Research Article
Warped Product Submanifolds of LP-Sasakian Manifolds

S. K. Hui, ${ }^{1}$ S. Uddin, ${ }^{2}$ C. Özel, ${ }^{\mathbf{3}}$ and A. A. Mustafa ${ }^{2}$
${ }^{1}$ Nikhil Banga Sikshan Mahavidyalaya Bishnupur, Bankura, West Bengal 722 122, India
${ }^{2}$ Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
${ }^{3}$ Department of Mathematics, Abant Izzet Baysal University, 14268 Bolu, Turkey
Correspondence should be addressed to S. Uddin, siraj.ch@gmail.com

Received 21 February 2012; Accepted 20 April 2012
Academic Editor: Bo Yang
Copyright © 2012 S. K. Hui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study of warped product submanifolds, especially warped product hemi-slant submanifolds of LP-Sasakian manifolds. We obtain the results on the nonexistance or existence of warped product hemi-slant submanifolds and give some examples of LP-Sasakian manifolds. The existence of warped product hemi-slant submanifolds of an LP-Sasakian manifold is also ensured by an interesting example.

1. Introduction

The notion of warped product manifolds was introduced by Bishop and O^{\prime} Neill [1], and later it was studied by many mathematicians and physicists. These manifolds are generalization of Riemannian product manifolds. The existence or nonexistence of warped product manifolds plays some important role in differential geometry as well as in physics.

On the analogy of Sasakian manifolds, in 1989, Matsumoto [2] introduced the notion of LP-Sasakian manifolds. The same notion is also introduced by Mihai and Roşca [3] and obtained many interesting results. Later on, LP-Sasakian manifolds are also studied by several authors.

The notion of slant submanifolds in a complex manifold was introduced and studied by Chen [4], which is a natural generalization of both invariant and anti-invariant submanifolds. Chen [4] also found examples of slant submanifolds of complex Euclidean spaces C^{2} and C^{4}. Then, Lotta [5] has defined and studied the slant immersions of a Riemannian manifold into an almost contact metric manifold and proved some properties of such
immersions. Also, Cabrerizo et al. [6] studied slant immersions of K-contact and Sasakian manifolds.

In 1994, Papaghuic [7] introduced the notion of semi-slant submanifolds of almost Hermitian manifolds. Then, Cabrerizo et. al [8] defined and investigated semi-slant submanifolds of Sasakian manifolds. The idea of hemi-slant submanifolds was introduced by Carriazo as a particular class of bi-slant submanifolds and he called them anti-slant submanifolds [9]. Recently, these submanifolds were studied by Sahin for their warped products of Kähler manifolds [10]. Recently, Uddin [11] studied warped product CR-submanifolds of LPSasakian manifolds.

The purpose of the present paper is to study the warped product hemi-slant submanifolds of LP-Sasakian manifolds. The paper is organized as follows. Section 2 is concerned with some preliminaries. Section 3 deals with the study of warped and doubly warped product submanifolds of LP-Sasakian manifolds. In Section 4, we define hemi-slant submanifolds of LP-contact manifolds and investigate their warped products. Section 5 consists some examples of LP-Sasakian manifolds and their warped products.

2. Preliminaries

An n-dimensional smooth manifold M is said to be an LP-Sasakian manifold [3] if it admits a $(1,1)$ tensor field ϕ, a unit timelike contravariant vector field ξ, an 1-form η, and a Lorentzian metric g, which satisfy

$$
\begin{gather*}
\eta(\xi)=-1, \quad g(X, \xi)=\eta(X), \quad \phi^{2} X=X+\eta(X) \xi, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \quad \bar{\nabla}_{X} \xi=\phi X, \tag{2.2}\\
\left(\bar{\nabla}_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.3}
\end{gather*}
$$

where $\bar{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. It can be easily seen that, in an LP-Sasakian manifold, the following relations hold:

$$
\begin{equation*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \operatorname{rank} \phi=n-1 \tag{2.4}
\end{equation*}
$$

Again, we put

$$
\begin{equation*}
\Omega(X, Y)=g(X, \phi Y) \tag{2.5}
\end{equation*}
$$

for any vector fields X, Y tangent to M. The tensor field $\Omega(X, Y)$ is a symmetric $(0,2)$ tensor field [2]. Also, since the vector field η is closed in an LP-Sasakian manifold, we have [2]

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \eta\right)(Y)=\Omega(X, Y), \quad \Omega(X, \xi)=0 \tag{2.6}
\end{equation*}
$$

for any vector fields X and Y tangent to M.

Let N be a submanifold of an LP-Sasakian manifold M with induced metric g and let ∇ and ∇^{\perp} be the induced connections on the tangent bundle $T N$ and the normal bundle $T^{\perp} N$ of N, respectively. Then, the Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.7}\\
& \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.8}
\end{align*}
$$

for all $X, Y \in T N$ and $V \in T^{\perp} N$, where h and A_{V} are second fundamental form and the shape operator (corresponding to the normal vector field V), respectively, for the immersion of N into M. The second fundamental form h and the shape operator A_{V} are related by [12]

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{2.9}
\end{equation*}
$$

for any $X, Y \in T N$ and $V \in T^{\perp} N$
For any $X \in T N$, we may write

$$
\begin{equation*}
\phi X=E X+F X \tag{2.10}
\end{equation*}
$$

where $E X$ is the tangential component and $F X$ is the normal component of ϕX.
Also, for any $V \in T^{\perp} N$, we have

$$
\begin{equation*}
\phi V=B V+C V \tag{2.11}
\end{equation*}
$$

where $B V$ and $C V$ are the tangential and normal components of ϕV, respectively. The covariant derivatives of the tensor fields E and F are defined as

$$
\begin{align*}
& \left(\bar{\nabla}_{X} E\right) Y=\nabla_{X} E Y-E \nabla_{X} Y \tag{2.12}\\
& \left(\bar{\nabla}_{X} F\right) Y=\nabla_{X}^{\perp} F Y-F \nabla_{X} Y \tag{2.13}
\end{align*}
$$

for any $X, Y \in T N$.
Throughout the paper, we consider ξ to be tangent to N. The submanifold N is said to be invariant if F is identically zero, that is, $\phi X \in T N$ for any $X \in T N$. On the other hand, N is said to anti-invariant if E is identically zero, that is, $\phi X \in T^{\perp} N$ for any $X \in T N$.

Furthermore, for a submanifold tangent to the structure vector field ξ, there is another class of submanifolds which is called a slant submanifold. For each nonzero vector X tangent to N at $x \in N$, the angle $\theta(X), 0 \leq \theta(X)(\pi / 2)$ between ϕX and $E X$ is called the slant angle or wirtinger angle. If the slant angle is constant then the submanifold is called aslant submanifold. Invariant and anti-invariant submanifolds are particular classes of slant submanifolds with slant angle $\theta=0$ and $\theta=\pi / 2$, respectively. A slant submanifold is said to be proper slant if the slant angle θ lies strictly between 0 and $\pi / 2$, that is, $0<\theta<\pi / 2$ [6].

Theorem 2.1 (see [13]). Let N be a submanifold of a Lorentzian almost paracontact manifold M such that ξ is tangent to N. Then, N is slant submanifold if and only if there exists a constant $\lambda \in$ $[0,1]$ such that

$$
\begin{equation*}
E^{2}=\lambda(I+\eta \otimes \xi) \tag{2.14}
\end{equation*}
$$

Furthermore, if θ is the slant angle of N, then $\lambda=\cos ^{2} \theta$. Also from (2.14), we have

$$
\begin{align*}
g(E X, E Y) & =\cos ^{2} \theta[g(X, Y)+\eta(X) \eta(Y)] \tag{2.15}\\
g(F X, F Y) & =\sin ^{2} \theta[g(X, Y)+\eta(X) \eta(Y)] \tag{2.16}
\end{align*}
$$

for any X, Y tangent to N.
The study of semi-slant submanifolds of almost Hermitian manifolds was introduced by Papaghuic [7], which was extended to almost contact manifold by Cabrerizo et al. [8]. The submanifold N is called semi-slant submanifold of M if there exist an orthogonal direct decomposition of $T N$ as

$$
\begin{equation*}
T N=D_{1} \oplus D_{2} \oplus\{\xi\} \tag{2.17}
\end{equation*}
$$

where D_{1} is an invariant distribution, that is, $\phi\left(D_{1}\right)=D_{1}$ and D_{2} is slant with slant angle $\theta \neq 0$. The orthogonal complement of $F D_{2}$ in the normal bundle $T^{\perp} N$ is an invariant subbundle of $T^{\perp} N$ and is denoted by μ. Thus, we have for a semi-slant submanifold

$$
\begin{equation*}
T^{\perp} N=F D_{2} \oplus \mu \tag{2.18}
\end{equation*}
$$

For an LP-contact manifold this study is extended by Yüksel et al. [13].

3. Warped and Doubly Warped Products

The notion of warped product manifolds was introduced by Bishop and O'Neill [1]. They defined the warped product manifolds as follows.

Definition 3.1. Let $\left(N_{1}, g_{1}\right)$ and $\left(N_{2}, g_{2}\right)$ be two semi-Riemannian manifolds and f be a positive differentiable function on N_{1}. Then, the warped product of N_{1} and N_{2} is a manifold, denoted by $N_{1} \times{ }_{f} N_{2}=\left(N_{1} \times N_{2}, g\right)$, where

$$
\begin{equation*}
g=g_{1}+f^{2} g_{2} \tag{3.1}
\end{equation*}
$$

A warped product manifold $N_{1} \times{ }_{f} N_{2}$ is said to be trivial if the warping function f is constant.
More explicitely, if the vector fields X and Y are tangent to $N_{1} \times_{f} N_{2}$ at (x, y), then

$$
\begin{equation*}
g(X, Y)=g_{1}\left(\pi_{1} * X, \pi_{1} * Y\right)+f^{2}(x) g_{2}\left(\pi_{2} * X, \pi_{2} * Y\right) \tag{3.2}
\end{equation*}
$$

where $\pi_{i}(i=1,2)$ are the canonical projections of $N_{1} \times N_{2}$ onto N_{1} and N_{2}, respectively, and * stands for the derivative map.

Let $N=N_{1} \times{ }_{f} N_{2}$ be a warped product manifold, which means that N_{1} and N_{2} are totally geodesic and totally umbilical submanifolds of N, respectively.

For the warped product manifolds, we have the following result for later use [1].
Proposition 3.2. Let $N=N_{1} \times{ }_{f} N_{2}$ be a warped product manifold. Then,
(I) $\nabla_{X} Y \in T N_{1}$ is the lift of $\nabla_{X} Y$ on N_{1},
(II) $\nabla_{U} X=\nabla_{X} U=(X \ln f) U$,
(III) $\nabla_{U} V=\nabla_{U}^{\prime} V-g(U, V) \nabla \ln f$,
for any $X, Y \in T N_{1}$ and $U, V \in T N_{2}$, where ∇ and ∇^{\prime} denote the Levi-Civita connections on N and N_{2}, respectively.

Doubly warped product manifolds were introduced as a generalization of warped product manifolds by Ünal [14]. A doubly warped product manifold of N_{1} and N_{2}, denoted as $f_{2} N_{1} \times_{f_{1}} N_{2}$ is endowed with a metric g defined as

$$
\begin{equation*}
g=f_{2}^{2} g_{1}+f_{1}^{2} g_{2} \tag{3.3}
\end{equation*}
$$

where f_{1} and f_{2} are positive differentiable functions on N_{1} and N_{2}, respectively.
In this case formula (II) of Proposition 3.2 is generalized as

$$
\begin{equation*}
\nabla_{X} Z=\left(X \ln f_{1}\right) Z+\left(Z \ln f_{2}\right) X \tag{3.4}
\end{equation*}
$$

for each X in $T N_{1}$ and Z in $T N_{2}$ [15].
One has the following theorem for doubly warped product submanifolds of an LPSasakian manifold [11].

Theorem 3.3. Let $N={ }_{f_{2}} N_{1} \times{ }_{f_{1}} N_{2}$ be a doubly warped product submanifold of an LP-Sasakian manifold M where N_{1} and N_{2} are submanifolds of M. Then, f_{2} is constant and N_{2} is anti-invariant if the structure vector field ξ is tangent to N_{1}, and f_{1} is constant and N_{1} is anti-invariant if ξ is tangent to N_{2}.

The following corollaries are immediate consequences of the above theorem.
Corollary 3.4. There does not exist a proper doubly warped product submanifold in LP-Sasakian manifolds.

Corollary 3.5. There does not exist a warped product submanifold $N_{1} \times{ }_{f} N_{2}$ of an LP-Sasakian manifold M such that ξ is tangent to N_{2}.

From the above theorem and Corollary 3.5, we have only the remaining case is to study the warped product submanifold $N_{1} \times{ }_{f} N_{2}$ with structure vector field ξ is tangent to N_{1}.

4. Warped Product Hemi-Slant Submanifolds

In this section, first we define hemi-slant submanifolds of an LP-contact manifold and then we will discuss their warped products.

Definition 4.1. A submanifold N of an LP-contact manifold M is said to be a hemi-slant submanifold if there exist two orthogonal complementary distributions D_{1} and D_{2} satisfying:
(i) $T N=D_{1} \oplus D_{2} \oplus\langle\xi\rangle$,
(ii) D_{1} is a slant distribution with slant angle $\theta \neq \pi / 2$,
(iii) D_{2} is anti-invariant, that is, $\phi D_{2} \subseteq T^{\perp} N$.

If μ is ϕ-invariant subspace of the normal bundle $T^{\perp} N$, then in case of hemi-slant submanifold, the normal bundle $T^{\perp} N$ can be decomposed as

$$
\begin{equation*}
T^{\perp} N=F D_{1} \oplus F D_{2} \oplus \mu \tag{4.1}
\end{equation*}
$$

Now, we discuss the warped product hemi-slant submanifolds of an LP-Sasakian manifold M. If $N=N_{1} \times{ }_{f} N_{2}$ be a warped product hemi-slant submanifold of an LP-Sasakian manifold M and N_{θ} and N_{\perp} are slant and anti-invariant submanifolds of an LP-Sasakian manifold M, respectively then their warped product hemi-slant submanifolds may be given by one of the following forms:
(i) $N_{\perp} \times{ }_{f} N_{\theta}$,
(ii) $N_{\theta} \times{ }_{f} N_{\perp}$.

In the following theorem, we start with the case (i).
Theorem 4.2. There does not exist a proper warped product hemi-slant submanifold $N=N_{\perp} \times{ }_{f} N_{\theta}$ of an LP-Sasakian manifold M such that ξ is tangent to N_{θ}, where N_{\perp} and N_{θ} are anti-invariant and proper slant submanifolds of M, respectively.

Proof. Let $N=N_{\perp} \times{ }_{f} N_{\theta}$ be a proper warped product hemi-slant submanifold of an LPSasakian manifold M such that ξ is tangent to N_{θ}. Then, for any $X \in T N_{\theta}$ and $U \in T N_{\perp}$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) U=\bar{\nabla}_{X} \phi U-\phi \bar{\nabla}_{X} U \tag{4.2}
\end{equation*}
$$

By virtue of (2.3) and (2.7)-(2.11), it follows from (4.2) that

$$
\begin{align*}
\eta(U) X= & -A_{F U} X+\nabla_{X}^{\perp} F U-E \nabla_{X} U \tag{4.3}\\
& -F \nabla_{X} U-B h(X, U)-C h(X, U) .
\end{align*}
$$

Using Proposition 3.2(II) in (4.3) and then equating the tangential components, we get

$$
\begin{equation*}
\eta(U) X=A_{F U} X+(U \ln f) E X+B h(X, U) \tag{4.4}
\end{equation*}
$$

Taking the inner product with $E X$ in (4.4) and using the fact that X and $E X$ are mutually orthogonal vector fields, then we have

$$
\begin{equation*}
g\left(A_{F U} X, E X\right)+(U \ln f) g(E X, E X)+g(B h(X, U), E X)=0 \tag{4.5}
\end{equation*}
$$

Using (2.9) and (2.15), we get

$$
\begin{equation*}
-(U \ln f) \cos ^{2} \theta\|X\|^{2}=g(h(X, E X), F U)-g(h(X, U), F E X) \tag{4.6}
\end{equation*}
$$

Replacing X by EX in (4.6) and using (2.14), we obtain

$$
\begin{equation*}
-(U \ln f) \cos ^{2} \theta\|X\|^{2}=-g(h(X, E X), F U)+g(h(E X, U), E X) \tag{4.7}
\end{equation*}
$$

Adding (4.6) and (4.7), we get

$$
\begin{equation*}
(U \ln f) \cos ^{2} \theta\|X\|^{2}=0 \tag{4.8}
\end{equation*}
$$

Since N_{θ} is proper slant and X is nonnull, (4.8) yields $U \ln f=0$, which shows that f is constant and consequently the theorem is proved.

The second case is dealt with the following theorem.
Theorem 4.3. Let $N=N_{\theta} \times{ }_{f} N_{\perp}$ be a warped product hemi-slant submanifold of an LP-Sasakian manifold M such that N_{θ} is a proper slant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of M. Then, $\left(\bar{\nabla}_{X} F\right)(U)$ lies in the invariant normal subbundle μ, for each $X \in T N_{\theta}$ and $U \in T N_{\perp}$.

Proof. Consider $N=N_{\theta} \times{ }_{f} N_{\perp}$ be a warped product hemi-slant submanifold of an LPSasakian manifold M such that N_{θ} is a proper slant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of M. Then, for any $X \in T N_{\theta}$ and $U \in T N_{\perp}$, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi U=\phi \bar{\nabla}_{X} U \tag{4.9}
\end{equation*}
$$

Using (2.7) and (2.8), we obtain

$$
\begin{equation*}
-A_{F U} X+\nabla_{X}^{\perp} F U=\phi\left(\nabla_{X} U+h(X, U)\right) \tag{4.10}
\end{equation*}
$$

By virtue of (2.10), (2.11) and Proposition 3.2(II), it follows from (4.10) that

$$
\begin{align*}
-A_{F U} X+\nabla_{X}^{\perp} F U= & (X \ln f) E U+(X \ln f) F U \\
& +B h(X, U)+C h(X, U) \tag{4.11}
\end{align*}
$$

Equating the normal components, we obtain

$$
\begin{equation*}
\nabla_{X}^{\perp} F U=(X \ln f) F U+C h(X, U) \tag{4.12}
\end{equation*}
$$

Taking the inner product of with $F W_{1}$, for any $W_{1} \in T N_{\perp}$ in (4.13), we get

$$
\begin{align*}
g\left(\nabla_{X}^{\perp} F U, F W_{1}\right) & =(X \ln f) g\left(F U, F W_{1}\right)+g\left(C h(X, U), F W_{1}\right) \\
& =(X \ln f) g\left(\phi U, \phi W_{1}\right)+g\left(\phi h(X, U), \phi W_{1}\right) \tag{4.13}\\
& =(X \ln f) g\left(U, W_{1}\right) .
\end{align*}
$$

Also for any $X \in T N_{\theta}$ and $U \in T N_{\perp}$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} F\right) U=\nabla_{X}^{\perp} F U-(X \ln f) F U . \tag{4.14}
\end{equation*}
$$

Taking the inner product $F W_{1}$ for any $W_{1} \in T N_{\perp}$ in (4.14) and using (2.1) and (2.2), we derive

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} F\right) U, F W_{1}\right)=g\left(\nabla_{X}^{\perp} F U, F W_{1}\right)-(X \ln f) g\left(U, W_{1}\right) . \tag{4.15}
\end{equation*}
$$

By virtue of (4.13), the above equation yields

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} F\right) U, F W_{1}\right)=0, \quad \text { for any } X \in T N_{\theta}, U, W_{1} \in T N_{\perp} . \tag{4.16}
\end{equation*}
$$

Similarly, if any $W_{2} \in T N_{\theta}$, then from (2.13), we obtain

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} F\right) U, \phi W_{2}\right)=g\left(\nabla_{X}^{\perp} F U, \phi W_{2}\right)-g\left(F \nabla_{X} U, \phi W_{2}\right) . \tag{4.17}
\end{equation*}
$$

Since the product of tangential component with normal is zero and N_{θ} is a proper slant submanifold, we may conclude from (4.17) that

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} F\right) U, \phi W_{2}\right)=0 \quad \text { for any } X, W_{2} \in T N_{\theta}, U \in T N_{\perp} . \tag{4.18}
\end{equation*}
$$

From (4.16) and (4.18), it follows that $\left(\bar{\nabla}_{X} F\right)(U) \in \mu$ and hence the proof is complete.

5. Examples on LP-Sasakian Manifolds

Example 5.1. We consider a 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be a linearly independent global frame on M given by

$$
\begin{equation*}
E_{1}=e^{z} \frac{\partial}{\partial x}, \quad E_{2}=e^{z-a x} \frac{\partial}{\partial y}, \quad E_{3}=-\frac{\partial}{\partial z}, \tag{5.1}
\end{equation*}
$$

where a is a nonzero constant such that $a \neq 1$. Let g be the Lorentzian metric defined by $g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}=g\left(E_{1}, E_{2}\right)=0, g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=1, g\left(E_{3}, E_{3}\right)=-1\right.$. Let η be
the 1-form defined by $\eta(U)=g\left(U, E_{3}\right)$ for any $U \in T M$. Let θ be the $(1,1)$ tensor field defined by $\eta E_{1}=-E_{1}, \phi E_{2}=-E_{2}$, and $\phi E_{3}=0$. Then, using the linearity of ϕ and g we have $\eta\left(E_{3}\right)=$ $-1, \phi^{2} U=U+\eta(U) E_{3}$, and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in T M$. Thus for $E_{3}=\xi,(\phi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then, we have

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=-a e^{z} E_{2}, \quad\left[E_{1}, E_{3}\right]=-E_{1}, \quad\left[E_{2}, E_{3}\right]=-E_{2} \tag{5.2}
\end{equation*}
$$

Using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{gather*}
\nabla_{E_{1}} E_{1}=-E_{3}, \quad \nabla_{E_{1}} E_{2}=0, \quad \nabla_{E_{1}} E_{3}=-E_{1}, \\
\nabla_{E_{2}} E_{1}=a e^{z} E_{2}, \quad \nabla_{E_{2}} E_{2}=-a e^{z} E_{1}-E_{3}, \quad \nabla_{E_{2}} E_{3}=-E_{2}, \tag{5.3}\\
\nabla_{E_{3}} E_{1}=0, \quad \nabla_{E_{3}} E_{2}=0, \quad \nabla_{E_{3}} E_{3}=0 .
\end{gather*}
$$

From the above computations, it can be easily seen that for $E_{3}=\xi,(\phi, \xi, \eta, g)$ is an LP-Sasakian structure on M. Consequently, $M^{3}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold.

Example 5.2 (see [16]). Let \mathbb{R}^{5} be the 5-dimensional real number space with a coordinate system (x, y, z, t, s). Define

$$
\begin{gather*}
\eta=d s-y d x-t d z, \quad \xi=\frac{\partial}{\partial s} \\
g=\eta \otimes \eta-(d x)^{2}-(d y)^{2}-(d z)^{2}-(d t)^{2} \\
\phi\left(\frac{\partial}{\partial x}\right)=-\frac{\partial}{\partial x}-y \frac{\partial}{\partial s}, \quad \phi\left(\frac{\partial}{\partial y}\right)=-\frac{\partial}{\partial y} \tag{5.4}\\
\phi\left(\frac{\partial}{\partial z}\right)=-\frac{\partial}{\partial z}-t \frac{\partial}{\partial s}, \quad \phi\left(\frac{\partial}{\partial t}\right)=-\frac{\partial}{\partial t^{\prime}}, \quad \phi\left(\frac{\partial}{\partial s}\right)=0
\end{gather*}
$$

the structure (ϕ, η, ξ, g) becomes an LP-Sasakian structure in \mathbb{R}^{5}.
Example 5.3. Consider a 4-dimensional submanifold N of \mathbb{R}^{7} with the cordinate system $\left(x_{1}, x_{2}, \ldots, x_{6}, t\right)$ and the structure is defined as

$$
\begin{gather*}
\phi\left(\frac{\partial}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}, \quad(i=1,2,3) \\
\phi\left(\frac{\partial}{\partial x_{j}}\right)=\frac{\partial}{\partial x_{j}}, \quad(j=4,5,6) \tag{5.5}\\
\eta=d t, \quad \xi=-\frac{\partial}{\partial t}, \quad \phi\left(\frac{\partial}{\partial t}\right)=0 \\
g=d x_{i}^{2}+d x_{j}^{2}+\eta \otimes \eta
\end{gather*}
$$

Hence, the structure (ϕ, ξ, η, g) is an LP-contact structure on \mathbb{R}^{7}. Now, for any $\alpha \in(0, \pi / 2)$ and nonzero u and v, we define the submanifold N as follows:

$$
\begin{equation*}
\omega(u, v, \alpha, t)=2(u, v, u \cos \alpha,-v \sin \alpha, u \sin \alpha, v \cos \alpha, t) \tag{5.6}
\end{equation*}
$$

Then, the tangent space $T N$ is spanned by the vectors:

$$
\begin{align*}
& e_{1}=\frac{\partial}{\partial x_{1}}+\cos \alpha \frac{\partial}{\partial x_{3}}+\sin \alpha \frac{\partial}{\partial x_{5}}, \\
& e_{2}=\frac{\partial}{\partial x_{2}}-\sin \alpha \frac{\partial}{\partial x_{4}}+\cos \alpha \frac{\partial}{\partial x_{6}}, \\
& e_{3}=-u \sin \alpha \frac{\partial}{\partial x_{3}}-v \cos \alpha \frac{\partial}{\partial x_{4}}+u \cos \alpha \frac{\partial}{\partial x_{5}}-v \sin \alpha \frac{\partial}{\partial x_{6}}, \tag{5.7}\\
& e_{4}=-\frac{\partial}{\partial t} .
\end{align*}
$$

Then the distributions $D_{\theta}=\operatorname{span}\left\{e_{1}, e_{2}, e_{4}\right\}$ is a slant distribution tangent to $\xi=e_{4}$ and $D^{\perp}=\operatorname{span}\left\{e_{3}\right\}$ is an anti-invariant distribution, respectively. Let us denote by N_{θ} and N_{\perp} their integral submanifolds, then the metric g on N is given by

$$
\begin{equation*}
g=2\left(d u^{2}+d v^{2}\right)+\left(u^{2}+v^{2}\right) d \alpha^{2} \tag{5.8}
\end{equation*}
$$

Hence, the submanifold $N=N_{\theta} \times{ }_{f} N_{\perp}$ is a hemi-slant-warped product submanifold of \mathbb{R}^{7} with the warping function $f=\sqrt{\left(u^{2}+v^{2}\right)}$.

References

[1] R. L. Bishop and B. O'Neill, "Manifolds of negative curvature," Transactions of the American Mathematical Society, vol. 145, pp. 1-49, 1969.
[2] K. Matsumoto, "On Lorentzian paracontact manifolds," Bulletin of Yamagata University, vol. 12, no. 2, pp. 151-156, 1989.
[3] I. Mihai and R. Roşca, "On lorentzian P-Sasakian manifolds," in Classical Analysis, pp. 155-169, World Scientific Publisher, 1992.
[4] B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, 1990.
[5] A. Lotta, "Slant submanifolds in contact geometry," Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, vol. 39, pp. 183-198, 1996.
[6] J. L. Cabrerizo, A. Carriazo, L. M. Fernández, and M. Fernández, "Slant submanifolds in Sasakian manifolds," Glasgow Mathematical Journal, vol. 42, no. 1, pp. 125-138, 2000.
[7] N. Papaghiuc, "Semi-slant submanifolds of a Kaehlerian manifold," Analele Ştiinţifice Ale Universităţii "Alexandru Ioan Cuza" Din Iaşi, vol. 40, no. 1, pp. 55-61, 1994.
[8] J. L. Cabrerizo, A. Carriazo, L. M. Fernández, and M. Fernández, "Semi-slant submanifolds of a Sasakian manifold," Geometriae Dedicata, vol. 78, no. 2, pp. 183-199, 1999.
[9] A. Carriazo, "Bi-slant immersions," in Proceedings of The International Construction Risk Assessment Model (ICRAM '00), pp. 88-97, Kharagpur, India, 2000.
[10] B. Sahin, "Warped product submanifolds of Kaehler manifolds with a slant factor," Annales Polonici Mathematici, vol. 95, no. 3, pp. 207-226, 2009.
[11] S. Uddin, "Warped product CR-submanifolds in Lorentzian para Sasakian manifolds," Serdica Mathematical Journal, vol. 36, no. 3, pp. 237-246, 2010.
[12] K. Yano and M. Kon, Structures on Manifolds, World Scientific Publishing, Singapore, 1984.
[13] P. Yüksel, S. Kilic, and S. Keles, "Slant and semi-slant submanifolds of a Lorentzian almost paracontact manifold," In press, http:/ /arxiv.org/abs/1101.3156.
[14] B. Ünal, "Doubly warped products," Differential Geometry and Its Applications, vol. 15, no. 3, pp. 253263, 2001.
[15] M. I. Munteanu, "A note on doubly warped product contact CR-submanifolds in trans-Sasakian manifolds," Acta Mathematica Hungarica, vol. 116, no. 1-2, pp. 121-126, 2007.
[16] K. Matsumoto, I. Mihai, and R. Roşca, " ξ-null geodesic gradient vector fields on a Lorentzian paraSasakian manifold," Journal of the Korean Mathematical Society, vol. 32, no. 1, pp. 17-31, 1995.

