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Some formulae of products of the Apostol-Bernoulli and Apostol-Euler polynomials are
established by applying the generating function methods and some summation transform
techniques, and various known results are derived as special cases.

1. Introduction

The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are usually defined
by means of the following generating functions:

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π),

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
(|t| < π). (1.1)

In particular, Bn = Bn(0) and En = 2nEn(1/2) are called the classical Bernoulli numbers
and Euler numbers, respectively. These numbers and polynomials play important roles in
many branches of mathematics such as combinatorics, number theory, special functions, and
analysis. Numerous interesting identities and congruences for them can be found in many
papers; see, for example, [1–4].

Some analogues of the classical Bernoulli and Euler polynomials are the Apostol-
Bernoulli polynomials Bn(x;λ) and Apostol-Euler polynomials En(x;μ). They were



2 Discrete Dynamics in Nature and Society

respectively introduced by Apostol [5] (see also Srivastava [6] for a systematic study) and
Luo [7, 8] as follows:

text

λet − 1
=

∞∑

n=0

Bn(x;λ)
tn

n!
(|t| < 2π if λ = 1; |t| < ∣∣logλ

∣∣ otherwise
)
, (1.2)

2ext

λet + 1
=

∞∑

n=0

En(x;λ)
tn

n!
(|t| < π if λ = 1; |t| < ∣∣log(−λ)∣∣ otherwise

)
. (1.3)

Moreover, Bn(λ) = Bn(0;λ) and En(λ) = 2nEn(1/2;λ) are called the Apostol-Bernoulli
numbers and Apostol-Euler numbers, respectively. Obviously Bn(x;λ) and En(x;λ) reduce
to Bn(x) and En(x) when λ = 1. Some arithmetic properties for the Apostol-Bernoulli and
Apostol-Euler polynomials and numbers have been well investigated by many authors. For
example, in 1998, Srivastava and Todorov [9] gave the close formula for the Apostol-Bernoulli
polynomials in terms of the Gaussian hypergeometric function and the Stirling numbers
of the second kind. Following the work of Srivastava and Todorov, Luo [7] presented the
close formula for the Apostol-Euler polynomials in a similar technique. After that, Luo
[10] obtained some multiplication formulas for the Apostol-Bernoulli and Apostol-Euler
polynomials. Further, Luo [11] showed the Fourier expansions for the Apostol-Bernoulli and
Apostol-Euler polynomials by applying the Lipschitz summation formula and derived some
explicit formulae at rational arguments for these polynomials in terms of the Hurwitz zeta
function.

In the present paper, we will further investigate the arithmetic properties of the
Apostol-Bernoulli and Apostol-Euler polynomials and establish some formulae of products
of the Apostol-Bernoulli and Apostol-Euler polynomials by using the generating function
methods and some summation transform techniques. It turns out that various known results
are deduced as special cases.

2. The Restatement of the Results

For convenience, in this section we always denote by δ1,λ the Kronecker symbol given by
δ1,λ = 0 or 1 according to λ/= 1 or λ = 1, and we also denote by max(a, b) the maximum
number of the real numbers a, b and by [x] the maximum integer less than or equal to the
real number x. We now give the formula of products of the Apostol-Bernoulli polynomials in
the following way.

Theorem 2.1. Letm and n be any positive integers. Then,

Bm(x;λ)Bn

(
y;μ

)
= n

m∑

k=0

(
m
k

)
(−1)m−kBm−k

(
y − x;

1
λ

)Bn+k
(
y;λμ

)

n + k

+m
n∑

k=0

(
n
k

)
Bn−k

(
y − x;μ

)Bm+k
(
x;λμ

)

m + k

+ (−1)m+1δ1,λμ
m!n!

(m + n)!
Bm+n

(
y − x;

1
λ

)
.

(2.1)



Discrete Dynamics in Nature and Society 3

Proof. Multiplying both sides of the identity

1
λeu − 1

· 1
μev − 1

=
(

λeu

λeu − 1
+

1
μev − 1

)
1

λμeu+v − 1
(2.2)

by uvexu+yv, we obtain

uexu

λeu − 1
· veyv

μev − 1
= λv

ue(1+x−y)u

λeu − 1
· ey(u+v)

λμeu+v − 1
+ u

ve(y−x)v

μev − 1
· ex(u+v)

λμeu+v − 1
. (2.3)

It follows from (2.3) that

δ1,λμ
uv

u + v

(
λ
e(1+x−y)u

λeu − 1
+

e(y−x)v

μev − 1

)

=
uexu

λeu − 1
· veyv

μev − 1
− λv

ue(1+x−y)u

λeu − 1

(
ey(u+v)

λμeu+v − 1
− δ1,λμ

u + v

)

− u
ve(y−x)v

μev − 1

(
ex(u+v)

λμeu+v − 1
− δ1,λμ

u + v

)
.

(2.4)

By the Taylor theorem we have

ex(u+v)

λμeu+v − 1
− δ1,λμ

u + v
=

∞∑

n=0

∂n

∂un

(
exu

λμeu − 1
− δ1,λμ

u

)
vn

n!
. (2.5)

Since B0(x;λ) = 1 when λ = 1 and B0(x;λ) = 0 when λ/= 1 (see e.g., [8]), by (1.2) and (2.5)we
get

ex(u+v)

λμeu+v − 1
− δ1,λμ

u + v
=

∞∑

m=0

∞∑

n=0

Bn+m+1
(
x;λμ

)

n +m + 1
· u

m

m!
· v

n

n!
. (2.6)

Putting (1.2) and (2.6) in (2.4), with the help of the Cauchy product, we derive

δ1,λμ
uv

u + v

(
λ
e(1+x−y)u

λeu − 1
+

e(y−x)v

μev − 1

)

= −λ
∞∑

m=0

∞∑

n=0

[
m∑

k=0

(
m
k

)
Bm−k

(
1 + x − y;λ

)Bn+k+1
(
y;λμ

)

n + k + 1

]
um

m!
· v

n+1

n!

−
∞∑

m=0

∞∑

n=0

[
n∑

k=0

(
n
k

)
Bn−k

(
y − x;μ

)Bm+k+1
(
x;λμ

)

m + k + 1

]
um+1

m!
· v

n

n!

+
∞∑

m=0

∞∑

n=0

Bm(x;λ)Bn

(
y;μ

)um

m!
· v

n

n!
.

(2.7)
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If we denote the left-hand side of (2.7) by M1 and

M2 = λδ1,λ

(
veyv

λμev − 1
− δ1,λμ

)
+ δ1,μ

(
uexu

λμeu − 1
− δ1,λμ

)

− δ1,λ
veyv

μev − 1
− δ1,μ

(
uexu

λeu − 1
− δ1,λ

)
,

(2.8)

then applying (1.2) to (2.8), in light of (2.7), we have

M1 +M2 =
∞∑

m=0

∞∑

n=0

[
−λ

m + 1

m+1∑

k=0

(
m + 1
k

)
Bm+1−k

(
1 + x − y;λ

)Bn+k+1
(
y;λμ

)

n + k + 1

− 1
n + 1

n+1∑

k=0

(
n + 1
k

)
Bn+1−k

(
y − x;μ

)Bm+k+1
(
x;λμ

)

m + k + 1

+
Bm+1(x;λ)

m + 1
· Bn+1

(
y;μ

)

n + 1

]
um+1

m!
· v

n+1

n!
.

(2.9)

On the other hand, a simple calculation implies M1 = M2 = 0 when λμ/= 1 and

M1 +M2 = δ1,λμ
uv

u + v

(
λ
e(1+x−y)u

λeu − 1
− δ1,λ

u
+

e(y−x)v

(1/λ)ev − 1
− δ1,1/λ

v

)
(2.10)

when λμ = 1. Applying un =
∑n

k=0(
n
k )(u + v)k(−v)n−k to (1.2), in view of changing the order

of the summation, we obtain

λ
e(1+x−y)u

λeu − 1
− δ1,λ

u
= λ

∞∑

k=0

∞∑

n=k

Bn+1
(
1 + x − y;λ

)

(n + 1)!

(
n
k

)
(u + v)k(−v)n−k

= λ
∞∑

k=0

∞∑

n=k+1

Bn+1
(
1 + x − y;λ

)

(n + 1)!

(
n

k + 1

)
(u + v)k+1(−v)n−(k+1)

+ λ
∞∑

n=0

Bn+1
(
1 + x − y;λ

)

n + 1
· (−v)

n

n!
.

(2.11)
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It follows from (1.2), (2.10), (2.11), and the symmetric relation for the Apostol-Bernoulli
polynomials λBn(1 − x;λ) = (−1)nBn(x; 1/λ) for any nonnegative integer n (see e.g., [8])
that

M1 +M2 = uvδ1,λμ
∞∑

k=0

∞∑

n=k+1

(−1)kBn+1
(
y − x; 1/λ

)

(n + 1)!

(
n

k + 1

)
(u + v)kvn−(k+1)

= δ1,λμ
∞∑

k=0

∞∑

n=k+1

(−1)kBn+1
(
y − x; 1/λ

)

(n + 1)!

(
n

k + 1

) k∑

m=0

(
k
m

)
um+1vn−m

= δ1,λμ
∞∑

m=0

∞∑

k=m

∞∑

n=k+1

(−1)kBn+1
(
y − x; 1/λ

)

(n + 1)!

(
n

k + 1

)(
k
m

)
um+1vn−m

= δ1,λμ
∞∑

m=0

∞∑

n=m+1

(−1)mBn+1
(
y − x; 1/λ

)

(n + 1)!
um+1vn−m

= δ1,λμ
∞∑

m=0

∞∑

n=0
(−1)mm!n!Bn+m+2

(
y − x; 1/λ

)

(n +m + 2)!
· u

m+1

m!
· v

n+1

n!
.

(2.12)

Thus, by equating (2.9) and (2.12) and then comparing the coefficients of um+1vn+1, we
complete the proof of Theorem 2.1 after applying the symmetric relation for the Apostol-
Bernoulli polynomials.

It follows that we show some special cases of Theorem 2.1. By setting x = y in
Theorem 2.1, we have the following.

Corollary 2.2. Letm and n be any positive integers. Then,

Bm(x;λ)Bn

(
x;μ

)
= n

m∑

k=0

(
m
k

)
(−1)m−kBm−k

(
1
λ

)Bn+k
(
x;λμ

)

n + k

+m
n∑

k=0

(
n
k

)
Bn−k

(
μ
)Bm+k

(
x;λμ

)

m + k

+ (−1)m+1δ1,λμ
m!n!

(m + n)!
Bm+n

(
1
λ

)
.

(2.13)

It is well known that the classical Bernoulli numbers with odd subscripts obey B1 = −1/2 and
B2n+1 = 0 for any positive integer n (see, e.g., [12]). Setting λ = μ = 1 in Corollary 2.2, we
immediately obtain the familiar formula of products of the classical Bernoulli polynomials
due to Carlitz [13] and Nielsen [14] as follows.
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Corollary 2.3. Letm and n be any positive integers. Then,

Bm(x)Bn(x) =
max([m/2],[n/2])∑

k=0

{
n

(
m
2k

)
+m

(
n
2k

)}
B2k

Bm+n−2k(x)
m + n − 2k

+ (−1)m+1 m!n!
(m + n)!

Bm+n.

(2.14)

Since the Apostol-Bernoulli polynomials Bn(x;λ) satisfy the difference equation
(∂/∂x)Bn(x;λ) = nBn−1(x;λ) for any positive integer n (see, e.g., [8]), by substituting
x + y for x in Theorem 2.1 and then taking differences with respect to y, we get the following
result after replacing x by x − y.

Corollary 2.4. Letm and n be any positive integers. Then,

1
m

m∑

k=0

(
m
k

)
(−1)m−kBm−k

(
y − x;

1
λ

)
Bn−1+k

(
y;λμ

) − 1
m
Bm(x;λ)Bn−1

(
y;μ

)

= − 1
n

n∑

k=0

(
n
k

)
Bn−k

(
y − x;μ

)Bm−1+k
(
x;λμ

)
+
1
n
Bn

(
y;μ

)Bm−1(x;λ).

(2.15)

Setting x = t and y = 1 − t in Corollary 2.4, by λBn(1 − x;λ) = (−1)nBn(x; 1/λ) for any
nonnegative integer n, we get the following.

Corollary 2.5. Letm and n be any positive integers. Then,

1
m

m∑

k=0

(
m
k

)
(−1)kBm−k(2t;λ)Bn−1+k

(
t;

1
λμ

)
− 1
m
Bm(t;λ)Bn−1

(
t;
1
μ

)

=
1
n

n∑

k=0

(
n
k

)
(−1)kBn−k

(
2t;

1
μ

)
Bm−1+k

(
t;λμ

) − 1
n
B
(
t;
1
μ

)
Bm−1(t;λ).

(2.16)

In particular, the case λ = μ = 1 in Corollary 2.5 gives the following generalization for
Woodcock’s identity on the classical Bernoulli numbers, see [15, 16],

Corollary 2.6. Letm and n be any positive integers. Then,

1
m

m∑

k=0

(
m
k

)
(−1)kBm−k(2t)Bn−1+k(t) − 1

m
Bm(t)Bn−1(t)

=
1
n

n∑

k=0

(
n
k

)
(−1)kBn−k(2t)Bm−1+k(t) − 1

n
Bn(t)Bm−1(t).

(2.17)

We next present some mixed formulae of products of the Apostol-Bernoulli and Apostol-
Euler polynomials and numbers.
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Theorem 2.7. Letm and n be non-negative integers. Then,

Em(x;λ)En

(
y;μ

)
= 2

m∑

k=0

(
m
k

)
(−1)m−kEm−k

(
y − x;

1
λ

)Bn+k+1
(
y;λμ

)

n + k + 1

− 2
n∑

k=0

(
n
k

)
En−k

(
y − x;μ

)Bm+k+1
(
x;λμ

)

m + k + 1

+ (−1)m+12δ1,λμ
m!n!

(m + n + 1)!
Em+n+1

(
y − x;

1
λ

)
.

(2.18)

Proof. Multiplying both sides of the identity

1
λeu + 1

· 1
μev + 1

=
(

λeu

λeu + 1
− 1
μev + 1

)
1

λμeu+v − 1
(2.19)

by 2exu+yv, we obtain

1
2
· 2exu

λeu + 1
· 2eyv

μev + 1
= λ

2e(1+x−y)u

λeu + 1
· ey(u+v)

λμeu+v − 1
− 2e(y−x)v

μev + 1
· ex(u+v)

λμeu+v − 1
. (2.20)

It follows from (2.20) that

δ1,λμ

u + v

(
λ
2e(1+x−y)u

λeu + 1
− 2e(y−x)v

μev + 1

)

=
1
2
· 2exu

λeu + 1
· 2eyv

μev + 1
− λ

2e(1+x−y)u

λeu + 1

(
ey(u+v)

λμeu+v − 1
− δ1,λμ

u + v

)

+
2e(y−x)v

μev + 1

(
ex(u+v)

λμeu+v − 1
− δ1,λμ

u + v

)
.

(2.21)

Applying (1.3) and (2.6) to (2.21), in view of the Cauchy product, we get

δ1,λμ

u + v

(
λ
2e(1+x−y)u

λeu + 1
− 2e(y−x)v

μev + 1

)

=
∞∑

m=0

∞∑

n=0

[
1
2
Em(x;λ)En

(
y;μ

) − λ
m∑

k=0

(
m
k

)
Em−k

(
1 + x − y;λ

)Bn+k+1
(
y;λμ

)

n + k + 1

+
n∑

k=0

(
n
k

)
En−k

(
y − x;μ

)Bm+k+1
(
x;λμ

)

m + k + 1

]
um

m!
· v

n

n!
.

(2.22)



8 Discrete Dynamics in Nature and Society

On the other hand, since the left-hand side of (2.22) vanishes when λμ/= 1, it suffices to
consider the case λμ = 1. Applying un =

∑n
k=0(

n
k )(u + v)k(−v)n−k to (1.3), in view of changing

the order of the summation, we have

λ
2e(1+x−y)u

λeu + 1
= λ

∞∑

k=0

∞∑

n=k

En

(
1 + x − y;λ

)

n!

(
n
k

)
(u + v)k(−v)n−k

= λ
∞∑

k=0

∞∑

n=k+1

En

(
1 + x − y;λ

)

n!

(
n

k + 1

)
(u + v)k+1(−v)n−(k+1)

+ λ
∞∑

n=0

En

(
1 + x − y;λ

) (−v)n
n!

.

(2.23)

It follows from (1.3), (2.23), and the symmetric relation for the Apostol-Euler polynomials
λEn(1 − x;λ) = (−1)nEn(x; 1/λ) for any non-negative integer n (see, e.g., [7]) that

δ1,λμ

u + v

(
λ
2e(1+x−y)u

λeu + 1
− 2e(y−x)v

μev + 1

)

= δ1,λμ
∞∑

k=0

∞∑

n=k+1

(−1)k+1En

(
y − x; 1/λ

)

n!

(
n

k + 1

)
(u + v)kvn−(k+1)

= δ1,λμ
∞∑

k=0

∞∑

n=k+1

(−1)k+1En

(
y − x; 1/λ

)

n!

(
n

k + 1

) k∑

m=0

(
k
m

)
umvn−(m+1)

= δ1,λμ
∞∑

m=0

∞∑

k=m

∞∑

n=k+1

(−1)k+1En

(
y − x; 1/λ

)

n!

(
n

k + 1

)(
k
m

)
umvn−(m+1)

= δ1,λμ
∞∑

m=0

∞∑

n=m+1

(−1)m+1En

(
y − x; 1/λ

)

n!
umvn−(m+1)

= δ1,λμ
∞∑

m=0

∞∑

n=0
(−1)m+1m!n!Em+n+1

(
y − x; 1/λ

)

(m + n + 1)!
· u

m

m!
· v

n

n!
.

(2.24)

Thus, by equating (2.22) and (2.24) and then comparing the coefficients of umvn, we
complete the proof of Theorem 2.7 after applying the symmetric relation for the Apostol-
Euler polynomials.

Next, we give some special cases of Theorem 2.7. By setting x = y in Theorem 2.7, we
have the following.
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Corollary 2.8. Letm and n be non-negative integers. Then,

Em(x;λ)En

(
x;μ

)
= 2

m∑

k=0

(
m
k

)
(−1)m−kEm−k

(
0;

1
λ

)Bn+k+1
(
x;λμ

)

n + k + 1

− 2
n∑

k=0

(
n
k

)
En−k

(
0;μ

)Bm+k+1
(
x;λμ

)

m + k + 1

+ (−1)m+12δ1,λμ
m!n!

(m + n + 1)!
Em+n+1

(
0;

1
λ

)
.

(2.25)

Since the classical Euler polynomials En(x) at zero arguments satisfy E0(0) = 1, E2n(0) = 0,
and E2n−1(0) = (1 − 22n)B2n/n for any positive integer n (see, e.g., [12]), by setting λ = μ = 1
in Corollary 2.8, we obtain the following.

Corollary 2.9. Letm and n be non-negative integers. Then,

Em(x)En(x) = − 2
max([(m+1)/2],[(n+1)/2])∑

k=1

{(
m

2k − 1

)
+
(

n
2k − 1

)}(
1 − 22k

)
B2k

k

× Bn+n+2−2k(x)
m + n + 2 − 2k

+ (−1)m+1 2m!n!
(m + n + 1)!

Km,n,

(2.26)

where Km,n = 2(1 − 2m+n+2)Bm+n+2/(m + n + 2) when m + n ≡ 0 (mod 2) and Km,n = 0 otherwise.

Theorem 2.10. Let m be non-negative integer and n positive integer. Then,

Em(x;λ)Bn

(
y;μ

)
=

n

2

m∑

k=0

(
m
k

)
(−1)m−kEm−k

(
y − x;

1
λ

)
En+k−1

(
y;λμ

)

+
n∑

k=0

(
n
k

)
Bn−k

(
y − x;μ

)Em+k
(
x;λμ

)
.

(2.27)

Proof. Multiplying both sides of the identity

1
λeu + 1

· 1
μev − 1

=
(

λeu

λeu + 1
+

1
μev − 1

)
1

λμeu+v + 1
(2.28)

by 2vexu+yv, we obtain

2exu

λeu + 1
· veyv

μev − 1
=

λv

2
· 2e

(1+x−y)u

λeu + 1
· 2ey(u+v)

λμeu+v + 1
+
ve(y−x)v

μev − 1
· 2ex(u+v)

λμeu+v + 1
. (2.29)
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By (1.3) and the Taylor theorem, we have

2ex(u+v)

λμeu+v + 1
=

∞∑

m=0

∞∑

n=0

En+m
(
x;λμ

)um

m!
· v

n

n!
. (2.30)

Applying (1.2), (1.3), and (2.30) to (2.29), we get

∞∑

m=0

∞∑

n=0

Em(x;λ)Bn

(
y;μ

)um

m!
· v

n

n!

=
λ

2

∞∑

m=0

∞∑

n=0

[
m∑

k=0

(
m
k

)
Em−k

(
1 + x − y;λ

)En+k
(
y;λμ

)
]
um

m!
· v

n+1

n!

+
∞∑

m=0

∞∑

n=0

[
n∑

k=0

(
n
k

)
Bn−k

(
y − x;μ

)Em+k
(
x;λμ

)
]
um

m!
· v

n

n!
,

(2.31)

which means

∞∑

m=0

∞∑

n=0

Em(x;λ)Bn+1
(
y;μ

)

n + 1
· u

m

m!
· v

n+1

n!

=
∞∑

m=0

∞∑

n=0

[
λ

2

m∑

k=0

(
m
k

)
Em−k

(
1 + x − y;λ

)En+k
(
y;λμ

)

+
1

n + 1

n+1∑

k=0

(
n + 1
k

)
Bn+1−k

(
y − x;μ

)Em+k
(
x;λμ

)
]
um

m!
· v

n+1

n!
.

(2.32)

Thus, by comparing the coefficients of umvn+1 in (2.32), we conclude the proof of
Theorem 2.10 after applying the symmetric relation for the Apostol-Euler polynomials.

Obviously, by setting x = y in Theorem 2.10, we have the following.

Corollary 2.11. Let m be non-negative integer and n positive integer. Then,

Em(x;λ)Bn

(
x;μ

)
=

n

2

m∑

k=0

(
m
k

)
(−1)m−kEm−k

(
0;

1
λ

)
En+k−1

(
x;λμ

)

+
n∑

k=0

(
n
k

)
Bn−k

(
μ
)Em+k

(
x;λμ

)
.

(2.33)

Since B1 = −1/2, E0(0) = 1, E2n(0) = 0, and E2n−1(0) = (1 − 22n)B2n/n for any positive integer
n, by setting λ = μ = 1 in Corollary 2.11, we obtain the following.
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Corollary 2.12. Let m be non-negative integer and n positive integer. Then,

Em(x)Bn(x) =
max([(m+1)/2],[n/2])∑

k=1

{
n

(
22k − 1

)

2k

(
m

2k − 1

)
+
(
n
2k

)}
B2kEm+n−2k(x)

+ Em+n(x).

(2.34)

Remark 2.13. For the equivalent forms of Corollaries 2.9 and 2.12, the interested readers may
consult [14].
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