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We study the differentiability properties of the pre-image pressure. For a TDS (X, T) with finite
topological pre-image entropy, we prove the pre-image pressure function Ppre(T, •) is Gateaux
differentiable at f ∈ C(X,R) if and only if Ppre(T, •) has a unique tangent functional at f . Also,
we obtain some equivalent conditions for Ppre(T, •) to be Fréchet differentiable at f .

1. Introduction

By a topological dynamical system (for short TDS), we mean a pair (X, T) where X is a com-
pact metric space and T : X → X is a continuous surjection from X to itself. Entropies
are fundamental to our current understanding of dynamical systems. The classical measure-
theoretic entropy for an invariant measure and the topological entropy were introduced in [1,
2], respectively, and the classical variational principle was completed in [3, 4]. Topological
entropy measures the maximal exponential growth rate of orbits for arbitrary topological
dynamical systems, andmeasure-theoretic entropymeasures themaximal loss of information
for the iteration of finite partitions in a measure-preserving transformation.

Topological pressure is a generalization of topological entropy for a dynamical system.
The notion was first introduced by Ruelle [5] in 1973 for an expansive dynamical system and
later by Walters [6] for the general case. The theory related to the topological pressure, varia-
tional principle, and equilibrium states plays a fundamental role in statistical mechanics,
ergodic theory, and dynamical systems (see, e.g., the books [7–12]). Since the works of Bowen
[13] and Ruelle [14], the topological pressure has become a basic tool in the dimension theory
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related to dynamical systems. One of the basic questions of physical interest in that of dif-
ferentiability of the pressure. The differentiability of the pressure was considered by many
people (see, e.g., [15–18]).

Recently, the pre-image structure of maps has become deeply characterized via en-
tropies. In several papers (see [19–24]), some important pre-image entropy invariants of
dynamical systems have been introduced and their relationships with topological entropy
have been established. In a certain sense, these new invariants give a quantitative estimate of
how “noninvertible” a system is. In [25], we defined the topological pre-image pressure of
topological dynamical systems, which is a generalization of the Cheng-Newhouse pre-image
entropy (see [19]), and proved a variational principle for it. We gave some applications
of the pre-image pressure to equilibrium states (see [25, 26]). Under the assumption that
hpre(T) < ∞ and the metric pre-image entropy function h{pre,•}(T) is upper semicontinuous,
we obtained a way to describe a kind of continuous dependence of equilibrium states.
Also, we proved that the set of all continuous functions with unique equilibrium states is
a dense Gδ-set of C(X,R), and for any finite collection of ergodic measures, we can find some
continuous function such that its set of equilibrium states contains the given set (see [26]).

The purpose of this paper is to study the differentiability properties of the pre-image
pressure of the TDS (X, T) with finite topological pre-image entropy. In Section 2, we con-
centrate on reviewing some basic definitions and give some basic properties of tangent
functionals to the pre-image pressure.

In Section 3, the Gateaux differentiability of the pre-image pressure is discussed. We
show that the pre-image pressure function Ppre(T, •) is Gateaux differentiable at f ∈ C(X,R)
if and only if it has a unique tangent functional at f .

In Section 4, we discuss the Fréchet differentiability of the pre-image pressure. We
obtain some equivalent conditions for Ppre(T, •) to be Fréchet differentiable at f . Also, we
show that the pre-image function Ppre(T, •) is Fréchet differentiable if and only if (X, T) is
uniquely ergodic, and hence the pre-pressure is linear.

2. Preliminaries

Throughout the paper, let (X, T) be a TDS with finite topological pre-image entropy hpre(T)
(see [19] for definition). In this section, we will recall some basic definitions and give some
useful properties.

Let (X, T) be a TDS and let B(X) be the collection of all Borel subsets of X. Recall that
a cover of X is a family of Borel subsets of X whose union is X. An open cover is one that
consists of open sets. A partition of X is a cover of X consisting of pairwise disjoint sets. We
denote the set of finite covers, finite open covers, and finite partition of X by CX , Co

X , and PX ,
respectively. Given two covers U,V, U is said to be finer than V (denoted by U � V) if each
element of U is contained in some element of V. We set U ∨ V = {U ∩ V : U ∈ U, V ∈ V}.

Denote by C(X,R) the Banach space of all continuous, real-valued functions on X
endowed with the supremum norm. For f ∈ C(X,R) and n ∈ N, we denote

∑n−1
i=0 f(Ti(x)) by

(Snf)(x).

2.1. Topological Pre-Image Pressure

In an early paper with Zeng et al. [25], following the idea of topological pressure (see
Chapter 9, [12]), we defined a new notion of pre-image pressure, which extends the Cheng-
Newhouse pre-image entropy hpre(T) [19]. For a given TDS (X, T), the pre-image pressure of
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T is a map Ppre(T, •) : C(X,R) → R which is convex, Lipschitz continuous, increasing, with
Ppre(T, 0) = hpre(T). More precisely, let U ∈ Co

X . For x ∈ X and k ∈ N, we put

Pn

(
T, f,U, T−k(x)

)
:= inf

V

∑

B∈V
sup
y∈B

e(Snf)(y), (2.1)

where the infimum is taken over all finite subcovers V of
∨n−1

i=0 T
−iU with respect to T−k(x).

We define the pre-image pressure of T related to U at f as

Ppre
(
T, f,U

)
:= lim

n→∞

1
n
logPpre,n

(
T, f,U

)
, (2.2)

where Ppre,n(T, f,U) := supx∈X, k�n Pn(T, f,U, T−k(x)). The pre-image pressure of T at f is de-
fined by

Ppre
(
T, f

)
:= sup

U∈Co
X

Ppre
(
T, f,U

)
. (2.3)

It is clear that Ppre(T, f) � P(T, f) (topological pressure, see [12]) and Ppre(T, 0) = hpre(T).
Ppre(T, f) � ‖f‖ if T is a homeomorphism.

2.2. Measure-Theoretic Pre-Image Entropy

Denote byM(X),M(X, T), andMe(X, T) the set of all Borel probability measures, T -invariant
Borel probability measures and T -invariant ergodic measures, on X, respectively. Note that
M(X, T) ⊇ Me(X, T)/= ∅, and both M(X) and M(X, T) are convex compact metric spaces
when endowed with the weak∗-topology; Me(X, T) is a Gδ subset of M(X, T) (see [12,
Chapter 6]). Beside the weak∗-topology on M(X, T), we also have the norm topology arising
from the metric:

∥
∥μ − ν

∥
∥ := sup

{∣
∣
∣
∣

∫

g dμ −
∫

gdν
∣
∣
∣
∣ : g ∈ C(X,R),

∥
∥g

∥
∥ � 1

}

. (2.4)

Note that ‖μ − ν‖ = 2 if μ/= ν ∈ Me(X, T).
Given α ∈ PX , μ ∈ M(X) and a sub-σ-algebra A ⊆ B(X), define

Hμ(α | A) :=
∑

A∈α

∫

X

−E(1A | A) logE(1A | A)dμ, (2.5)

where E(1A | A) is the conditional expectation of 1A with respect to A. It is a standard fact
that Hμ(α | A) increases with respect to α and decreases with respect to A. Note that β ∈ PX

naturally generates a sub-σ-algebra F(β) of B(X); where there is no ambiguity, we write F(β)
as β. It is easy to check, for α, β ∈ PX , that Hμ(α | β) = Hμ(α ∨ β) −Hμ(β). More generally, for
a sub-σ-algebra A ⊆ B(X), we have

Hμ

(
α ∨ β | A

)
= Hμ

(
β | A

)
+Hμ

(
α | β ∨A

)
. (2.6)
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When μ ∈ M(X, T) andA ⊆ B(X) is a T -invariant sub-σ-algebra, that is, T−1A = A (up
to μ-null sets), it is not hard to see that an = Hμ(

∨n−1
i=0 T

−iα | A) is a nonnegative subadditive
sequence for a given α ∈ PX , that is, an+m ≤ an +am for all positive integers n andm. It is well
known that

lim
n→∞

an

n
= inf

n≥1

an

n
. (2.7)

The conditional entropy of α with respect toA is then defined by

hμ(T, α | A) := lim
n→∞

1
n
Hμ

(
n−1∨

i=0

T−iα | A
)

= inf
n≥1

1
n
Hμ

(
n−1∨

i=0

T−iα | A
)

. (2.8)

Moreover, the metric conditional entropy of (X, T) with respect toA is defined by

hμ(T,X | A) = sup
α∈PX

hμ(T, α | A). (2.9)

Note that ifN = {∅, X} is a trivial sub-σ-algebra, we recover the metric entropy, and we write
hμ(T, α | N) and hμ(T,X | N) simple by hμ(T, α) and hμ(T).

Particularly, set B− =
⋂∞

n=0 T
−nB(X), then B− is a T -invariant sub-σ algebra. We call B−

the infinite past σ-algebra related to B(X). We define the measure-theoretic (or metric) pre-image
entropy of α with respect to (X, T) by

hpre,μ(T, α) := hμ

(
T, α | B−) = lim

n→∞

1
n
Hμ

(
n−1∨

i=0

T−iα | B−
)

. (2.10)

Moreover, we define the metric pre-image entropy of (X, T) by

hpre,μ(T) := sup
α∈PX

hpre,μ(T, α). (2.11)

2.3. A Variational Principle for Pre-Image Pressure

The following variational relationship for topological pre-image pressure and measure-theo-
retic pre-image entropy is established in [25].

Theorem 2.1. Let (X, T) be a TDS and f ∈ C(X,R). Then,

Ppre
(
T, f

)
= sup

μ∈M(X,T)

{

hpre,μ(T) +
∫

X

f dμ
}

. (2.12)

We also have (see, e.g., [26]) the following proposition.

Proposition 2.2. Let (X, T) be a TDS, α ∈ PX and μ ∈ M(X, T). Then, μ �→ hpre,μ(T, α) and
μ �→ hpre,μ(T) are both affine functions on M(X, T). Moreover, if the ergodic decomposition of μ is
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μ =
∫
Me(X,T) θdλ(θ), then

hpre,μ(T, α) =
∫

Me(X,T)
hpre,θ(T, α)dλ(θ), hpre,μ(T) =

∫

Me(X,T)
hpre,θ(T)dλ(θ). (2.13)

2.4. Equilibrium States and Tangent Functionals to Pre-Image Pressure

Given f ∈ C(X,R). A finite signed Borel measure μ on (X,B(X)) is called a tangent functional
to Ppre(T, •) at f if

Ppre
(
T, f + g

)
− Ppre

(
T, f

)
�

∫

g dμ, ∀g ∈ C(X,R). (2.14)

Let Tf(X, T) denote the collection of all tangent functionals to Ppre(T, •) at f . An application
of the Hahn-Banach theorem gives Tf(X, T)/= ∅. It is easy to see that μ ∈ Tf(X, T) if and only
if

Ppre
(
T, f

)
−
∫

f dμ = inf
{

Ppre
(
T, g

)
−
∫

g dμ : g ∈ C(X,R)
}

. (2.15)

Also, we have Tf(X, T) ⊆ M(X, T) (see [25] for details).

Theorem 2.3. The following holds.

(1) For f ∈ C(X,R),

Tf(X, T) =
∞⋂

n=1

{

μ ∈ M(X, T) : hpre,μ(T) +
∫

f dμ > Ppre
(
T, f

)
− 1
n

}

. (2.16)

(2) If f1, f2 ∈ C(X,R) and μ ∈ Tf1(X, T) ∩ Tf2(X, T), then

Ppre
(
T, pf1 +

(
1 − p

)
f2
)
= Ppre

(
T, f1

)
+
(
1 − p

)
∫
(
f1 − f1

)
dμ, ∀p ∈ [0, 1], (2.17)

and Tpf1+(1−p)f2(X, T) ⊆ Tf1(X, T) ∩ Tf1(X, T).

Proof. (1) Let μ ∈ If ≡
⋂∞

n=1 {μ ∈ M(X, T) : hpre,μ(T) +
∫
f dμ > Ppre(T, f) − 1/n} . By

Theorem 2.1, there is μn ∈ M(X, T) with μn → μ and hpre,μn(T) +
∫
f dμn → Ppre(T, f).

Hence, for each g ∈ C(X,R),

Ppre
(
T, f + g

)
− Ppre

(
T, f

)
� lim

n→∞

(

hpre,μn(T) +
∫

(
f + g

)
dμn − Ppre

(
T, f

)
)

=
∫

g dμ,

(2.18)
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which follows that μ ∈ Tf(X, T). Now suppose there is μ0 ∈ Tf(X, T) \ If . Since If is convex,
the standard separation theorem [27, page 417] follows that there exists g ∈ C(X,R) with

∫

g dμ0 > sup
{∫

g dμ : μ ∈ If

}

. (2.19)

By Theorem 2.1, we can choose μn ∈ M(X, T) such that

hpre,μn(T) +
∫ (

f +
g

n

)

dμn > Ppre

(

T, f +
g

n

)

− 1
n2

. (2.20)

Without loss of generality, we can assume μn → μ∗. Then,

∫

g dμ0 = n

∫
g

n
dμ0 � n

(

Ppre

(

T, f +
g

n

)

− Ppre
(
T, f

)
)

< n

(

hpre,μn(T) +
∫ (

f +
g

n

)

dμn +
1
n2

− hpre,μn(T) −
∫

f dμn

)

=
∫

g dμn +
1
n

→
∫

g dμ∗.

(2.21)

However, μ∗ ∈ If follows from the fact:

hpre,μn(T) +
∫

f dμn > Ppre

(

T, f +
g

n

)

−
∫

g

n
dμn −

1
n2

(
by (2.20)

)

> Ppre
(
T, f

)
−
2 ·

∥
∥g

∥
∥

n
− 1
n2

,
(
by [25, Lemma4.1(3)]

)
,

(2.22)

which is a contradiction.
(2) If 0 < p < 1, then

pPpre
(
T, f1

)
+
(
1 − p

)
Ppre

(
T, f2

)

� Ppre
(
T, pf1 +

(
1 − p

)
f2
) (

by [25, Lemma4.1(3)]
)

= Ppre
(
T, f1 +

(
1 − p

)(
f2 − f1

))

� Ppre
(
T, f1

)
+
(
1 − p

)
∫
(
f2 − f1

)
dμ

(
since μ ∈ Tf1(X, T)

)
.

(2.23)

Hence,

Ppre
(
T, f2

)
−
∫

f2 dμ � Ppre
(
T, f1

)
−
∫

f1 dμ. (2.24)
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By symmetry, Ppre(T, f2) −
∫
f2 dμ = Ppre(T, f1) −

∫
f1 dμ, which implies

Ppre
(
T, f1

)
+
(
1 − p

)
∫

(
f2 − f1

)
dμ=pPpre

(
T, f1

)
+
(
1 − p

)
Ppre

(
T, f2

)
�Ppre

(
T, pf1+

(
1 − p

)
f2
)
.

(2.25)

A member μ ∈ M(X, T) is called an equilibrium state for Ppre(T, •) at f if

Ppre
(
T, f

)
= hpre,μ(T) +

∫

f dμ. (2.26)

Let Mf(X, T) denote the collection of all equilibrium states for Ppre(T, •) at f .
The set Tf(X, T) is convex and compact in the weak∗-topology. The set Mf(X, T) is

convex but it may be not closed in the weak∗-topology. Note that Mf(X, T) ⊆ Tf(X, T) ⊆
M(X, T) and Mf(X, T) could be empty (see Example 5.1, [25]). We also have Mf(X, T) =
Tf(X, T) if and only if the metric pre-image entropy map hpre,•(T) is upper semicontinuous at
every element ofTf(X, T), Theorem 5.2 [25]. The extreme points ofMf(X, T) are precisely the
ergodic members ofMf(X, T) and if μ ∈ Mf(X, T), then almost every measure in the ergodic
decomposition of μ is a member ofMf(X, T) (see Proposition 2.1, [26]). When the metric pre-
image entropy map hpre,•(T) is upper semicontinuous onM(X, T), then

⋃
f∈C(X,R) Mf(X, T) is

dense in M(X, T) in the norm topology, and given any finite collection of ergodic measures
{μ1, . . . , μn}, there is some f ∈ C(X,R) such that {μ1, . . . , μn} ⊆ Mf(X, T) [26, Theorem 4.2].

The following theorem shows when tangent functionals to pre-image pressure are not
equilibrium states.

Theorem 2.4. Let (X, T) be a TDS and f ∈ C(X,R). The following statements are mutually equiva-
lent:

(1) μ ∈ Tf(X, T) \Mf(X, T);

(2) hpre,μ(T) +
∫
f dμ < Ppre(T, f) and there exist {μn}∞n=1 ⊆ M(X, T) with μn → μ and

hpre,μn(T) +
∫
f dμn → Ppre(T, f);

(3) μ ∈ Tf(X, T) and hpre,•(T) is not upper semicontinuous at μ.

Proof. (1)⇒(2) Follows from the variational principle and Theorem 2.3(1).

(2)⇒(3) By Theorem 2.3(1), μ ∈ Tf(X, T). If hpre,•(T) is upper semicontinuous at μ, then

Ppre
(
T, f

)
= lim

n→∞

(

hpre,μn(T) +
∫

f dμn

)

� hpre,μ(T) +
∫

f dμ. (2.27)

Hence, μ ∈ Mf(X, T) by the variational principle.

(3)⇒(1) If (3) holds, then there are μn ∈ M(X, T) with μn → μ and limn→∞hpre,μn(T) >
hpre,μ(T). Hence,

Ppre
(
T, f

)
� lim

n→∞

(

hpre,μn(T) +
∫

f dμn

)

> hpre,μ(T) +
∫

f dμ. (2.28)

Therefore, μ ∈ Tf(X, T) \Mf(X, T).
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3. Gateaux Differentiability of the Pre-Image Pressure

In [26], we studied the uniqueness of the equilibrium state for the pre-image pressure. We
showed that when the metric pre-image entropy map hpre,•(T) is upper semicontinuous on
M(X, T), then the set of all functions with unique equilibrium state is dense in C(X,R).
Without the upper semicontinuity assumption, one can show that all functions with unique
tangent functional are dense in C(X,R) (can see [27, page 450] or [11, Appendix A.3.6]). In
this section, we will show a continuous function with unique tangent functional to pre-image
pressure if and only if it is Gateaux differentiable.

Given f, g ∈ C(X,R). Since Ppre(T, •) is convex, the map t �→ (Ppre(T, f + tg) −
Ppre(T, f))/t is increasing and hence

d+Ppre
(
T, f

)(
g
)
= lim

t→ 0+

Ppre
(
T, f + tg

)
− Ppre

(
T, f

)

t
,

d−Ppre
(
T, f

)(
g
)
= lim

t→ 0−

Ppre
(
T, f + tg

)
− Ppre

(
T, f

)

t

(3.1)

exist. Note that d+Ppre(T, f)(g) = −d−Ppre(T, f)(−g). The pre-image pressure function
Ppre(T, •) is said to be Gateaux differentiable at f if, for all g ∈ C(X,R),

lim
t→ 0

Ppre
(
T, f + tg

)
− Ppre

(
T, f

)

t
(3.2)

exist. It is easy to check that Ppre(T, •) is Gateaux differentiable at f if and only if g �→
d+Ppre(T, f)(g) is linear.

Lemma 3.1. Let (X, T) be a TDS and f, g ∈ C(X,R). Then,

d+Ppre
(
T, f

)(
g
)
= sup

{∫

g dμ : μ ∈ Tf(X, T)
}

. (3.3)

Proof. If μ ∈ Tf(X, T), then, for g ∈ C(X,R),

∫

g dμ �
Ppre

(
T, f + tg

)
− Ppre

(
T, f

)

t
, ∀t > 0. (3.4)

Hence,

sup
{∫

g dμ : μ ∈ Tf(X, T)
}

� d+Ppre
(
T, f

)(
g
)
. (3.5)

Next, we prove the converse inequality. Set a = d+Ppre(T, f)(g). Define a continuous linear
functional γ : {tg : t ∈ R} → R by

γ
(
tg
)
= ta, t ∈ R. (3.6)
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The convexity of Ppre(T, •) implies

γ
(
tg
)
= t · d+Ppre

(
T, f

)(
g
)

� Ppre
(
T, f + tg

)
− Ppre

(
T, f

)
, ∀t ∈ R. (3.7)

By the Hahn-Banach theorem, γ can be extended to a continuous linear functional on C(X,R)
such that

γ(h) � Ppre
(
T, f + h

)
− Ppre

(
T, f

)
, ∀h ∈ C(X,R). (3.8)

By the Riesz representation theorem, there is μ ∈ M(X) with

γ(h) =
∫

hdμ, ∀g ∈ C(X,R). (3.9)

Combining (3.6), (3.8), and (3.9), we have μ ∈ Tf(X, T), and

∫

g dμ = γ
(
g
)
= a = d+Ppre

(
T, f

)(
g
)
. (3.10)

The lemma is proved.

Theorem 3.2 (Uniqueness of tangent functional and Gateaux differentiability). The following
statements are mutually equivalent:

(1) the pre-image pressure function Ppre(T, •) is Gateaux differentiable at f ∈ C(X,R);

(2) the unique tangent functional to Ppre(T, •) at f is μ;

(3) for each g ∈ C(X,R),

lim
t→ 0

Ppre
(
T, f + tg

)
− Ppre

(
T, f

)

t
=
∫

g dμ. (3.11)

Proof. (1)⇒(2) If the pre-image pressure function Ppre(T, •) is Gateaux differentiable at f ,
then the function g �→ d+Ppre(T, f)(g) is linear. By Lemma 3.1,

sup
{∫

g dμ : μ ∈ Tf(X, T)
}

= d+Ppre
(
T, f

)(
g
)

= −d+Ppre
(
T, f

)(
−g

)

= − sup
{∫

−g dμ : μ ∈ Tf(X, T)
}

= inf
{ ∫

g dμ : μ ∈ Tf(X, T)
}

(3.12)

for each g ∈ C(X,R). This implies there is a unique tangent functional to Ppre(T, •) at f .
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(2)⇒(3) It directly follows from Lemma 3.1.

(3)⇒(1) It follows from the definition.

4. Fréchet Differentiability of the Pre-Image Pressure

In this section, we will study the Fréchet differentiability of pre-image pressure. The pre-
image pressure function Ppre(T, •) is said to be Fréchet differentiable at f if there is γ ∈ C(X,R)∗

such that

lim
g→ 0

∣
∣Ppre

(
T, f + g

)
− Ppre

(
T, f

)
− γ

(
g
)∣
∣

∥
∥g

∥
∥

= 0. (4.1)

The pre-image pressure function Ppre(T, •) is said to be Fréchet differentiable if it is Fréchet
differentiable at each f ∈ C(X,R).

Note that if Ppre(T, •) is Fréchet differentiable at f , then it is Gateaux differentiable at
f and γ(g) =

∫
g dμ, where μ is the unique tangent functional to Ppre(T, •) at f .

Theorem 4.1. The following conditions are mutually equivalent:

(1) Ppre(T, •) if Fréchet differentiable at f ;
(2) Tf(X, T) = {μf} and ‖μn − μf‖ → 0 for each {μn} ⊆ M(X, T) with hpre,μn(T) +∫

f dμn → Ppre(T, f);

(3) Ppre(T, •) is locally affine at f ;

(4) Tf(X, T) = {μf} and

lim
g→ 0

sup
{∥
∥μ − μf

∥
∥ : μ ∈ Tf+g(X, T)

}
= 0. (4.2)

Proof. (1)⇒(2) Suppose Ppre(T, •) is Fréchet differentiable at f . Then, f has a unique tangent
functional μf to Ppre(T, •) at f . Let {μn}∞n=1 ⊆ M(X, T) with hpre,μn(T) +

∫
f dμn →

Ppre(T, f). Given ε > 0, there are N ∈ N and δ > 0 such that

Ppre
(
T, f

)
� hpre,μn(T) +

∫

f dμn + εδ, ∀n � N, (4.3)

0 � Ppre
(
T, f + g

)
− Ppre

(
T, f

)
−
∫

g dμf � ε ·
∥
∥g

∥
∥ whenever

∥
∥g

∥
∥ < δ. (4.4)

Hence, if n � N and ‖g‖ < δ, then

∫

g dμn −
∫

g dμ = Ppre
(
T, f

)
+
∫

g dμn − Ppre
(
T, f

)
−
∫

g dμf

� hpre,μn
(T) +

∫
(
f + g

)
dμn + εδ − Ppre

(
T, f

)
−
∫

g dμf

(
by 4.4

)
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� Ppre
(
T, f + g

)
− Ppre

(
T, f

)
−
∫

g dμf + εδ
(
by Theorem 2.1

)

� ε ·
(∥
∥g

∥
∥ + δ

)
� 2εδ

(
by 4.4

)
.

(4.5)

Note that (4.5) is also true when −g instead of g. So,

∣
∣
∣
∣

∫

g dμn −
∫

g dμ
∣
∣
∣
∣ � 2εδ whenever

∥
∥g

∥
∥ < δ, n � N. (4.6)

Therefore,

∥
∥μn − μf

∥
∥ = sup

{∣
∣
∣
∣

∫

g dμn −
∫

g dμf

∣
∣
∣
∣ :

∥
∥g

∥
∥ < 1

}

=
1
δ
sup

{∣
∣
∣
∣

∫

g dμn −
∫

g dμf

∣
∣
∣
∣ :

∥
∥g

∥
∥ < δ

}

� 2ε
(
by 4.6

)
.

(4.7)

By arbitrary of ε, ‖μn − μf‖ → 0.

(2)⇒(3) By the variational principle of pre-image pressure, we can pick ergodic measures
μn such that hpre,μn(T) +

∫
fdμn → Ppre(T, f), Then ‖μn − μf‖ → 0. Note that two

distinct ergodic measures have norm-distance 2. So there isN such that μn = μf for
all n � N. Hence, μf ∈ Me(X, T) and

ε := Ppre
(
T, f

)
− sup

{

hpre,μ(T) +
∫

f dμ : μ ∈ Me(X, T), μ /=μf

}

> 0. (4.8)

This implies for each g ∈ C(X,R), with ‖f − g‖ < ε/2, that

sup
{

hpre,μ(T) +
∫

g dμ : μ ∈ Me(X, T), μ /=μf

}

� Ppre
(
T, f

)
− ε +

∥
∥f − g

∥
∥

� Ppre
(
T, g

)
− ε + 2

∥
∥f − g

∥
∥

< Ppre
(
T, g

)
.

(4.9)

By the variational principle of pre-image pressure again, we have

Ppre
(
T, g

)
= hpre,μf (T) +

∫

g dμf whenever
∥
∥f − g

∥
∥ <

ε

2
. (4.10)

Hence, Ppre(T, •) is affine on the neighborhood B(f, ε/2) = {g ∈ C(X,R) : ‖f −g‖ < ε/2} of f .
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(3)⇒(4) Is obvious.

(4)⇒(1) Let g ∈ C(X,R) and μ ∈ Tf+g(X, T). By definition, we have

Ppre
(
T, f

)
− Ppre

(
T, f + g

)
� −

∫

g dμ. (4.11)

Hence,

0 � Ppre
(
T, f + g

)
− Ppre

(
T, f

)
−
∫

g dμf

�
∫

g dμ −
∫

g dμf

(
by (4.11)

)

�
∥
∥g

∥
∥ ·

∥
∥μ − μf

∥
∥.

(4.12)

Therefore,

0 �
Ppre

(
T, f + g

)
− Ppre

(
T, f

)
−
∫
g dμf

∥
∥g

∥
∥

� sup
{∥
∥μ − μf

∥
∥ : μ ∈ Tf+g(X, T)

}
−→ 0 (4.13)

as g → 0. That is Ppre(T, •) is Fréchet differentiable at f .

Corollary 4.2. Let (X, T) be a TDS with finite pre-image entropy. Then, Ppre(T, •) is Fréchet diffe-
rentiable if and only if T is uniquely ergodic.

Proof. Using Theorem 4.1, Ppre(T, •) is locally affine whenever Ppre(T, •) is Fréchet differen-
tiable. Hence, the map f ∈ C(X,R) �→ μf ∈ M(X, T) is locally constant, where Tf(X, T) =
{μf} for each f ∈ C(X,R). Since C(X,R) is connected, the map is constant. So μf = μ0 for all
f ∈ C(X,R). If μ ∈ M(X, T) \ {μ0}, then we can choose f ∈ C(X,R) such that

∫
f dμ >

∫
f dμ0.

Then for sufficiently large k, we have

Ppre
(
T, kf

)
� hpre,μ(T) +

∫

kf dμ > hpre,μ0(T) +
∫

kf dμ0 = Ppre
(
T, kf

)
, (4.14)

which is a contradiction. Therefore, M(X, T) = {μ0}.

Remark 4.3. In the situation of Corollary 4.2, there is only one invariant measure, and the pre-
image pressure is the expectation with respect to this measure, hence, it is linear.
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