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Peer-to-Peer (P2P) botnets have emerged as one of the most serious threats to Internet security. To
effectively eliminate P2P botnets, in this paper, the authors present two novel dynamical models to
portray the process of formation of P2P botnets, one of which is called microlevel model, the other
is calledmacrolevel model. Also, the stability of equilibria is investigated alongwith the analysis of
how to prevent the P2P botnet. Furthermore, by analyzing the relationship between infection rate
and the proportion of the hosts with countermeasures, we obtain the mathematical expressions of
effective immune regions and depict their numerical simulations. Finally, numerical simulations
verify the correctness of mathematical analysis. Our results can provide the guidance for security
practitioners to defend and eliminate P2P botnet at a cost-effective way.

1. Introduction

A botnet is a network of thousands (or more) of compromised hosts under the control
of a botnetmaster, which usually recruits new vulnerable computers by running all kinds
of malicious software (malware), such as Trojan horses, worms, computer viruses, and so
forth [1]. For a variety of nefarious purposes, a botnetmaster who operates a botnet controls
remotely those zombie computers to pursuit various malicious activities, such as distributed
denial-of-service attacks (DDoS), email spam, password cracking, and so forth [2]. Botnets
have been turned out one of the most serious threat to Internet [3].

To effectively fight against botnets, researchers have endeavored to explore working
mechanisms of botnets from different perspectives in the past few years (see [4–11]). These
existing researches provide perfect insight into detection and elimination of botnets. Aiming
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at describing the dynamical characteristics of botnets, Dagon et al. [12] constructed a
Susceptible-Infective-Recovered (SIR) model, which took into account the effect of time and
location on malware spread dynamics. The model accurately characterizes the population
growth of a botnet. Considering the interactions among botnets, Song et al. [1] presented the
interaction game model among botnets to investigate the effect of the cooperation and the
competition on the number of botnet individuals.

Most previous botnets as shown in Figure 1 use Internet relay chat (IRC) as a form
of communication for centralized command and control (C&C) structure. Botnets based on
C&C structure are easily checked and cracked by defenders; as well as the threats of botnets
can bemitigated and eliminated if the central of C&C is unavailable [13]. In comparison, Peer-
to-Peer (P2P) betnets as shown in Figure 2 employing a distributed command-and-control
structure are more robust and more difficult for the security community to defend. Thus, P2P
botnets, such as Trojan.Peacomm, Storm botnet [14], have emerged and gradually escalated
in recent years. The threats of P2P botnets to Internet security have drawn widespread
attention. Reference [15] presented a stochastic model of StormWorm P2P botnet to examine
how different factors, such as the removal rate and the initial infection rate, impact the
total propagation bots. Kolesnichenko et al. developed a mean-field model to analyze P2P
botnet behaviors [16]. In their seminal work, Yan et al. [17] mathematically elaborated the
performance of a new type of P2P botnet—AntBot from perspectives of reachability, resilience
to pollution and scalability. They also developed a P2P botnet simulator to evaluate the
effectiveness of analysis. Furthermore, the authors suggested some potential defense schemes
for defenders to effectively disrupt AntBot operations.

For security workers to be better prepared for potentially destructive P2P botnets, it is
necessary for them to understand deeply factors that influence the formation of P2P botnets.
Against this backdrop, in this paper, we utilize mathematical modeling method to investigate
how immunizations affect the dynamical actions of P2P botnets. Our key contributions are
summarized as follows: (i) we propose novel dynamical models which reflect the formation
of P2P botnets; (ii)we derive mathematically the feasible region of immunization and depict
their numerical simulations; (iii) we suggest a probable immune method for researchers and
security professionals.

The remainder of the paper is organized as follows. Section 2 elaborates modeling
mechanism. In Section 3, we derive the equilibria of models and prove their stabilities. In
Section 4, we get the mathematical expressions of immune feasible regions and obtain the
results of numerical simulations. In Section 5, we depict the numerical simulations to verify
conclusions of Section 4. Section 6 concludes this paper with some conclusions.

2. Modeling P2P Botnets

Considering bot candidates and the network a botnet attaches itself to, we roughly divide P2P
botnets into three categories [18]: (i) Parasite P2P botnet, in which all bot members are chosen
from an existing P2P network; (ii) Leaching P2P botnet, which is a botnet that bot candidates
are from vulnerable hosts throughout the Internet, but they will join in and depend on an
existing P2P network; (iii) Bot-only P2P botnet, which refers to a botnet that occurs in an
unattached network, and there are no nonmalignant peers except bots.

For parasite P2P botnet, once a vulnerable host is compromised by botnet malware, it
will directly become a bot member and serve for the botmaster without further joining the
botnet. Up to this trait, in Section 2.1, we present a deterministic mathematical model named
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Figure 2: P2P botnet [18].

“microlevel model” to reflect its dynamical features. However, many botmasters extend their
scales to the whole Internet to recruit new zombies because the scale of parasite botnet is
limited by the number of peers in an existing P2P network. For constructing this type P2P
botnet, there are two steps: the first step is trying to infect new vulnerable hosts throughout
the whole Internet, and the second step is new compromised hosts joining into network and
connecting with other bots. In Section 2.2, we use a novel mathematical model, which we call
“macrolevel model” to characterize their dynamical actions.

2.1. The Microlevel Model

In this subsection, we employ the classical SIRmodel, which has been widely used by many
researchers to study Internet malware propagation [19–24], to characterize the dynamical
behavior of parasite P2P botnets. Let ̂S(t), ̂I(t), and ̂R(t) be the numbers of hosts at time t in
stats S, I, and R, respectively. Let ̂N be the total number of hosts in a P2P network and be
relatively stable, then we have

̂S(t) + ̂I(t) + ̂R(t) = ̂N. (2.1)
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That is, given a P2P network with a total of ̂N hosts, any host in the network will be at a
state of either ̂S, ̂I, or ̂R, and the sum of all hosts in these states equals ̂N. In addition, unlike
the traditional SIR model, our model includes the impact of real-time immunization to virus
propagation.

As a result, the model we employ is as follows:

d ̂S(t)
dt

= μ̂̂N − ̂β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂s
)

̂S(t),

d̂I(t)
dt

= ̂β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂i
)

̂I(t),

d ̂R(t)
dt

= r̂s ̂S(t) + r̂îI(t) − μ̂ ̂R(t),

(2.2)

where μ̂ is the replacement rate of the hosts per hours; ̂β is infection rate per hour; r̂s is the
state transition rate from ̂S to ̂R due to real-time immune measures; r̂i is the recovery rate
from infected state ̂I to ̂R due to antivirus measures. It is easy to verify that the positive cone
R3

+ is a positive invariant set with respect to system (2.2), where R3
+ = {( ̂S, ̂I, ̂R) ∈ R3 : ̂S >

0, ̂I > 0, ̂R > 0}.
In what follows, we consider the effect of immunization on computer virus

propagation in the P2P network. In reality, it is reasonable for us to assume that some
hosts have immune measures, others have not. Hence, in our model the total hosts can be
partitioned into two subclasses: immune and no immune hosts. Let f be the proportion of the
hosts with immune measures (0 ≤ f ≤ 1). We make a simple assumption that immunization
has no effect on the infected time. So, we need only to change infection rate ̂β. Let ̂β1 be the
proportion of hosts with immune measures infected by infective hosts, and let ̂β2 (̂β1 ≤ ̂β2)
be the proportion of hosts without immune measures infected by infective hosts. Therefore
rewrite infection rate ̂β as

β = f ̂β1 +
(

1 − f
)

̂β2. (2.3)

Hence, the new differential equation model can be expressed as follows:

d ̂S(t)
dt

= μ̂̂N − β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂s
)

̂S(t),

d̂I(t)
dt

= β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂i
)

̂I(t),

d ̂R(t)
dt

= r̂s ̂S(t) + r̂îI(t) − μ̂ ̂R(t).

(2.4)

2.2. The Macrolevel Model

In this subsection, we use a two-stage SIR model to depict the dynamical action of
leeching P2P botnets, in which botmasters recruit new bots from the whole Internet. The
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model monitors the four populations of susceptible (S), stage-1-infected (I1) hosts that are
compromised but not connect with other bots, and stage-2-infected (I2) hosts that are indeed
bots and recovered (R). We assume that the number of hosts on Internet is relatively stable,
which is often adopted in other existing efforts [25, 26]. Let N be the total number of hosts
on Internet. Then our model can be formulated as follows:

dS(t)
dt

= μN − (α1I1(t) + α2I2(t))
S(t)
N

− (μ + rs
)

S(t),

dI1(t)
dt

= (α1I1(t) + α2I2(t))
S(t)
N

− (μ + r1 + δ
)

I1(t),

dI2(t)
dt

= δI1(t) −
(

μ + r2
)

I2(t),

dR(t)
dt

= rsS(t) + r1I1(t) + r2I2(t) − μR(t),

(2.5)

where μ is the replacement rate of the hosts per hours, α1 and α2 is infection rate per hour,
respectively, and rs is the state transition rate from S to R due to real-time immune measures,
ri (i = 1, 2) is the recovery rate from infected state I1 and I2 due to antivirus measures,
respectively.

It is easy to verify the positive cone R4
+ that is a positive invariant set with respect to

system (2.5), where R4
+ = {(S, I1, I2, R) ∈ R4 : S > 0, I1 > 0, I2 > 0, R > 0, S(t) + I1(t) + I2(t) +

R(t) = N}.
In what follows, we analyze the effect of immunization on dynamical characteristics

of P2P botnets. Let g be the proportion of the hosts that have immune measures (0 ≤ g ≤
1). We make a simple assumption that immunization has no effect on the infected time. So,
we need only to change infection rate α1 and α2. Let α11 be the proportion of hosts with
immune measures in S state infected by infective hosts I1; let α21 be the proportion of hosts
with immune measures in S state infected by infective hosts I2; let α12 (α11 ≤ α12) be the
proportion of hosts without immune measures in S state infected by infective hosts I1, and
let α22 (α21 ≤ α22) be the proportion of hosts without immune measures in S state infected by
infective hosts I2. Therefore rewrite infection rate α1 and α2 as

α1 = gα11 +
(

1 − g
)

α12,

α2 = gα21 +
(

1 − g
)

α22.
(2.6)

Hence, the new macrolevel differential equation model is

dS(t)
dt

= μN − (α1I1(t) + α2I2(t))
S(t)
N

− (μ + rs
)

S(t),

dI1(t)
dt

= (α1I1(t) + α2I2(t))
S(t)
N

− (μ + r1 + δ
)

I1(t),

dI2(t)
dt

= δI1(t) −
(

μ + r2
)

I2(t),

dR(t)
dt

= rsS(t) + r1I1(t) + r2I2(t) − μR(t).

(2.7)
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3. Model Analysis

To achieve the effective region of f and g, we first obtain the stable equilibria for systems
(2.4) and (2.7).

3.1. The Microlevel Model Analysis

In this subsection, we will solve the equilibria of system (2.4) and investigate their stability.
The first two equations in system (2.4) do not depend on the third equation, and

therefore this equation may be omitted without loss of generality. Hence, system (2.4) can
be rewritten as

d ̂S(t)
dt

= μ̂̂N − β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂s
)

̂S(t),

d̂I(t)
dt

= β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂i
)

̂I(t).

(3.1)

Now, we analyze system (3.1) by finding its equalibria. Steady states of system (3.1) satisfy
the following equation:

d ̂S(t)
dt

=
d̂I(t)
dt

= 0. (3.2)

Solving the system (3.2), we can conclude that system (3.1) always has a virus-free
equilibrium (DFE) E0 = (μ̂̂N/(μ̂ + r̂s), 0). Furthermore, define

̂R0 =
βμ̂

(

μ̂ + r̂s
)(

μ̂ + r̂i
) . (3.3)

̂R0 is called the basic reproduction number. If ̂R0 > 1, then system (3.1) has a virus-epidemic
equilibrium E1 = ( ̂S1, ̂I1) = (((μ̂ + r̂i)/β)̂N, (μβ − (μ̂ + r̂s)(μ̂ + r̂i)/β(μ̂ + r̂i))̂N).

Lemma 3.1. DFE E0 is locally asymptotically stable when ̂R0 < 1 and unstable when ̂R0 > 1.

Proof. The characteristic equation of system (3.1) near E0 is

det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(μ̂ + r̂s
) − λ − βμ̂

μ̂ + r̂s

0
βμ̂ − (r̂i + μ̂

)(

μ̂ + r̂s
)

μ̂ + r̂s
− λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0. (3.4)

Solving (3.4), we can get λ1 = −(μ̂ + r̂s), λ2 = (βμ̂ − (r̂i + μ̂)(μ̂ + r̂s))/(μ̂ + r̂s) ≡ (r̂i + μ̂)( ̂R0 − 1).
Obviously, DFE is locally asymptotically stable when ̂R0 < 1 and unstable when ̂R0 > 1.
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Further, we have the following theorem.

Theorem 3.2. DFE E0 is global asymptotically stable if ̂R0 ≤ 1.

Proof. Learn from the first equation of system (3.1)

˙̂S(t) ≤ μ̂̂N − (μ̂ + r̂s
)

̂S(t). (3.5)

Thus,

̂S(t) ≤ μ̂̂N

μ̂ + r̂s
+
(

̂S(0) − μ̂N

μ̂ + r̂s

)

exp
[−(μ̂ + r̂s

)

t
]

. (3.6)

When t → ∞, one can get

̂S(t) ≤ μ̂̂N

μ̂ + r̂s
. (3.7)

We choose Lyapunov function to be the form

V (t) = ̂I(t). (3.8)

The time derivative of V (t) along system (3.1) is given by

V̇ (t) = ˙̂I(t) = β
̂I(t) ̂S(t)
̂N

− (μ̂ + r̂i
)

̂I(t) ≤
[

β
μ̂

μ̂ + r̂s
− (μ̂ + r̂i

)

]

̂I(t) =
(

μ̂ + r̂i
)

(

̂R0 − 1
)

≤ 0. (3.9)

The theorem is proven.

Next, we will analyze the stability of virus-epidemic equilibrium E1 of system (3.1).

Theorem 3.3. If ̂R0 > 1, then the virus-epidemic equilibrium E1 of system (3.1) is locally asymp-
totically stable.

Proof. The characteristic equation of system (3.1) at E1 is given by

det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−β
̂I1
̂N

− (μ̂ + r̂s
) − λ −β

̂S1

̂N

β̂I1
̂N

β ̂S1

̂N
− (μ̂ + r̂i

) − λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (3.10)

which equals

λ2 + aλ + b = 0, (3.11)
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where a = (μ̂ + r̂s) ̂R0, b = (μ̂ + r̂s)(μ̂ + r̂i)( ̂R0 − 1) + r̂s(1 − μ̂). Obviously, in accordance with
the relationship between roots and coefficients of quadratic equation, all eigenvalues of (3.11)
have negative real parts. Thus, E1 is locally asymptotically stable when ̂R0 > 1.

Theorem 3.4. If ̂R0 > 1, then the virus-epidemic equilibrium E1 is globally asymptotically stable.

Proof. Consider the following Lypunov function [26]

V =
∫
̂S

̂S1

x − ŝ1
x

dx +
∫
̂I

̂I1

x − ̂I1
x

dx, (3.12)

which is always positive in R2
+. Moreover, the function satisfies

V̇ =
̂S − ̂S1

̂S
̂S′ +

̂I − ̂I1
̂I
̂I ′ =

(

1 −
̂S1

̂S

)[

μ̂̂N − ̂β
̂I ̂S

̂N
− (μ̂ + r̂s

)

̂S

]

+

(

1 −
̂I1
̂I

)[

̂β
̂I ̂S

̂N
− (μ̂ + r̂i

)

̂I

]

= −μ̂
̂S

̂S1

(

̂S1

̂S
− 1

)2

≤ 0.

(3.13)

Thus, we prove that the endemic equilibrium E1 is globally asymptotically stable.

3.2. The Macrolevel Model Analysis

In this subsection, we will solve the equilibria of system (2.7) and investigate their stability.
The first two equations in system (2.7) do not depend on the third equation, and

therefore this equation may be omitted without loss of generality. Hence, system (2.7) can
be rewritten as

dS(t)
dt

= μN − (α1I1(t) + α2I2(t))
S(t)
N

− (μ + rs
)

S(t),

dI1(t)
dt

= (α1I1(t) + α2I2(t))
S(t)
N

− (μ + r1 + δ
)

I1(t),

dI2(t)
dt

= δI1(t) −
(

μ + r2
)

I2(t).

(3.14)

The equalibria of system (3.14) are determined by setting dS(t)/dt = dI1(t)/dt = dI2(t)/dt =
0. There is always a virus-free equilibrium (DFE) Q0 = ((μ/(μ + rs))N, 0, 0). Furthermore,
define

R0 =
μ
[

α1
(

μ + r2
)

+ α2δ
]

(

δ + μ + r1
)(

μ + rs
)(

μ + r2
) . (3.15)



Discrete Dynamics in Nature and Society 9

If R0 > 1, system (3.14) has a virus-epidemic equilibrium Q1 = (S∗, I∗1 , I
∗
2), where

S∗ =

(

δ + μ + r1
)(

μ + r2
)

α1
(

μ + r2
)

+ α2δ
N, I∗1 =

(

μ + r2
)(

μ + rs
)

α1
(

μ + r2
)

+ α2δ
(R0 − 1)N,

I∗2 =
δ
(

μ + rs
)

α1
(

μ + r2
)

+ α2δ
(R0 − 1)N.

(3.16)

Lemma 3.5. DFE Q0 of system (3.14) is locally asymptotically stable when R0 < 1 and unstable
when R0 > 1.

Proof. The characteristic equation of system (3.14) near DFE Q0 can be written as follows:

det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(μ + rs
) − λ − α1μ

μ + rs
− α2μ

μ + rs

0
α1μ − (δ + r1 + μ

)(

μ + rs
)

μ + rs
− λ

α2μ

μ + rs

0 δ −(μ + r2
) − λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0. (3.17)

The above equation has a negative real part characteristic root λ = −(μ + rs) and roots of

[−(μ + rs
) − λ

]

(

λ2 + cλ + d
)

= 0, (3.18)

where c = μ + r2 − (α1μ/(μ + rs)) + δ + μ + r1, d = (μ + r2)(δ + μ + r1)(1 − R0).
It is easy to verify that c is always positive. Obviously, when R0 < 1, d is positive. In

accordance with the relationship between roots and coefficients of quadratic equation, there
are no positive real roots of (3.18). Hence, DFE Q0 of system (3.14) is locally asymptotically
stable when R0 < 1 and unstable when R0 > 1.

Further, the following theorem holds.

Theorem 3.6. DFE Q0 of system (3.14) is global asymptotically stable if R0 ≤ 1.

Proof. From the first equation of system (3.14), we obtain

Ṡ(t) ≤ μN − (μ + rs
)

S(t). (3.19)

Thus,

S(t) ≤ μN

μ + rs
+
(

S(0) − μN

μ + rs

)

exp
[−(μ + rs

)

t
]

. (3.20)
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When t → ∞, we have

S(t) ≤ μ

μ + rs
N. (3.21)

Consider the Lyapunov function

V (I1, I2) =
(

μ + r2
)

I1 +
μα2

μ + rs
I2, (3.22)

which is always positive in R2
+ where R2

+ = {(I1, I2) ∈ R2 : I1 > 0, I2 > 0}. Moreover, in the case
of system (3.14), the function satisfies

V̇ (I1, I2) =
(

μ + r2
)

(α1I1 + α2I2)
S

N
− (μ + r2

)(

μ + r1 + δ
)

I1 +
μα2δ

μ + rs
I1 −

μα2
(

μ + r2
)

μ + rs
I2

≤ (μ + r2
)

(α1I1 + α2I2)
μ

μ + rs
− (μ + r2

)(

μ + r1 + δ
)

I1 +
μα2δ

μ + rs
I1 −

μα2
(

μ + r2
)

μ + rs
I2

=
μ
[

α1
(

μ + r2
)

+ α2δ
] − (μ + r2

)(

μ + r1 + δ
)(

μ + rs
)

μ + rs
I1

=
(

μ + r2
)(

μ + r1 + δ
)

(R0 − 1)I1.

≤ 0
(3.23)

So, the DFE Q0 is globally attractive. Combining Lemma 3.5, we have DFE Q0 is globally
asymptotically stable.

Next, we will analyze the stability of virus-epidemic equilibrium Q1 of system (3.14).
The characteristic equation of system (3.14) near endemic equilibrium Q1 is given by

det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(α1I
∗
1 + α2I

∗
2

) − (μ + rs
) − λ −α1S1 −α2S1

α1I
∗
1 + α2I

∗
2 α1S − (μ + r1 + δ

)

α2S1

0 δ −(μ + r2
) − λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (3.24)

which corresponds to

λ3 +
(

g3 + g5 + g6 − g7
)

λ2 +
(

g3g5 + g3g6 + g5g6 − g3g7 − g4S
∗ − g6g7 + g1g7

)

λ

+ g3g5g6 − g3g7g6 − g4g6S
∗ + g1g3g7 + g4g1S

∗ = 0,
(3.25)

where g1 = α1I
∗
1 + α2I

∗
2 , g2 = μ + rs, g3 = μ + r2, g4 = α2δ, g5 = μ + r1 + δ, g6 = α1I

∗
1 + α2I

∗
2 + μ +

rs, g7 = α1S
∗.
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According to Hurwitz criteria

H1 = g3 + g5 + g6 − g7

= 3μ + r1 + r2 + rs + δ + α1I
∗
1 + α1I

∗
2 − α1S

∗

> 2μ + r2 + rs + α1I
∗
1 + α1I

∗
2

> 0,

H2 =
(

g3 + g5 + g6 − g7
)(

g3g5 + g3g6 + g5g6 − g3g7 − g4S
∗ − g6g7 + g1g7

)

− (g3g5g6 − g3g7g6 − g4g6S
∗ + g1g3g7 + g4g1S

∗),

H3 =
(

g3g5g6 − g3g7g6 − g4g6S
∗ + g1g3g7 + g4g1S

∗)H2.

(3.26)

Hence, we can get the following theorem.

Theorem 3.7. Let R0 > 1. if H2 > 0 and H3 > 0 hold, then the virus-epidemic equilibrium Q1

of system (3.14) is locally asymptotically stable.

4. Control Strategies of P2P Botnets

Theorems 3.2 and 3.6 indicate that P2P botnets will be eliminated if reasonable antivirus
strategies are taken (represented by the formulations of ̂R0 and R0). Here, we will investigate
effective methods eliminating P2P botnets by deriving the feasible region of f and g.

First, we derive the feasible region of f . Substituting (2.3) into (3.3), we have

̂R0 =
μ̂
[

f ̂β1 +
(

1 − f
)

̂β2
]

(

μ̂ + r̂s
)(

μ̂ + r̂i
) . (4.1)

According to the meaning of ̂R0, we can quantify the lower limit for an effective immunity f .
When ̂R0 = 1, it is easy to get

fe =

(

μ̂ + r̂s
)(

μ̂ + r̂i
) − ̂β2μ̂

(

̂β1 − ̂β2
)

μ̂
. (4.2)

We define the “immune effective region” f as follows

0 ≤ fe < f ≤ 1. (4.3)

Corollary 4.1. If 0 < fe < 1 and f satisfies fe < f ≤ 1, then it is possible to eliminate botnets within
P2P networks. Otherwise, if fe > 1 or fe > f , then immunization can only reduce the scale of P2P
botnets.
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Figure 3: The theoretical immune feasible region f .

Similarly, one will get the feasible region of g. Substituting (2.6) into (3.15), one can
obtain

R0 =
μ
{[

gα11 +
(

1 − g
)

α12
](

μ + r2
)

+ δ
[

gα21 +
(

1 − g
)

α22
]}

(

δ + μ + r1
)(

μ + rs
)(

μ + r2
) . (4.4)

According to the meaning of R0, one can quantify the lower limit for an effective
immunization g. When R0 = 1, one has

ge =

(

μ + r2
)(

μ + rs
)(

δ + μ + r1
) − μ

[(

μ + r2
)

α12 + δα22
]

μ
[(

μ + r2
)

(α11 − α12) + δ(α21 − α22)
] . (4.5)

Define “immune effective region” g as follows.

0 ≤ ge < g ≤ 1. (4.6)

Corollary 4.2. If 0 < ge < 1 and g satisfies ge < g ≤ 1, then it is possible to eliminate P2P botnets on
Internet. Otherwise, if ge > 1 or ge > g, then immunization can only reduce the scale of P2P botnets.

The numerical solution of fe obtained from (4.2) is plotted with different value of β1
and fixed values of μ = 2.28 × 10−4, β2 = 0.8, r̂s = 0.0059, and r̂i = 0.0059 in Figure 3. Similarly,
Figure 4 depicts the numerical solution of ge obtained from (4.5) with different value of α21

and fixed values of μ = 2.28 × 10−4, δ = 0.5, rs = 0.015, r1 = 0.0059, r2 = 0.0059, α12 = 0.5, α11 =
0.1, and α22 = 0.7.
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Figure 5: The virus propagation result when f > fe.

5. Numerical Simulations

To validate the accuracy of fe obtained from (4.2), we simulate system (2.4) with the
following parameters: N = 100000, μ = 2.28E − 4, β2 = 0.8, rs = 0.0059, ri = 0.0059, β1 = 0.1,
and (i) f = 0.95, where f > fe = 0.9079; (ii) f = 0.6, where f < fe = 0.9079. Initial values
are set to S(0) = 99998, I(0) = 10, and R(0) = 0, respectively. Figures 5 and 6 show the
simulation results with the above two sets of parameters, respectively, which are consistent
with theoretical prediction.

Similarly, we verify the accuracy of ge obtained from (4.5) by simulating system (2.7).
The following parameter values are adopted: μ = 2.28E − 4, α11 = 0.1, α12 = 0.5, α21 =
0.3, α22 = 0.7, δ = 0.5, rs = 0.015, r1 = r2 = 0.0059, and (i) g = 0.9, where g > ge = 0.7221;
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Figure 7: The result of virus propagation when g > ge.

(ii) g = 0.2, where g < ge = 0.7221. Initial values are set to S(0) = 99996, I1(0) = 2, I2(0) = 2,
andR(0) = 0, respectively. Simulation results in Figures 7 and 8 are consistent with theoretical
prediction.

For investigating the effect of different replacement rate μ̂ on f , we depict simulation
results of fe in Figure 9, in which we set μ̂ = 1.14E−4, 2.28×10−4, 3.42E−4, and 4.57E−4, that
is, replacement time is one year, nine months, a half year, and three months. Other parameters
are the same to Figure 3.

Similarly, for investigating the effect of μ on g, we set μ = 1.14E−4, 2.28×10−4, 3.42E−4,
and 4.57E − 4; other parameters are the same to Figure 4. The simulation result is depicted in
Figure 10.
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Figure 8: The result of virus propagation when g < ge.
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Figure 9: The effect of different μ on fe.

Figures 9 and 10 reflect the fact that decreasing the replacement rate of computers can
enhance the effectiveness of immunizations. This finding contributes to management and
maintenance of networks at a cost-effective way.

6. Conclusions

As a kind of new form of botnets, P2P botnets have attracted considerable attention. In this
paper, the authors explore two novel dynamical models. The first is a micro-level model
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which describes the dynamical behavior of Parasite P2P botnets. The Second is the macro-
level model which characterizes the dynamical action of Leaching P2P botnet. Throughout
the paper, we focus on the effect of immunization on dynamics of P2P botnets. Through
detailed mathematical analysis, the feasible region of immunization has been derived. In
addition, we simulate the feasible region of immunization by using different parameter
values. Furthermore, the correctness of feasible region has been verified.

The thresholds of immunizations have demonstrated that antivirus strategies have
great influence on the dynamics of P2P botnets. More specifically, in feasible regions of
immunizations, the spread of computer viruses will be stopped, and the botnet will be
cracked. In contrary, immune measures merely decrease the scale of hosts infected by
computer viruses, and the botnet will survive. In addition, our results also show that the
replacement rate of computers will affect the threshold of immunizations.

Our investigations can provide insight on the effectiveness of various antivirus
measures (e.g., antivirus products and user education). According to the thresholds of (4.2)
and (4.5), secure organizations can make cost-effective countermeasures to work well in
practice. Our study is only limited to unstructured P2P networks, such as Gnutella. Taken a
step further, our models are adapted to topology-independent malware, such as file-sharing
worms, viruses, Trojans, and so on. In the future, we will concentrate our attentions on the
propagation model of topology-aware malware.
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