. δx is a derivation from A into
X, which is called inner derivation. A Banach algebraA is amenable if every derivation fromA
into every dual A-bimodule X∗ is inner. This definition was introduced by Johnson in [1]. A
Banach algebra A is weakly amenable if every derivation from A into A∗ is inner. Bade et al.
[2] have introduced the concept of weak amenability for commutative Banach algebras.
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The stability problem of functional equations originated from a question of Ulam [3, 4]
concerning the stability of group homomorphisms.

A famous talk presented by Ulam in 1940 triggered the study of stability problems for
various functional equations.

We are given a group G1 and a metric group G2 with metric ρ(·, ·). Given ε > 0, does
there exist a δ > 0 such that if f : G1 → G2 satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G1,
then a homomorphism h : G1 → G2 exists with ρ(f(x), h(x)) < ε for all x ∈ G1?

In the following year, Hyers was able to give a partial solution to Ulam’s question
that was the first significant breakthrough and step toward more solutions in this area (see
[5]). Since then, a large number of papers have been published in connection with various
generalizations of Ulam’s problem and Hyers’ theorem.

Let n be a fixed integer greater than 3 and let λ be a real number with |λ|/= (n2 − n +
4)/2. We investigate the Hyers-Ulam stability of derivations on Banach algebras related to
the following generalized Cauchy functional inequality:

∥
∥
∥
∥
∥
∥
∥
∥

∑

1≤i<j≤n
1≤kl /= i,j≤n

f

(
xi + xj

2
+

n−2∑

l=1

xkl

)

+ f

(
n∑

i=2

xi

)

+ f(x1)

∥
∥
∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
λf

(
n∑

i=1

xi

)∥
∥
∥
∥
∥
. (1.3)

2. Main Results

Let A be a Banach algebra and let X be a Banach A-module. From now on, the sum of f(x)
and f(−x) will be denoted by f̃(x). Also, f(ab) − f(a)b − af(b) will be denoted by Δf(a, b).
In the following, we will use the Pascal formula:

C(r, k) = C(r − 1, k) + C(r − 1, k − 1) (2.1)

here, C(r, k) denotes r!/k!(r − k)! Moreover, we assume that n0 ∈ N is a positive integer and
suppose that T

1
1/no

:= {eiθ; 0 ≤ θ ≤ 2π/no}.

Lemma 2.1. Let f : A → X be a mapping such that
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∥
∥
∥
∥
∥
∥
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1≤kl /= i,j≤n

f
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2
+

n−2∑

l=1

xkl

)

+ f

(
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i=2

xi

)

+ f(x1)

∥
∥
∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
λf

(
n∑

i=1

xi

)∥
∥
∥
∥
∥

(2.2)

for all x1, . . . , xn ∈ A. Then f is Cauchy additive.

Proof. Substituting x1, . . . , xn = 0 in the functional inequality (2.2), we get

∥
∥(C(n, 2) + 2)f(0)

∥
∥ ≤ ∥

∥λf(0)
∥
∥. (2.3)
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Since n ≥ 3 and |λ|/= (n2 − n + 4)/2, f(0) = 0. Letting x1 = x, x2 = −x and x3 = · · · = xn = 0 in
(2.2) and using Pascal formula, we get

∥
∥
∥(n − 2)f̃

(x

2

)
+ (C(n − 2, 2) + 1)f(0) + f̃(x)

∥
∥
∥ ≤ ∥

∥λf(0)
∥
∥, (2.4)

for all x ∈ A. Hence

(n − 2)f̃
(x

2

)
+ f̃(x) = 0 (2.5)

for all x ∈ A. Letting x1 = 2x, x2 = −x, x3 = −x and x4 = · · · = xn = 0 in (2.2), we get

∥
∥
∥
∥2f

(−x
2

)

+ (n − 3)f(−x) + f(x) + 2(n − 3)f
(x

2

)
+ C(n − 3, 2)f(0) + f̃(2x)

∥
∥
∥
∥ ≤ ∥

∥λf(0)
∥
∥

(2.6)

for all x ∈ A. Hence

2f
(−x

2

)

+ (n − 3)f(−x) + f(x) + 2(n − 3)f
(x

2

)
+ f̃(2x) = 0,

2f
(x

2

)
+ (n − 3)f(x) + f(−x) + 2(n − 3)f

(−x
2

)

+ f̃(−2x) = 0

(2.7)

for all x ∈ A. Since f̃(−x) = f̃(x), we obtain from (2.7) and (2.4) that

2(n − 2)f̃
(x

2

)
+ (n − 2)f̃(x) + 2f̃(2x) = 0 (2.8)

for all x ∈ A. It follows from (2.5) and (2.8) that

2f̃
(x

2

)
− f̃(x) = 0 (2.9)

for all x ∈ A. By using (2.5) and (2.9), we get nf̃(x/2) = 0 and so f(−x) = −f(x) for all x ∈ A.
Hence, we obtain from (2.7) that f(x/2) = (1/2)f(x) for all x ∈ A. Letting x1 = x+y, x2 = −x,
x3 = −y and x4 = · · · = xn = 0 in (2.2), we get

∥
∥
∥
∥f

(−y
2

)

+ f

(−x
2

)

+ (n − 3)f
(−x − y

2

)

+ f

(
x + y

2

)

+ (n − 3)f
(x

2

)
+ (n − 3)f

(y

2

)

+C(n − 3, 2)f(0) + f̃
(
x + y

)
∥
∥
∥
∥ ≤ ∥

∥λf(0)
∥
∥

(2.10)

for all x, y ∈ A. Next, notice that, using oddness of f and f(x/2) = (1/2)f(x), we have

f
(
x + y

)
= f(x) + f

(
y
)

(2.11)

for all x, y ∈ A, as desired.
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We can prove the following lemma by the same reasoning as in the proof of
Theorem 2.2 of [6].

Lemma 2.2. Let f : A → X be an additive mapping such that f(μx) = μf(x) for all μ ∈ T1
1/no

and
all x ∈ A. Then the mapping f is C-linear.

Theorem 2.3. Let f : A → X be a mapping satisfying f(0) = 0 and the inequality

∥
∥
∥
∥
∥
∥
∥
∥

∑

1≤i<j≤n
1≤kl /= i,j≤n

f

(
μxi + μxj

2
+

n−2∑

l=1

μxkl

)

+ f

(
n∑

i=2

μxi

)

+ μf(x1) + Δf(a, b)

∥
∥
∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
λf

(
n∑

i=1

μxi

)∥
∥
∥
∥
∥
+ δ

(2.12)

for some δ > 0, for all μ ∈ T1
1/no

and all a, b, x1, . . . , xn ∈ A. Then there exists a unique derivation
D : A → X such that

∥
∥f(x) − D(x)

∥
∥ ≤ 13n − 24

n(n − 4)
δ (2.13)

for all x ∈ A.

Proof. Letting a = b = 0, x1 = 2x, x2 = −2x, x3 = · · · = xn = 0 and μ = 1 in (2.12), we get

∥
∥
∥(n − 2)f̃(x) + f̃(2x)

∥
∥
∥ ≤ δ (2.14)

for all x ∈ X. Letting a = b = 0, x1 = 2x, x2 = −x, x3 = −x, x4 = · · · = xn = 0 and μ = 1 in (2.12),
we get

∥
∥
∥
∥2f

(−x
2

)

+ (n − 3)f(−x) + f(x) + 2(n − 3)f
(x

2

)
+ f̃(2x)

∥
∥
∥
∥ ≤ δ (2.15)

for all x ∈ X. Letting a = b = 0, x1 = −2x, x2 = x, x3 = x, x4 = · · · = xn = 0 and μ = 1 in (2.12),
we get

∥
∥
∥
∥2f

(x

2

)
+ (n − 3)f(x) + f(−x) + 2(n − 3)f

(−x
2

)

+ f̃(−2x)
∥
∥
∥
∥ ≤ δ (2.16)

for all x ∈ X. It follows from (2.15) and (2.16) that

∥
∥
∥
∥(n − 2)f̃

(x

2

)
+
(n − 2)

2
f̃(x) + f̃(2x)

∥
∥
∥
∥ ≤ δ (2.17)

for all x ∈ X. It follows from (2.14) and (2.17) that

∥
∥
∥f̃(x)

∥
∥
∥ ≤ 6

n
δ (2.18)
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for all x ∈ X. It follows from (2.15) and (2.18) that

∥
∥
∥2f̃

(x

2

)
+ f̃(x) + (n − 4)f(−x) + 2(n − 4)f

(x

2

)∥
∥
∥ ≤ n + 6

n
δ (2.19)

for all x ∈ X. From the last two inequalities, we have

∥
∥f(2x) + 2f(−x)∥∥ ≤ n + 24

n(n − 4)
δ (2.20)

for all x ∈ X. It follows from (2.18) and (2.20) that

∥
∥
∥
∥f(x) −

1
2
f(2x)

∥
∥
∥
∥ ≤ 13n − 24

2n(n − 4)
δ (2.21)

for all x ∈ X. Hence

∥
∥
∥
∥
1
2r

f(2rx) − 1
2m

f(2mx)
∥
∥
∥
∥ ≤ 13n − 24

2n(n − 4)

m−1∑

k=r

δ

2k
(2.22)

for all x ∈ X and integers m > r ≥ 0. Thus it follows that a sequence {(1/2m)f(2mx)} is
Cauchy in Y and so it converges. Therefore we can define a mapping D : X → Y by D(x) :=
limm→∞(1/2m)f(2mx) for all x ∈ X. In addition it is clear from (2.12) that the following
inequality:

∥
∥
∥
∥
∥
∥
∥
∥

∑

1≤i<j≤n
1≤kl /= i,j≤n

D
(

μxi + μxj

2
+

n−2∑

l=1

μxkl

)

+D
(

n∑

i=2

μxi

)

+ μD(x1)

∥
∥
∥
∥
∥
∥
∥
∥

= lim
m→∞

1
2m

∥
∥
∥
∥
∥
∥
∥
∥

∑

1≤i<j≤n
1≤kl /= i,j≤n

f

(

2m−1μ
(
xi + xj

)
+

n−2∑

l=1

2mμxkl

)

+ f

(
n∑

i=2

2mμxi

)

+ μf(2mx1)

∥
∥
∥
∥
∥
∥
∥
∥

≤ lim
m→∞

1
2m

∥
∥
∥
∥
∥
λf

(
n∑

i=1

2mμxi

)∥
∥
∥
∥
∥
+ lim

m→∞
δ

2m

=

∥
∥
∥
∥
∥
λD

(
n∑

i=1

μxi

)∥
∥
∥
∥
∥

(2.23)

holds for all μ ∈ T1
1/no

and all x1, . . . , xn ∈ X. If we put μ = 1 in the last inequality, then D is
additive by Lemma 2.1. Letting x1 = x, x2 = −x and x3 = · · · = xn = 0 in last inequality and
using Lemma 2.1, we get

(n − 2)D̃
(μx

2

)
+D(−μx) + μD(x) = μD(x) − D(

μx
)
. (2.24)
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So D(μx) = μD(x) for all x ∈ X and all μ ∈ T1
1/no

. Now by using Lemmas 2.1 and 2.2, we infer
that the mapping D : X → Y is C-linear. Taking the limit as m → ∞ in (2.22) with r = 0, we
get (2.13).

To prove the afore-mentioned uniqueness, we assume now that there is another C-
linear mapping L : A → X which satisfies the inequality (2.13). Then we get

∥
∥
∥
∥

1
2m

f(2mx) − L(x)
∥
∥
∥
∥ =

1
2m

∥
∥f(2mx) − L(2mx)

∥
∥ ≤ 13n − 24

2mn(n − 4)
δ (2.25)

for all x ∈ A and integers m ≥ 1. Thus from m → ∞, one establishes

D(x) − L(x) = 0 (2.26)

for all x ∈ A, completing the proof of uniqueness.
Now, we have to show that D is a derivation. To this end, let x1 = x2 = · · · = xn = 0 in

(2.12), we get

∥
∥f(ab) − f(a)b − af(b)

∥
∥ ≤ δ (2.27)

for all a, b ∈ A. It follows from linearity of D and (2.27) that

‖D(ab) − D(a)b − aD(b)‖ =
∥
∥
∥
∥

1
2m

D(2mab) − D(a)
1
2m

(2mb) − 1
2m

(2ma)D(b)
∥
∥
∥
∥

= lim
m→∞

∥
∥
∥
∥

1
4m

f(4mab) − f(2ma)
1
4m

(2mb) − 1
4m

(2ma)f(2mb)
∥
∥
∥
∥

= lim
m→∞

1
4m

∥
∥f(2ma2mb) − f(2ma)(2mb) − (2ma)f(2mb)

∥
∥

≤ lim
m→∞

1
4m

δ

= 0

(2.28)

for all a, b ∈ A. This means that D is a derivation from A into X. Therefore the mapping
D : A → X is a unique derivation satisfying (2.13), as desired.

Theorem 2.4. Let A be an amenable Banach algebra and let f : A → X∗ be a mapping such that
f(0) = 0 and (2.12). If

sup
{∥
∥f(x)

∥
∥ : ‖x‖ ≤ 1

}
< ∞, (2.29)

then there exists x0 ∈ X∗ such that

∥
∥f(a) − ax0 − x0a

∥
∥ ≤ 13n − 24

n(n − 4)
δ (2.30)

for all a ∈ A.
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Proof. Let sup{‖f(x)‖ : ‖x‖ ≤ 1} = Mf . Then by (2.29), we have Mf < ∞. By Theorem 2.3,
there exists a derivation D : A → X∗ satisfying (2.13). Then we have

sup{‖D(x)‖ : ‖x‖ ≤ 1} ≤ Mf +
13n − 24
n(n − 4)

δ. (2.31)

This means thatD is bounded, and henceD is continuous. On the other hand,A is amenable.
Then every continuous derivation from A into X∗ is an inner derivation. It follows that D is
and an inner derivation. In the other words, there exists x0 ∈ X∗ such that D(a) = ax0 − x0a
for all a ∈ A. This completes the proof.

We know that every nuclear C∗-algebra is amenable (see [7]). Then we have the
following result.

Corollary 2.5. Let A be a nuclear C∗-algebra and let f : A → X∗ be a mapping such that f(0) = 0,
and (2.12) and (2.29). Then there exists x0 ∈ X∗ such that

∥
∥f(a) − ax0 − x0a

∥
∥ ≤ 13n − 24

n(n − 4)
δ (2.32)

for all a ∈ A.

Theorem 2.6. Let A be a C∗-algebra and let f : A → A∗ be a mapping such that f(0) = 0, and
(2.12) and (2.29). Then there exists a′ ∈ A∗ such that

∥
∥f(a)(b) − a′(ba − ab)

∥
∥ ≤ 13n − 24

n(n − 4)
δ‖b‖ (2.33)

for all a, b ∈ A.

Proof. We know that every C∗-algebra is weakly amenable (see, e.g., [7]). Then every
continuous derivation from A into A∗ is an inner derivation. By the same reasoning as in
the proof of Theorem 2.4, there exists a a′ ∈ A∗ such that D(a) = aa′ − a′a for all a ∈ A, and

∥
∥f(a) − aa′ − a′a

∥
∥ ≤ 13n − 24

n(n − 4)
δ (2.34)

for all a ∈ A. By definition of mudule actions of A on A∗, we have

∥
∥f(a)(b) − a′(ba − ab)

∥
∥ ≤ 13n − 24

n(n − 4)
δ‖b‖ (2.35)

for all a, b ∈ A.
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Corollary 2.7. Let A be a commutative C∗-algebra and let f : A → A∗ be a mapping such that
f(0) = 0, and (2.12) and (2.29). Then

lim
m→∞

1
2m

f(2ma) = 0,

∥
∥f(a)

∥
∥ ≤ 13n − 24

n(n − 4)
δ

(2.36)

for all a ∈ A.
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