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This paper exactly formulates the kth-order fixation probabilities on complete star digraphs
(CSDs), which extend the results from Broom and Rychtář (2008). By applying these probability
formulae, some asymptotic properties on CBDs are analyzed, and certain CSDs are determined to
be amplifiers of selection for arbitrary relative fitness larger than 1, while all the CSDs are proved
to be amplifiers of selection for fixed relative fitness slightly larger than 1. A numerical method for
fixed population structure (by solving a linear system) is developed to calculate the fixation pro-
babilities on complete bipartite digraphs (CBDs), and some conjectures are finally given through
simulations.

1. Introduction

As a newly emerging branch of population dynamics, evolutionary graph theory studies
the evolution of structured populations and explores the effect of population structure on
evolutionary dynamics [1–6]. Primarily, evolutionary dynamics were investigated on homo-
geneous infinite populations however, populations in the real world are neither infinite nor
homogeneously mixed [2]. In recent years, there is a growing interest in the investigation of
evolutionary dynamics on spatial structures or populations with certain nonhomogeneous
structure [5, 7–10]. The study of evolutionary dynamics on graphs was popularized by
Lieberman et al. [4]. In this framework, the structure of a population is modeled by a
weighted digraph on vertices 1, 2, . . . ,N, which are occupied by individuals (residents and
mutants). The graph can describe the architecture of cells in a multicellular organism and
represent spatial structure among animals or plants in an ecosystem [8]. Moreover, graphs
can also represent relationships in a social network of humans, which means that the dyna-
mics describes cultural selection and the spread of new inventions and ideas. It is supposed
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that every individual of the population occupies a unique vertex of the graph. In each
iteration, a random individual i is chosen for reproduction with a probability proportional
to its fitness, and the resulting offspring will occupy an adjacent vertex j with the probability
wij , which represents the weight on edge 〈i, j〉, if any. The intrinsic weights of a digraph are
defined this way: for a vertex i with l outgoing edges, let wij = 1/l if edge {i, j} exists. In this
paper, we focus our attention on the structures of this kind of digraphs with intrinsic weights.

Consider a homogeneous population on a weighted graph whose individuals all have
baseline fitness 1. Each individual is chosen as the reproducing one with probability pro-
portional to its fitness. Suppose k new mutants with relative fitness r (the new mutant called
advantageous if r > 1, while disadvantageous if 0 < r < 1) are introduced by placing them on
k randomly chosen vertices of the graph. These mutants have a certain chance of fixation, that
is, to generate a lineage that takes over the population. It is an issue in population dynamics
to find the kth-order fixation probability, that is, the fixation probability of k mutants, in a
population [7, 11, 12].

An unstructured population can be modeled by a complete digraph where all edges
have the same weight. The evolution of an unstructured population is often modeled by the
Moran process, whose kth-order fixation probability is

ρ
(M)
k (N; r) =

(
1 − 1/rk

)

(
1 − 1/rN

) , (1.1)

where resident individuals have fitness 1, while mutants have relative fitness r. The Moran
process defines a balance between natural selection and random drift. Lieberman et al. [4]
gave the approximation of the first-order fixation probability for stars with large size N by

P =

(
1 − 1/r2

)

(
1 − 1/r2N

) . (1.2)

Broom and Rychtář [7] obtained the exact average fixation probability for a mutant, given by
� = [n2r/(nr+1)+r/(n+r)]/[(n+1)[1+n/(n+r)

∑n−1
j=1 ((n+r)/(r(nr+1)))

j]], which recovers

(1.2) because for large N we derive � ≈ 1/(1 +
∑n−1

j=1 1/r
2j) = (1 − 1/r2)/(1 − 1/r2n), where

n represents the total size of a star except the central individual. In this paper, we further
extend these results by deriving the explicit kth-order fixation probability on complete star
digraphs (there exists a center vertex which connects each other vertex by two directed edges)
as follows:

� =
n2r/(nr + 1) + r/(n + r)

(n + 1)
[
1 + n/(n + r)

∑n−1
j=1 ((n + r)/r(nr + 1))j

] . (1.3)

The temperature of a vertex is defined as the sum of all weights that lead into that
vertex, that is, the temperature of vertex j is given by Tj =

∑N
j=1 wij [8]. If all the vertices have

the same temperature, then a graph is isothermal. It is known that a structured population
has the same first-order fixation probability as the correspondingMoran process if and only if
the structure is an isothermal digraph [8]. A structure is referred to as an amplifier of selection
(resp., suppressor of selection) if the first-order fixation probability of one advantageous
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mutant on this structure is greater than (resp., less than) that for the corresponding Moran
process. An important issue in evolutionary graph theory is to answer whether a given
structure is an amplifier of selection or a suppressor of selection [4, 13, 14].

This paper proceeds as follows. In Section 2, we formulate the exact kth-order fixation
probability on complete star graphs, then apply it to answer whether a given complete star
graph is an amplifier of selection or not. In Section 3, we obtain the first-order fixation pro-
bability on complete bipartite digraphs (all vertices are divided into two sets, and each
vertex is connected to every vertex in the other set by a directed edge) by solving a linear
system through numerical methods, and pose several conjectures based on the simulations
results.

In this paper, we further develop the theory of evolutionary processes on graphs first
developed by Lieberman et al. [4], by following the approach of proving analytical results
for simple systems in a similar way to Broom and Rychtář [7]. Some useful results advance
the formal underpinnings of the modeling of evolution on graphs, since nearly no attempt is
made to prove general theoretical results in studies of evolution on graphs.

2. On Complete Star Digraphs

In this section, we obtain explicit formulae for the kth-order fixation probabilities on complete
star digraphs and explore their properties and applications in nature and society.

2.1. Basic Concepts and Notations

A complete star digraph (CSD) is a digraph with a single central vertex such that (I) there exists
an edge from the center vertex to each peripheral vertex; (II) there exists an edge from each
peripheral vertex to the center vertex; (III) there exist no other edges. Therefore, a CSD of
size N, denoted by SN , is a digraph with vertex set V = {1, 2, . . . ,N} and directed edge set
E = {〈1, j〉, 〈j, 1〉 | j = 2, . . . ,N}. Figure 1 illustrates one CSD with intrinsic weights. Note that
the term “CSD” means “CSD with intrinsic weights” in the sequel.

The kth-order fixation probability on SN is denoted by ρk(N; r), which represents the
probability of the event that these k mutants generate a lineage that takes over the whole
population.

For technical reasons, we need the following notations in the sequel.
The configuration of a population onSN , at time t, is depicted by a vectorΘ(t) = (θ1(t),

θ2(t)), where θ1(t) = 1 or 0 if a mutant occupies the central vertex or not, respectively,
and θ2(t) denotes the number of mutants occupying vertices 2, . . . ,N. The total number of
mutants at time t is denoted by θ(t), that is, θ(t) = θ1(t) + θ2(t). The probability of the event
that the mutants finally fixate by starting with Θ(0) = (k1, k2), is denoted by ρk1,k2(N; r)
abbreviated to ρk1,k2 (without ambiguity).

2.2. Explicit Fixation Probability Formulae

Before exactly formulating the kth-order fixation probability, the following two necessary
lemmas are presented.
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Figure 1: One complete star digraph S6 with intrinsic weights, the central vertex is indexed 1.

Lemma 2.1. Consider a CSD of size N ≥ 3 and denote by r the relative fitness of a mutant. Then for
k = 1, . . . ,N − 1, the difference equation system holds:

pk = Apk−1 (2.1)

where pk = (ρ1,k, ρ0,k)
T ∈ R

2, and

A =
(

α 1 − α
αβ 1 − αβ

)
, (2.2)

with α := 1 + (N − 1)/r, β := r(N − 1)/[r(N − 1) + 1].

Proof. This proof proceeds by calculating some conditional probabilities and by the total
probability formula. LetΘ(0), at time t = 0, represent the initial configuration of a population
on SN , Θ(1) represent the new configuration after one step-time, and k = θ(0) = θ1(0) + θ2(0)
represent the initial total number of mutants. Then two cases are discussed with respect to
Θ(0).

Case 1. (The initial configurationΘ(0) = (1, k − 1)). In order to reduce the k mutants by
one, a resident individual must be selected to reproduce and, meanwhile the center mutant
(staying at vertex 1) has to be chosen for death, whose conditional on the resident’s selection,
happens with probability 1. Therefore, the conditional probability of going fromΘ(0) = (1, k−
1) to Θ(1) = (0, k − 1) is given by

Pr{Θ(1) = (0, k − 1) | Θ(0) = (1, k − 1)} =
(N − k)

(rk +N − k)
. (2.3)

On the other hand, to increase ω by one, the center mutant has to be chosen for
reproduction, and one resident individual connected to the center vertex must be selected
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to die. Thus the conditional probability of going from Θ(0) = (1, k − 1) to Θ(1) = (1, k) is
given by

Pr{Θ(1) = (1, k) | Θ(0) = (1, k − 1)} =
r(N − k)

[(rk +N − k)(N − 1)]
. (2.4)

By employing (2.3) and (2.4), the probability of the event that the configuration stays
unchanged is given by

Pr{Θ(1) = (1, k − 1) | Θ(0) = (1, k − 1)}

= 1 − (N − k)
(rk +N − k)

− r(N − k)
[(rk +N − k)(N − 1)]

.
(2.5)

Case 2. (The initial configurationΘ(0) = (0, k)). On the one hand, in order to increase k
by one, the center individual has to be replaced by a newmutant produced by another. There-
fore, the probability of going from Θ(0) = (0, k) to Θ(1) = (1, k) is given by

Pr{Θ(1) = (1, k) | Θ(0) = (0, k)} =
rk

(rk +N − k)
. (2.6)

On the other hand, to reduce k by one, the center resident individual has to be chosen
for reproduction and its offspring must replace one mutant. Therefore, the probability of
going from Θ(0) = (0, k) to Θ(1) = (0, k − 1) is given by

Pr{Θ(1) = (0, k − 1) | Θ(0) = (0, k)} =
k

[(rk +N − k)(N − 1)]
. (2.7)

It follows from (2.6) and (2.7) that the probability of the configuration remaining
unchanged is

Pr{Θ(1) = (0, k) | Θ(0) = (0, k)}

= 1 − rk

(rk +N − k)
− k

[(rk +N − k)(N − 1)]
.

(2.8)

By the total probability formula, we derive that for k = 1, . . . ,N − 1,

ρ1,k−1 = Pr{Θ(1) = (0, k − 1) | Θ(0) = (1, k − 1)}ρ0,k−1
+ Pr{Θ(1) = (1, k) | Θ(0) = (1, k − 1)}ρ1,k
+ Pr{Θ(1) = (1, k − 1) | Θ(0) = (1, k − 1)}ρ1,k−1,

(2.9)

ρ0,k = Pr{Θ(1) = (1, k) | Θ(0) = (0, k)}ρ1,k
+ Pr{Θ(1) = (0, k − 1) | Θ(0) = (0, k)}ρ0,k−1
+ Pr{Θ(1) = (0, k) | Θ(0) = (0, k)}ρ0,k.

(2.10)
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Plugging (2.3)–(2.8) into (2.9)-(2.10) and simplifying the results, we deduce

ρ1,k = αρ1,k−1 + (1 − α)ρ0,k−1, (2.11)

ρ0,k = βρ1,k +
(
1 − β

)
ρ0,k−1, (2.12)

where α := 1 + (N − 1)/r, β := r(N − 1)/[r(N − 1) + 1].
By substituting (2.11) into (2.12) and rearranging the terms, we get

ρ0,k = αβρ1,k−1 +
(
1 − αβ

)
ρ0,k−1. (2.13)

Equation on (2.1) follows by combining (2.11) and (2.13).

Lemma 2.2. LetN and r be given. Then for 1 ≤ k ≤ N − 1, the following hold

ρ1,k−1 =

[
β − (α − 1)αk−2(1 − β

)k−1]

[
β − (α − 1)αN−2(1 − β

)N−1] ,

ρ0,k =

[
β
(
1 − αk

(
1 − β

)k)]

[
β − (α − 1)αN−2(1 − β

)N−1] .

(2.14)

Proof. We solve the linear difference equation system (2.1) in view of the standard technique
given in Elaydi [15]. The matrix A in (2.2) has two real eigenvalues λ1 = 1, λ2 = α(1 − β).

Furthermore, η1 = (1, 1)T and η2 = (α − 1, αβ)T are eigenvectors of A corresponding to
λ1, λ2, respectively. Denote

D =
(
1 α − 1
1 αβ

)
, (2.15)

and its inverse matrix

D−1 =

[
1

(
1 − α + αβ

)

](
αβ 1 − α
−1 1

)
. (2.16)

Through the method of diagonalizing matrix A, we make the variable change:

(
ρ1,k
ρ0,k

)
= D
(
xk

yk

)
, (2.17)
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and thus

(
xk

yk

)
= D−1AD

(
xk−1
yk−1

)
=
(
1 0
0 α
(
1 − β

)
)(

xk−1
yk−1

)

=

(
1 0
0 αk

(
1 − β

)k

)(
x0

y0

)
.

(2.18)

Therefore,

(
ρ1,k
ρ0,k

)
= D

(
1 0
0 αk

(
1 − β

)k

)

D−1
(
ρ1,0
ρ0,0

)

=
ρ1,0

(
1 − α + αβ

)

(
αβ − (α − 1)αk

(
1 − β

)k

αβ − αk+1β
(
1 − β

)k

)

.

(2.19)

Particularly, we know

1 = ρ1,N−1 =

[
ρ1,0

(
1 − α + αβ

)

]

×
[
αβ − (α − 1)αN−1(1 − β

)N−1]
, (2.20)

which implies

ρ1,0 =

(
1 − α + αβ

)

(
αβ − (α − 1)αN−1(1 − β

)N−1) . (2.21)

Equation on (2.14) follows from substituting (2.21) into (2.19). The proof is complete.

Next, we present the main theorem of this section.

Theorem 2.3. Let r and N > 2 be given. Then for each k = 1, . . . ,N − 1, the explicit kth-order
fixation probability on SN is given by

ρk(N; r) =
rN[r(N − 1) + 1]N−k−2

[
rN(r(N − 1) + 1)N−2 − (N − 1 + r)N−2

]

×
[

(r(N − 1) + 1)k −
(

k

rk

)
(N − 2)

(
r2 − 1

)
(N − 1 + r)k−2

−
(
(N − 1 + r)

r

)k
]

.

(2.22)
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Proof. In light of (2.21), we derive

ρk(N; r) =
k

Nρ1,k−1
+
(
1 − k

N

)
ρ0,k

=
k/Nαk−2(1 − β

)k−1[
α2β
(
1 − β

) − (α − 1)
]
+ β
[
1 − αk

(
1 − β

)k]

β − (α − 1)αN−2(1 − β
)N−1 .

(2.23)

By substituting α and β (see Lemma 2.1) into this equation, we have

ρk(N; r) =
{
k/N [1 + (N − 1)/r]k−2 [1/(r(N − 1) + 1)]k−1

[
(1 + (N − 1)/r)2 (r(N − 1))

/
(
(r(N − 1) + 1)2

)
− (N − 1)/r

]
+ r(N − 1)/(r(N − 1) + 1)

[
1 − (1 + (N − 1)/r)k/(r(N − 1) + 1)k

]}
/
[
(r(N − 1))/(r(N − 1) + 1)

−(N − 1)/r[1 + (N − 1)/r]N−2/(r(N − 1) + 1)N−1
]

=
[
rN−1(r(N − 1) + 1)N−1

]{
k(N − 1)

(
r2 − 1

)
(2 −N)(N + r − 1)k−2

/
[
rk−1(r(N − 1) + 1)k+1

]
+ r(N − 1)/

(
(r(N − 1) + 1)k+1

) [
(r(N − 1) + 1)k

−((r +N − 1)/r)k
]}

/
{
(N − 1)

[
rN(r(N − 1) + 1)N−2 − (r +N − 1)N−2

]}

= rN[r(N − 1) + 1]N−k−2/
[
rN(r(N − 1) + 1)N−2 − (N − 1 + r)N−2

]

×
[
(r(N − 1) + 1)k −

(
k/rk

)
(N − 2)

(
r2 − 1

)
(N − 1 + r)k−2

−((N − 1 + r)/r)k
]
.

(2.24)

The proof is complete.

Particularly, for the case k = 1, (2.22) becomes

ρ1(N; r) =
rN−1(r2 − 1

)
(r(N − 1) + 1)N−3

[
rN(r(N − 1) + 1)N−2 − (N − 1 + r)N−2

]

×
[(

N2 + (r − 3)(N − 1)
)

(N − 1 + r)

]

.

(2.25)



Discrete Dynamics in Nature and Society 9

Here we point out that (2.25) is just the same as the formula � = [n2r/(nr + 1) + r/(n+
r)]/[(n + 1)[1 + n/(n + r)

∑n−1
j=1 ((n + r)/(r(nr + 1)))j]], which is given in Broom and Rychtář

[7], because

� =
n2r/(nr + 1) + r/(n + r)

(n + 1)
[
1 + n/(n + r)

∑n−1
j=1 ((n + r)/(nr2 + r))j

]

=
n2r/(nr + 1) + r/(n + r)

(n + 1)
[
1 +
[
rn−1(nr + 1)n−1 − (n + r)n−1

]
/
[
(r2 − 1)(r(nr + 1))n−1

]]

=

[
n(n + 1)r2 + (n + 1)

(
n2 − n + 1

)
r
](
r2 − 1

)
[r(nr + 1)]n−1

(nr + 1)(n + r)(n + 1)
[
rn+1(nr + 1)n−1 − (n + r)n−1

]

=
rN−1(r2 − 1

)
[r(N − 1) + 1]N−3

rN[r(N − 1) + 1]N−2 − [N − 1 + r]N−2

×
(
N2 + (r − 3)(N − 1)

)
(N − 1 + r) = ρ1(N; r),

(2.26)

where n represents the number of all individuals except the central one, that is, n = N − 1.

2.3. Applications and Properties of the Fixation Probability

Theorem 2.3 allows us to calculate the fixation probability for a given CSD, so here we use
it to answer whether a given CSD is an amplifier of selection or not. We have the following
result.

Theorem 2.4. S3, S4, S5, S6, S7, S8, S9, and S10 are all amplifiers of selection.

Proof. Combining (1.1) and (2.25) and simplifying, we find that it suffices to confirm that for
r > 1 and N = 3, 4, . . . , 10, the inequality ρ1(N; r) > ρ

(M)
1 (N; r) holds, which is equivalent to

J(N, r) > 0, where

J(N, r) := (r + 1)
(
rN − 1

)[
N2 + (r − 3)(N − 1), r(N − 1) + 1

]N−3

− (N − 1 + r)
[
rN(r(N − 1) + 1)N−2 − (N − 1 + r)N−2

]
.

(2.27)

By certain algebraic calculations, it is easy to derive

J(3, r) = r3 − r2 − r + 1 = (r − 1)2(r + 1) > 0,

J(4, r) = 12r5 + 4r4 − 8r3 − 24r2 − 4r + 20 = (r − 1)2
(
12r3 + 28r2 + 36r + 20

)
> 0,

J(5, r) = 144r7 + 72r6 + 9r5 − 63r4 − 288r3 − 252r2 + 135r + 243

= (r − 1)2
(
144r5 + 360r4 + 585r3 + 747r2 + 621r + 243

)
> 0.

(2.28)



10 Discrete Dynamics in Nature and Society

Table 1

N J(N, r)/(r − 1)2

6 2000r7 + 5200r6 + 8640r5 + 12096r4 + 14928r3 + 14160r2 + 8992r + 3104
7 32400r9 + 86400r8 + 145800r7 + 205800r6 + 265825r5 + 318075r4 + 317225r3

+243475r2 + 139125r + 46625
8 605052r11 + 1642284r10 + 2802996r9 + 3981348r8 + 5160960r7 + 6340608r6

+7402608r5 + 7540272r4 + 6332004r3 + 4444596r2 + 2468988r + 823500
9 12845056r13 + 35323904r12 + 60813312r11 + 86804480r10 + 112842688r9

+138883248r8 + 164923857r7 + 188867315r6 + 194198613r5 + 171318455r4

+133184793r3 + 91162491r2 + 50328733r + 16777159
10 306110016r15 + 850305600r14 + 1473863040r13 + 2112117120r12

+2752004160r11 + 3392000064r10 + 4032000000r9 + 4672000000r8

+5268953280r7 + 5440222400r6 + 4946130304r5 + 4076784000r4

+3098682560r3 + 2109150400r2 + 1162256640r + 387420416
...

...

By using Maple 10, we derive the polynomials J(N, r)/(r − 1)2 for N = 6, 7, . . . , 10, as shown
in Table 1.

It follows directly from Table 1 that J(N, r) > 0 holds forN = 6, 7, 8, 9, 10, which along
with (2.28) leads to this result.

By (2.28) and Table 1, we guess that forN ≥ 3 and (2.27) have the following form:

J(N, r) = (r − 1)2
2N−5∑

j=0

ajr
j , N ≥ 3, (2.29)

where each aj (j = 0, 1, . . . , 2N − 5) is a nonnegative integer. However, it seems very difficult
to prove this inequality in its general form even by the mathematical softwares, since we
confront complicated polynomials asN increases, as shown in Table 1.

Another utility of Theorem 2.3 is to study the asymptotic properties of the fixation
probabilities on complete star digraphs. For that purpose, we rewrite (2.22) in the following
form:

ρk(N; r) =
[
1 +

1
(r(N − 1))

]−k

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1 +

1
(r(N − 1))

]k
− 1
r2k

(
1 +

r

(N − 1)

)k

− k(N − 2)
(
r2 − 1

)

(
(N − 1)2r2k

)(
1 +

r

N − 1

)k−2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

/

[

1 − 1
r2N−2

(
1 +
(
r − 1
r

))
/

((
N − 1 +

1
r

))N−2]

.

(2.30)
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Figure 2: First-order fixation probabilities of CSDs and Moran process with N by fixing relative fitness r.

By letting r > 1 and taking limits on both sides of (2.30) in N, then ρk(N; r) → 1 − 1/r2k

as N → ∞. Lieberman et al. [4] declared this result without rigorous argument. This
statement tells us that for sufficiently large N, SN is an amplifier of selection because
limN→∞ρ1(N; r) = 1 − 1/r2 > 1 − 1/r = limN→∞ρ

(M)
1 (N; r).

Figure 2 shows how the first-order fixation probability goes to the limit. For com-
parative purposes, the first-order fixation probability for the Moran process is also given in
this figure. By Theorem 2.4 and a close look at Figure 2, we pose the conjecture: let r > 1.
Then, SN(N ≥ 3) is an amplifier of selection.

In the proof of Theorem 2.3, we argue that the conjecture holds for 3 ≤ N ≤ 10 by
computing some polynomials; however, we confront complex polynomials whenN becomes
large. Thus, it seems very difficult to generally prove the conjecture. Fortunately, here we
derive the following weak but useful result through rigorous reasoning.
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Theorem 2.5. Let τ(N) > 0, depending onN, be sufficiently small. Then for any r ∈ (1, 1 + τ(N)),
SN (N ≥ 3) is an amplifier of selection.

Proof. It suffices to prove that for r ∈ (1, 1 + τ(N)) the following inequality holds:

ρ1(N; r) > ρ
(M)
1 (N; r), (2.31)

which is equivalent to ρ1(N; r) > ρ
(M)
1 (N; r) by applying (1.1) and (2.25). We prove this as

follows.
Let f(r) = (r + 1)[N2 + (N − 1)(r − 3)][r(N − 1) + 1]N−3, then

f ′(r) = f(r) + (N − 1)(r + 1)[r(N − 1) + 1]N−3

+ (N − 3)(N − 1)(r + 1)
[
N2 + (N − 1)(r − 3)

]
[r(N − 1) + 1]N−4.

(2.32)

It follows from (2.27) that

J(N, r) =
(
rN − 1

)
f(r) − (N − 1 + r)

[
rN(r(N − 1) + 1)N−2 − (N − 1 + r)N−2

]
(2.33)

whose first- and second-order derivatives in r are, respectively, given by

∂J(N, r)
∂r

= NrN−1f(r) +
(
rN − 1

)
f ′(r) − rN[r(N − 1) + 1]N−2

−N(N − 1 + r)rN−1[r(N − 1) + 1]N−2 + (N − 1)(N − 1 + r)N−2

− (N − 2)(N − 1)(N − 1 + r)rN[r(N − 1) + 1]N−3,

∂2J(N, r)
∂r2

= N(N − 1)rN−2f(r) + 2NrN−1f ′(r) +
(
rN − 1

)
f ′′(r)

− 2NrN−1[r(N − 1) + 1]N−2 −N(N − 1)(N − 1 + r)
[
r2(N − 1) + r

]N−2

− (N − 2)(N − 1)r2
[
r2(N − 1) + r

]N−3
[2N(N − 1) + (2N + 1)r]

+ (N − 2)(N − 1)
[
(N − 1 + r)N−3 − rN(r(N − 1) + 1)N−3

]

− (N − 3)(N − 2)(N − 1)2(N − 1 + r)rN[r(N − 1) + 1]N−4.

(2.34)

Through certain calculations, we derive

f(1) = 2
[
N2 − 2N + 2

]
NN−3, f ′(1)

= NN−1 + 2(N − 3)(N − 1)
(
N2 − 2N + 2

)
NN−4,

(2.35)



Discrete Dynamics in Nature and Society 13

which imply

∂J(N, r)
∂r

|r=1 = 0,
∂2J(N, r)

∂r2
|r=1 = 2(N − 1)(N − 2)3NN−3 > 0. (2.36)

It follows from the Taylor’s theorem and the fact J(N, 1) = 0 that

J(N, r) = J(N, 1) +
∂J(N, r)

∂r
|r=1(r − 1) +

1
2!

∂2J(N, r)
∂r2

|r=1(r − 1)2 +O
(
(r − 1)2

)

= (N − 1)(N − 2)3NN−3(r − 1)2 +O
(
(r − 1)2

)

= (r − 1)2
[
(N − 1)(N − 2)3NN−3 +O(r − 1)

]
.

(2.37)

Therefore, there exists a small enough τ(N) > 0 such that the inequality (N−1)(N−2)3NN−3+
O(r − 1) > 0 holds for arbitrary r ∈ (1, 1 + τ(N)). The proof is complete.

Theorem 2.5 shows that no matter the size of a complete star digraph, it is always an
amplifier of selection if the mutant’s relative fitness is slightly larger than 1.

In the following, let us examine the asymptotic behavior of ρk(N; r) provided that
k = kN depends on N. If r > 1 and SN (N ≥ 3) is an amplifier of selection, then by taking
limits on (2.30), we have (I) if kN → +∞, then ρkN (N; r) → 1; (II) if kN → k∗ < +∞, then
ρkN (N; r) → 1 − 1/r2k

∗
. The first assertion is interesting because it demonstrates that no

matter how slowly the initial number of mutants increases (e.g., proportional to [ln ln N])
the corresponding fixation probability will always approach one.

When r = rN depends on N, one may imagine that the asymptotic behavior of
ρk(N; r)would becomemuch more complex. For example, given k and suppose r = rN . Then
we have the assertions: (I) if rN → r∗ > 1, then ρk(N; rN) → 1 − 1/(r∗)2k; (II) if
rN → 1, then ρk(N; rN) → 0. Note that the first assertion follows directly from (2.30).
Considering the second assertion, assume that rNN → δ > 1, then it follows from (2.30) that
limN→∞ρk(N; rN) = limN→∞(1− 1/r2kN )/(1− 1/r2N−2

N ) = 0/(1− 1/δ2) = 0. Finally, in the case
rNN → 1, the second assertion follows naturally.

Figure 3 shows that how the kth-order fixation probability changes as the increasing
number mutants k.

3. Fixation Probabilities on Complete Bipartite Digraphs

This section gives a recursive equation regarding the fixation probabilities on complete
bipartite digraphs and obtains some results through a numerical method by simulation.

3.1. Basic Concepts and Notations

A complete bipartite digraph (CBD) is a digraph whose vertices are partitioned into two partite
sets so that there is no edge connecting any two vertices in the same partite set, and there is
an directed edge connecting each vertex in one partite set to each vertex in the other partite
set [16]. A CBD denoted by BN1,N2 (here N1 and N2 represent the sizes of two partite sets,
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Figure 3: The curves of kth-order fixation probability on S50 with respect to k by fixing r. These curves
show the values of ρk dramatically converge to 1, and they increase as k increases, which is consistent with
the fact that the more initial mutants there are, the larger the fixation probability is.
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Figure 4: Two complete bipartite digraphs. (a) Shows a general CBD, while (b) shows an unbalanced one
with intrinsic weights.

respectively, and due to symmetry, letN1 ≤ N2) is a digraph with vertex set V = {1, 2, . . . ,N}
(N = N1 + N2 is the total size) and edge set E = {〈i, j〉, 〈j, i〉 | i = 1, 2, . . . ,N1, j = N1 +
1, . . . ,N1 +N2}. A CBD is balanced if its two partite sets have the same size, that is, N1 = N2,
otherwise it is unbalanced. The unbalance degree of BN1, N2 can be measured by |N2 − N1 |.
Figure 4 depicts two CBDs (the second one’s unbalance degree is 1). The term “CBD” implies
“CBD with intrinsic weights” in the sequel.

Without loss of generality, we suppose here that N1 ≤ N2. Obviously, when N1 = 1,
the complete bipartite digraph is just the complete star digraph SN2 . A CBD is an isothermal
digraph if and only if it is balanced, thus the first-order fixation probability on a balanced
CBD is already known by the isothermal theorem.

For technical reasons, the following notations are needed in the sequel.
Consider a homogeneous population on a CBD where all individuals have fitness 1.

Suppose that k new mutants with relative fitness r are introduced by placing them on k
randomly chosen vertices. Let ρk(N1,N2; r) represent the kth-order fixation probability, that
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is, the probability of the event that these k mutants generate a lineage that takes over the
population.

At time t, the configuration of a population on BN1,N2 is described by a vector Ω(t) =
(m1(t), m2(t)), where m1(t) and m2(t) represent the number of mutants staying at vertices
1, 2, . . . ,N1 and vertices N1 + 1,N1 + 2, . . . ,N1 +N2, respectively.

Let m(t) represent the total number of mutants at time t, that is, m(t) = m1(t) +m2(t),
and ρk1,k2(N1,N2; r) (without ambiguity, ρk1,k2) represent the probability of the event that,
starting from Ω(0) = (k1, k2), the mutants finally fixate.

3.2. A Numerical Method

Here we will give an approach for calculating the fixation probability on a CBD and thus
three theorems are established as follows.

Theorem 3.1. Consider a CBD BN1,N2 with N2 ≥ N1 ≥ 2. Then, we have ρk1,k2(N1,N2; r) (0 ≤
k1 ≤ N1, 0 ≤ k2 ≤ N2) satisfying the recursive equation:

χ1ρk1−1,k2 + χ2ρk1,k2−1 + χ3ρk1+1,k2 + χ4ρk1,k2+1 =
(
χ1 + χ2 + χ3 + χ4

)
ρk1,k2 , (3.1)

where χ1 := k1(N2 − k2)/N1, χ2 := k2(N1 − k1)/N2, χ3 := rk2(N1 − k1)/N1, χ4 := rk1(N2 −
k2)/N2, and ρ0,0 = 0, ρN1,N2 = 1, ρ−1,i = ρj,−1 = ρN1+1,i = ρj,N2+1 = 0, i = 0, 1, . . . ,N2, j =
0, 1, . . . ,N1, are boundary conditions.

Proof. LetΩ(0), at time t = 0, represent the initial configuration of a population on BN1,N2 and
Ω(1) represent the new configuration after one step-time. Thus we have m1(0) = k1, m2(0) =
k2, m(0) = k1 + k2. It is simple to calculate the following conditional probabilities:

Pr{Ω(1) = (k1 + 1, k2) | Ω(0) = (k1, k2)} =
rk2(N1 − k1)

(N1(rk +N − k))
,

Pr{Ω(1) = (k1, k2 + 1) | Ω(0) = (k1, k2)} =
rk1(N2 − k2)

(N2(rk +N − k))
,

Pr{Ω(1) = (k1 − 1, k2) | Ω(0) = (k1, k2)} =
k1(N2 − k2)

(N1(rk +N − k))
,

Pr{Ω(1) = (k1, k2 − 1) | Ω(0) = (k1, k2)} =
k2(N1 − k1)

(N2(rk +N − k))
,

(3.2)

where k = k1 + k2, N = N1 +N2.
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Therefore, the probability that the configuration does not change is given by

Pr{Ω(1) = (k1, k2) | Ω(0) = (k1, k2)}
= 1 − Pr{Ω(1) = (k1 + 1, k2) | Ω(0) = (k1, k2)}
− Pr{Ω(1) = (k1, k2 + 1) | Ω(0) = (k1, k2)}
− Pr{Ω(1) = (k1 − 1, k2) | Ω(0) = (k1, k2)}
− Pr{Ω(1) = (k1, k2 − 1) | Ω(0) = (k1, k2)}.

(3.3)

By the total probability formula, we derive

ρk1,k2 = Pr{Ω(1) = (k1 + 1, k2) | Ω(0) = (k1, k2)}ρk1+1,k2
+ Pr{Ω(1) = (k1, k2 + 1) | Ω(0) = (k1, k2)}ρk1,k2+1
+ Pr{Ω(1) = (k1 − 1, k2) | Ω(0) = (k1, k2)}ρk1−1,k2
+ Pr{Ω(1) = (k1, k2 − 1) | Ω(0) = (k1, k2)}ρk1,k2−1
+ Pr{Ω(1) = (k1, k2) | Ω(0) = (k1, k2)}ρk1,k2 .

(3.4)

Note that ρ0,0 = 0, ρN1,N2 = 1 and ρ−1,i, ρj,−1, ρN1+1,i, ρj,N2+1, i = 0, 1, . . . ,N2, j = 0, 1, . . . , N − 1
are meaningless, thus we assume ρ−1,i = ρj,−1 = ρN1+1,i = ρj,N2+1 = 0, i = 0, 1, . . . ,N2, j =
0, 1, . . . ,N − 1. Then (3.1) follows immediately by plugging (3.2) and (3.3) into (3.4) and
simplifying. The proof is complete.

Theorem 3.2. For 1 ≤ k ≤ N − 1, the following holds

ρk(N1,N2; r) =

∑min{k,N1}
k1=max{k,N2}−N2

(
N1
k1

)(
N2
k−k1

)

(
N1+N2

k

)
ρk1,k−k1(N1,N2; r)

. (3.5)

Particularly,

ρ1(N1,N2; r) =
N2

(N1 +N2)ρ0,1(N1 ,N2;r)

+
N1

(N1 +N2)ρ0,1(N1 ,N2;r)

. (3.6)

Sketch. The randomness of the initial configuration of mutants gives

Pr{Ω(0) = (k1, k − k1)} =

(
N1
k1

)(
N2
k−k1

)

(
N1+N2

k

) , (3.7)

where k1 represents the number of mutants staying at vertices 1, 2, . . . ,N1.
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Figure 5: Comparisons between the first-order fixation probability (FOFP) of CBDs and that of the Moran
process with different fixed r. The lines and little rectangles represent the FOFPs of the Moran process and
CBDs over N, respectively. This figure shows that FOFPs of CBDs are always equal to those of the cor-
responding Moran process with the same sizeN.

Equation on (3.5) follows from this equation and the following total probability formula:

ρk(N1,N2; r) =
min{k,N1}∑

k1=max{k,N2}−N2

Pr{Ω(0) = (k1, k − k1)}ρk1,k−k1(N1,N2; r). (3.8)

From the above theorems, calculating ρ1(N1,N2; r) reduces to solving the difference
equation system (3.1) with (N1 + 1)(N2 + 1) − 2 = N1N2 + N1 + N2 − 1 variables, because
ρ0,0, ρN1,N2 are known. It is known [17] that solving a linear system in n variables with the
Gaussian elimination method would take O(n2) time. So, we have the result.

Theorem 3.3. ρ1(N1,N2; r) is numerically obtainable in O(N2
1N

2
2) time.

In the best case ρ1(1,N2; r) is computed in O(N2
2) time, whereas in the worst case ρ1(N1,

N1; r) consumes up to O(N4
1) calculation time.

3.3. Numerical Experiments

Based on the theory established above, this section aims to experimentally reveal how a CBD,
affects the first-order fixation probability (3.6) of an advantageous mutant. The experiments
are done using Matlab.

At first sight, ρ1(N1,N2; r) depends on three parameters. However, we will focus our
attention on how ρ1 is affected by N1 and N2 because these two parameters characterize the
CBD. Therefore, we will fix the fitness r in the subsequent experiments.

Experiment 1. To verify the theory’s correctness and guarantee the effectiveness of the
following experiments, this experiment illustrates (see Figure 5) that the fixation probability
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Figure 6: The lattice graphs of ρ1 with respect to N1,N2 by fixing r. Note that the figures are symmetric
due to the symmetry of CBDs.

of balanced CBDs is equal to that of the corresponding Moran process. Here, the isothermal
theorem of Lieberman et al. [4] is referenced.

Experiment 2. Given r > 1 andNk = {2, 3, . . . , k}, wewish to know how ρ1 depends onN1 and
N2. For the purpose, we evaluate ρ1 for each pair (N1,N2) with N1,N2 ∈ N50. The resulting
ρ1 − (N1,N2) lattice graphs are plotted in Figure 6.

Experiment 3. Given N and r > 1, it is interesting to know how ρ1 depends on N1 (without
loss of generality, again let N1 ≤ N2). Thus for each pair (r,N) with r ∈ {1.1, 1.2, 1.4, 1.7, 2}
and N ∈ {52, 102}, we evaluate ρ1 for all N1 = 2, . . . , [N/2]. The resulting ρ1 −N1 curves are
plotted in Figure 7, which suggests that ρ1 declines as N1 increases, that is,

ρ1(1,N − 1; r) > ρ1(2,N − 2; r) > · · · > ρ1

([
N

2

]
,N −

[
N

2

]
; r
)
. (3.9)

In particular, ρ1 attains its maximum and minimum when N1 = 1 and N1 = [N/2],
respectively. This implies that all unbalanced CBDs under consideration are amplifiers of
selection. Moreover, the more unbalanced a CBD, the more significantly it will amplify selec-
tion. On this basis, we pose the following conjecture.

Conjecture 3.4. For any r > 1 and N ≥ 4, the inequality chain (3.9) holds.
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Figure 8: First-order fixation probability over the total population size. This figure shows the phenomenon
that for each pair (r,N1) under consideration, ρ1(N1,N − N1; r) converges. Furthermore, the limit of ρ1
declines as N1 increases with fixed r.

Experiment 4. Let r > 1 and N1 be given, we expect to know how ρ1 depends on N. For
that purpose, for each pair (r,N1) with r ∈ {1.2, 1.6} and N1 ∈ {2, 3, 4, 5} we compute ρ1 for
2N1 ≤ N ≤ 250. The resulting ρ1−N curves are given in Figure 8. For comparison, then ρ1−N
curves for the corresponding Moran processes are also depicted in this figure. The following
conjecture is posed here.

Conjecture 3.5. For any r > 1 and any positive integer N1 ≥ 2, ρ1(N1,N − N1; r) converges.
Moreover, the following inequality chain holds:

lim
N→∞

ρ1(2,N − 2; r) < lim
N→∞

ρ1(3,N − 3; r) < lim
N→∞

ρ1(4,N − 4; r) < · · · . (3.10)
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4. Conclusions

This paper derives the explicit formulae for the kth-order fixation probabilities on complete
star digraphs and applies them to study some asymptotic properties of populations on CSDs.
In order to better understand how the structure of a population affects its evolution, we also
chose to study how complete bipartite digraphs affect the first-order fixation probability of
an advantageous mutant. For fixed population structure, a method (by solving a linear sys-
tem) has been proposed to calculate this fixation probability. Numerical experiments have
revealed some interesting phenomena, which need a reasonable explanation. After careful
consideration, we find that, except isothermal digraphs, rooted digraphs and multiplerooted
digraphs, complete star digraphs may be the only digraphs whose kth-order fixation pro-
babilities can be expressed analytically. Therefore, a wise strategy for studying the fixation
probabilities on other kinds of structures is to numerically determine them [18]. We are cur-
rently working toward this direction and also attempting to modify the model under study to
adapt the evolution of the trustworthiness of large-scale distributed systems. It is also worth
extending this work to, say, the cooperation on one graph, on a pair of graphs, or on hyper-
networks [5, 19–23].
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