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This paper investigates the blow-up and global existence of nonnegative solutions for a class of
nonlocal degenerate parabolic system. By using the super- and subsolution techniques, the critical
exponent of the system is determined. That is, if Pc = p1q1 − (m − p2)(n − q2) < 0, then every
nonnegative solution is global, whereas if Pc > 0, there are solutions that blowup and others that
are global according to the size of initial values u0(x) and v0(x). When Pc = 0, we show that if
the domain is sufficiently small, every nonnegative solution is global while if the domain is large
enough that is, if it contains a sufficiently large ball, there is no global solution.

1. Introduction and Description of Results

In this paper, we investigate the blowup and global existence of nonnegative solutions for the
following degenerate parabolic system with nonlocal sources:

ut = Δum + vp1‖u‖p2α , (x, t) ∈ Ω × (0, T),

vt = Δvn + uq1‖v‖q2β , (x, t) ∈ Ω × (0, T),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),

(1.1)

where Ω is a bounded domain in R
N(N ≥ 1) with smooth boundary ∂Ω and u0(x), v0(x)

are nonnegative bounded functions in Ω, constants m,n > 1, α, β ≥ 1, p1, q1, p2, q2 > 0, where
‖ · ‖αα =

∫
Ω | · |αdx.
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Equation (1.1) constitutes a simple example of a reaction diffusion system exhibiting a
nontrivial coupling on the unknowns u(x, t), v(x, t), such as heat propagations in a two-
component combustible mixture [1], chemical processes [2], and interaction of two biological
groups without self-limiting [3]. And they are worth to study because of the applications to
heat and mass transport processes. In addition, there exist interesting interactions among the
multi-nonlinearities described by the eight exponents m,n, p1, p2, q1, q2 and α, β in the
problem (1.1).

In the past two decades, many physical phenomena were formulated into nonlocal
mathematical models (see [4–7] and references therein) and studied by many authors.
Degenerate parabolic equations involving a nonlocal source, which arise in a population
model that communicates through chemical means, were studied in [8, 9]. At the same time,
there are many important results that have appeared on blowup problems for nonlinear
parabolic system. We will recall some of those results concerning the first initial-boundary
problem. For the other related works on the global existence and blowup of solutions of
nonlinear parabolic system, we refer the readers to [10, 11] and references therein.

In [4], Escobedo and Herrero studied the system

ut = Δu + vp, vt = Δv + uq, x ∈ Ω, t > 0 (1.2)

in a bounded domain Ω ⊂ R
N with null Dirichlet boundary conditions. The authors show

that if pq ≤ 1, every solution of (1.2) is global, whereas if pq > 1, there are solutions that
blowup and others that are global according to the size of initial values u0(x) and v0(x).

In [12], Galaktionov et al. considered the system

ut = Δuν+1 + vp, vt = Δvμ+1 + uq, (x, t) ∈ Ω × (0, T) (1.3)

with homogeneous Dirichlet boundary conditions, and they proved that pc = pq−(ν+1)(μ+1)
is the critical exponent. Zheng [13] and Li et al. [14] studied the following systems:

ut = Δu + up1vq1 , vt = Δv + up2vq2 , (x, t) ∈ Ω × R+,

ut = Δu +
∫

Ω
um(x, t)vn(x, t)dx, vt = Δv +

∫

Ω
up(x, t)vq(x, t)dx, x ∈ Ω, t > 0,

(1.4)

respectively. They obtained some results on the global solutions, the blowup solutions and
the blowup profiles. Lately, Deng et al. in [15] considered the following nonlocal degenerate
parabolic system:

ut = Δum + a‖v‖pα, vt = Δvn + b‖u‖qβ, (x, t) ∈ Ω × (0, T) (1.5)

with homogeneous Dirichlet boundary conditions. Several interesting results are established
as follows.

(i) If pq < mn, then every nonnegative solution of (1.5) is global.

(ii) If pq = mn, then if the domain is sufficiently small, the nonnegative solution of (1.5)
is global, whereas if the domain contains a sufficiently large ball and u0(x), v0(x) >
0, the nonnegative solution blows up in finite time.
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(iii) If pq > mn, then there are solutions of (1.5) that blowup and others that are global
according to the size of initial data u0(x) and v0(x).

Our present work is motivated by [12–15]mentioned above. The main purpose of this paper
is to extend and improve the results in [15]. At the same time, we will prove that pc = p1q1 −
(m − p2)(n − q2) is also the critical exponent of system (1.1). Our main results are as follows,
two theorems concern the global existence and blowup conditions of the solutions.

Theorem 1.1. If one of the following conditions holds, then the nonnegative solution of system (1.1)
exists globally.

(1) m > p2, n > q2 and p1q1 < (m − p2)(n − q2).
(2) m > p2, n > q2, p1q1 = (m − p2)(n − q2) and the domain (|Ω|) is sufficiently small.

(3) m > p2, n > q2, p1q1 > (m − p2)(n − q2) and the initial data u0(x), v0(x) are sufficiently
small.

(4) m ≤ p2 or n ≤ q2 and the initial data u0(x), v0(x) are sufficiently small.

Theorem 1.2. If one of the following conditions holds, then the nonnegative solution of system (1.1)
blows up in a finite time.

(1) m > p2, n > q2, p1q1 > (m − p2)(n − q2) and the initial data u0(x), v0(x) are sufficiently
large.

(2) m > p2, n > q2, p1q1 = (m − p2)(n − q2) and the domain contains a sufficiently large ball,
moreover, u0(x) and v0(x) are large enough.

(3) m ≤ p2 or n ≤ q2 and initial data u0(x), v0(x) are sufficiently large.

This paper is organized as follows. In the next Section, we establish the local existence
theorem and give some auxiliary lemmas. In Section 3, which concerns global existence,
we prove Theorem 1.1. In Section 4, which deals with the blowup phenomenon, we prove
Theorem 1.2.

2. Local Existence and Comparison Principle

Similar to the Propositions 2.1 and 2.2 of [15], we give the maximum principle and the com-
parison principle for the nonlocal parabolic system. For convenience, we denote QT = Ω ×
(0, T), QT = Ω × [0, T], ST = ∂Ω × (0, T), where 0 < T < +∞.

As it is now well known that degenerate equation needs not possess classical solution,
we begin by giving a precise definition of a weak solution for system (1.1). To this end, define
the class of test functions

Ψ ≡
{
ψ(x, t) ∈ C

(
QT

)
;ψt,Δψ ∈ C(QT ) ∩ L2(QT );ψ ≥ 0;ψ(x, t)

∣∣∣
x∈∂Ω

= 0
}
. (2.1)

Definition 2.1. A pair of vector function (u(x, t), v(x, t)) defined on QT is called a super-solu-
tion of (1.1), if all the following conditions hold:

(1) u(x, t), v(x, t) ∈ L∞(QT );

(2) if (x, t) ∈ ST , u(x, t), v(x, t) ≥ 0, and for all x ∈ Ω, u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x);
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(3) for every t ∈ [0, T] and any ψ1, ψ2 ∈ Ψ,

∫

Ω

(
u(x, t)ψ1(x, t) − u0(x)ψ1(x, 0)

)
dx ≥

∫ t

0

∫

Ω

(
uψ1s + u

mΔψ1 + v
p1‖u‖p2α ψ1

)
dxds,

∫

Ω

(
v(x, t)ψ2(x, t) − v0(x)ψ2(x, 0)

)
dx ≥

∫ t

0

∫

Ω

(
vψ2s + v

nΔψ2 + u
q1‖v‖q2β ψ2

)
dxds.

(2.2)

A subsolution (ũ(x, t), ṽ(x, t)) can be defined in a similar way.

Next, we state the maximum principle and comparison principle, and the proofs that
are quite standard, we omit them here.

Lemma 2.2 (maximum principle). Suppose that ω1(x, t), ω2(x, t) ∈ C2,1(QT ) ∩ C(QT ) and
satisfy

M1ω = ω1t − d1Δω1 −
N∑

j=1

a1jω1xj − c11ω1 − c12ω2 − c13
∫

Ω
c14ω1dx ≥ 0, (x, t) ∈ QT,

M2ω = ω2t − d2Δω2 −
N∑

j=1

a2jω2xj − c21ω2 − c22ω1 − c23
∫

Ω
c24ω2dx ≥ 0, (x, t) ∈ QT,

ω1(x, t) ≥ 0, ω2(x, t) ≥ 0, (x, t) ∈ ST ,
ω1(x, 0) ≥ 0, ω2(x, 0) ≥ 0, x ∈ Ω,

(2.3)

where di(x, t), cij(x, t) (i = 1, 2; j = 1, 2, 3, 4) and aij(x, t), (i = 1, 2; j = 1, 2, . . . ,N) are the
continuous and the bounded functions on QT , respectively, and

di(x, t), ci2(x, t), ci3(x, t), ci4(x, t) ≥ 0, i = 1, 2, (x, t) ∈ Ω × (0, T]. (2.4)

Then ωi(x, t) ≥ 0 on QT .

Lemma 2.3 (comparison principle). Let (u, v) and (ũ, ṽ) be a nonnegative supersolution and a
nonnegative subsolution of system (1.1), respectively. Then (ũ, ṽ) ≤ (u, v) on QT if
(ũ(x, 0), ṽ(x, 0)) ≤ (u(x, 0), v(x, 0)) and either

u, v ≥ ρ > 0 or ũ, ṽ ≥ ρ > 0 (2.5)

hold.

Theorem 2.4 (local existence and continuation). Assume u0, v0 ≥ 0, u0, v0 ∈ L∞(Ω), there is a
T ∗ = T ∗(u0, v0) > 0 such that there exists a nonnegative weak solution (u(x, t), v(x, t)) of (1.1) for
each T < T ∗. Furthermore, either T ∗ = +∞ or

lim sup
t→ T∗

‖u(·, t)‖∞ = +∞ or lim sup
t→ T∗

‖v(·, t)‖∞ = +∞. (2.6)
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Proof. Owing to the degeneracy of equations of (1.1), in order to prove the existence of solu-
tion, for k = 1, 2, . . ., we first consider the following corresponding regularized system

ukt = Δfk(uk) +
(
g ′
k(vk)

)p1∥∥gk(uk)
∥
∥p2
α , (x, t) ∈ QT,

vkt = Δf ′
k(vk) +

(
gk(uk)

)q1∥∥g ′
k(vk)

∥
∥q2
β
, (x, t) ∈ QT,

uk(x, t) = vk(x, t) =
1
k
, (x, t) ∈ ST ,

uk(x, 0) = u0i(x) +
1
k
, vk(x, 0) = v0i(x) +

1
k
, x ∈ Ω,

(2.7)

where

fk(uk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

um
k
, uk ≥ 1

k
,

(
1
k

)m
, uk <

1
k
,

f ′
k(vk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vn
k
, vk ≥ 1

k
,

(
1
k

)n
, vk <

1
k
,

gk(uk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uk, uk ≥ 1
k
,

1
k
, uk <

1
k
,

g ′
k(vk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vk, vk ≥ 1
k
,

1
k
, vk <

1
k
,

(2.8)

and u0i(x), v0i(x) are smooth approximation of u0(x), v0(x)with suppu0i ⊂ Ω and suppv0i ⊂
Ω, respectively. It is known that the system (2.7) has a unique classical solution (uik, v

i
k) ∈

C(Ω × [0, Ti(k))) ∩ C2,1(Ω × (0, Ti(k))) for 0 < Ti(k) ≤ ∞ by the classical theory for parabolic
equations, where Ti(k) is the maximal existence time. By a direct computation and the
classical maximum principle, we have uik, v

i
k ≥ 1/k. Hence (uik, v

i
k) satisfies

(
uik

)

t
= Δ
(
uik

)m
+
(
vik

)p1∥∥∥uik

∥∥∥
p2

α
,
(
vik

)

t
= Δ
(
vik

)n
+
(
uik

)q1∥∥∥vik

∥∥∥
q2

β
, (x, t) ∈ QTi(k) (2.9)

with the corresponding initial and boundary conditions. At the same time, if k1 > k2, accord-
ing to Lemma 2.2, we get

(
uik1(x, t), v

i
k1
(x, t)

)
≤
(
uik2(x, t), v

i
k2
(x, t)

)
, (x, t) ∈ Ω × [0, Ti(k2)), (2.10)

and Ti(k1) ≥ Ti(k2). On the other hand, passing to the limit i → ∞, it follows that

uk(x, t) = lim
i→∞

uik(x, t), vk(x, t) = lim
i→∞

vik(x, t), (2.11)

and (uk, vk) is a weak solution of

(uk)t = Δ(uk)m + (vk)p1‖uk‖p2α , (vk)t = Δ(vk)n + (uk)q1‖vk‖q2β , (x, t) ∈ QT(k) (2.12)
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with the corresponding initial and boundary conditions on QT(k), where T(k) = limi→∞Ti(k)
is the maximal existence time. Here a weak solution of (2.12) is defined in a manner similar to
that for (1.1), only the equalities for u and v; (2.2)may be replaced with

∫

Ω

(
uk(x, t)ψ1(x, t) −

(
u0(x) +

1
k

)
ψ1(x, 0)

)
dx

=
∫ t

0

∫

Ω

(
ukψ1s + umk Δψ1 + v

p1
k ‖uk‖p2α ψ1

)
dxds +

1
k

∫ t

0

∫

∂Ω

(
∂ψ1

∂ν

)
dσ ds,

∫

Ω

(
vk(x, t)ψ2(x, t) −

(
v0(x) +

1
k

)
ψ2(x, 0)

)
dx

=
∫ t

0

∫

Ω

(
vkψ2s + vnkΔψ2 + u

q1
k ‖vk‖

q2
β
ψ2

)
dxds +

1
k

∫ t

0

∫

∂Ω

(
∂ψ2

∂ν

)
dσ ds,

(2.13)

respectively. Then, passing to the limit i → ∞, it happens that (uk1 , vk1) ≤ (uk2 , vk2) and
T(k1) ≥ T(k2) if k1 > k2.

Therefore, the limit T ∗ = limk→∞T(k) exists, and the pointwise limit

u(x, t) = lim
k→∞

uk(x, t), v(x, t) = lim
k→∞

vk(x, t) (2.14)

exists for any (x, t) ∈ Ω × [0, T ∗). Furthermore, as the convergence of the sequence is mono-
tone, passing to the limit k → ∞ in (2.13), we get that (u(x, t), v(x, t)) is a nonnegative weak
solution of (1.1). Thus the proof is completed.

Denote

A =

(
m − p2 −p1
−q1 n − q2

)

, L =

(
l1

l2

)

. (2.15)

We give Lemmas 2.5 and 2.6 that will be used in the following; please see [16] for their
proofs.

Lemma 2.5. Ifm > p2, n > q2 and p1q1 < (m − p2)(n − q2), then there exist two positive constants
l1, l2 such that AL > (0, 0)T.

Lemma 2.6. Ifm ≤ p2 or n ≤ q2 or p1q1 > (m − p2)(n − q2), then there exist two positive constants
l1, l2 such that AL < (0, 0)T .

3. Proof of Theorem 1.1

According to Lemma 2.3, we only need to construct bounded super-solutions for any T > 0.
Let ϕ(x) be the unique position solution of the following linear elliptic problem:

−Δϕ(x) = 1, x ∈ Ω; ϕ(x) = 0, x ∈ ∂Ω. (3.1)
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Denote C = maxx∈Ω ϕ(x), then 0 ≤ ϕ(x) ≤ C. We define the functions u, v as follows:

u(x, t) =
(
k
(
ϕ(x) + 1

))l1 , v(x, t) =
(
k
(
ϕ(x) + 1

))l2 , (3.2)

where l1, l2 < 1 such thatml1, nl2 < 1, and k > 0 will be fixed later. Clearly, for any T > 0, (u, v)
is a bounded function and u ≥ kl1 > 0, v ≥ kl2 > 0. Then, we have

ut −Δum = −kml1ml1(ml1 − 1)
(
ϕ + 1

)ml1−2∣∣∇ϕ∣∣2 + kml1ml1
(
ϕ + 1

)ml1−1

≥ kml1ml1
(
ϕ + 1

)ml1−1 ≥ kml1ml1(C + 1)ml1−1,

vp1‖u‖p2α = kp1l2
(
ϕ + 1

)p1l2
∥
∥
∥
(
k
(
ϕ + 1

))l1
∥
∥
∥
p2

α
≤ kp1l2+p2l1(C + 1)p1l2+p2l1 |Ω|p2/α,

vt −Δvn ≥ knl2nl2(C + 1)nl2−1, uq1‖v‖q2β ≤ kq1l1+q2l2(C + 1)q1l1+q2l2 |Ω|q2/β.

(3.3)

Denote

C1 =

(
|Ω|p2/α
ml1

(C + 1)p1l2+p2l1−ml1+1
)1/(ml1−p1l2−p2l1)

,

C2 =

(
|Ω|q2/β
nl2

(C + 1)q1l1+q2l2−nl2+1
)1/(nl2−q1l1−q2l2)

.

(3.4)

(1) Ifm > p2, n > q2 and p1q1 < (m−p2)(n−q2), by Lemma 2.5, there exist two positive
constants l1, l2 < 1 such that

p1l2 + p2l1 < ml1, q1l1 + q2l2 < nl2, ml1, nl2 < 1. (3.5)

Therefore, we can choose k sufficiently large that k > max{C1, C2} and

(
k
(
ϕ + 1

))l1 ≥ u0(x),
(
k
(
ϕ + 1

))l2 ≥ v0(x). (3.6)

Now, it follows from (3.3)–(3.6) that (u, v) is a positive super-solution of (1.1).
(2) Ifm > p2, n > q2 and p1q1 = (m−p2)(n−q2), then there exist two positive constants

l1, l2 < 1 such that

p1l2 + p2l1 = ml1, q1l1 + q2l2 = nl2, ml1, nl2 < 1. (3.7)

Without loss of generality, we may assume that Ω ⊂⊂ B, where B is a sufficiently large ball.
And we denote ϕB(x) is the unique positive solution of the following linear elliptic problem:

−Δϕ(x) = 1, x ∈ B; ϕ(x) = 0, x ∈ ∂B. (3.8)
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Let C0 = maxx∈BϕB(x), then C ≤ C0. Therefore, as long asΩ is sufficiently small and such that

|Ω| < min

{(
ml1
C0 + 1

)α/p2
,

(
nl2

C0 + 1

)β/q2
}

. (3.9)

Furthermore, choose k large enough to satisfy (3.6).Then, it follows from (3.3) and (3.6)–(3.9)
that (u, v) is a positive super-solution of (1.1).

(3) Ifm > p2, n > q2 and p1q1 > (m−p2)(n−q2), by Lemma 2.6, there exist two positive
constants l1, l2 < 1 such that

p1l2 + p2l1 > ml1, q1l1 + q2l2 > nl2, ml1, nl2 < 1. (3.10)

Hence, we can choose k sufficiently small that k < min{C1, C2}, and provided u0(x), v0(x) are
also sufficiently small to satisfy (3.6). Then, from (3.3) and (3.6), (3.10), we know that (u, v)
is a positive super-solution of (1.1).

(4) Finally, if m ≤ p2 or n ≤ q2, there exist also positive constants l1, l2 < 1 such that
(3.10) andml1, nl2 < 1. Similar to the proof of (3), we get that (u, v) is a positive super-solution
of (1.1).

Thus the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2

Due to the requirement of the comparison principle, we will construct blowup subsolutions
in some subdomain of Ω in which u, v > 0. We use an idea from Souplet [17] and apply it
to degenerate parabolic equation. By translation, one may assume without loss of generality
that 0 ∈ Ω. Let B = B(0, R) ⊂ Ω be an open ball with radius R, and ψ(x) is a nontrivial
nonnegative continuous function, vanished on ∂B and ψ(0) > 0. Set

ũ(x, t) =
1

(T − t)l1
V

[ |x|
(T − t)σ

]
, ṽ(x, t) =

1

(T − t)l2
V

[ |x|
(T − t)σ

]
, (4.1)

with

V (r) =
R3

6
− R

2
r2 +

1
3
r3, r =

|x|
(T − t)σ , 0 ≤ r ≤ R, (4.2)

where l1, l2, σ > 0 and 0 < T < 1 are to be determined later. Clearly, 0 ≤ V (r) ≤ R3/6 and V (r)
is nonincreasing since V ′(r) = r(r − R) ≤ 0. Note that, for T small enough,

Supp ũ(·, t) = Supp ṽ(·, t) = B(0, R(T − t)σ) ⊂ B(0, RTσ) ⊂ Ω, 0 ≤ t < T. (4.3)
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Obviously, (ũ, ṽ) becomes unbounded as t → T− at the point x = 0. Calculating direct-
ly, we obtain

ũt −Δũm =
l1V (r) + σrV ′(r)

(T − t)l1+1
− m(m − 1)Vm−2(r)(V ′(r))2

(T − t)ml1+2σ
− mVm−1(r)

(T − t)ml1+2σ
(−NR + (N + 1)r)

≤ l1R
3/6

(T − t)l1+1
+

mVm−1(r)

(T − t)ml1+2σ
(NR − (N + 1)r), (x, t) ∈ B × (0, T),

ṽt −Δṽn ≤ l2R
3/6

(T − t)l2+1
+

nV n−1(r)

(T − t)nl2+2σ
(NR − (N + 1)r), (x, t) ∈ B × (0, T).

(4.4)

notice T < 1 is sufficiently small. Therefore, If 0 ≤ r ≤ r0 = NR/(N + 1), we have V (r) ≥
R3(3N + 1)/(6(N + 1)3); then

ṽp1‖ũ‖p2α =
V p1(r)

(T − t)p1l2

(∫

B

V α(r)

(T − t)αl1

)p2/α

≥ |B|p2/α
(T − t)p1l2+p2l1

(
R3(3N + 1)

6(N + 1)3

)p1+p2

,

ũq1‖ṽ‖q2β =
V q1(r)

(T − t)q1l1

(∫

B

V β(r)

(T − t)βl2

)q2/β

≥ |B|q2/β
(T − t)q1l1+q2l2

(
R3(3N + 1)

6(N + 1)3

)q1+q2

.

(4.5)

Hence,

ũt −Δũm − ṽp1‖ũ‖p2α

≤ l1R
3/6

(T − t)l1+1
+

mVm−1(r)

(T − t)ml1+2σ
(NR − (N + 1)r) − |B|p2/α

(T − t)p1l2+p2l1

(
R3(3N + 1)

6(N + 1)3

)p1+p2

,

ṽt −Δṽn − ũq1‖ṽ‖q2β

≤ l2R
3/6

(T − t)l2+1
+

nV n−1(r)

(T − t)nl2+2σ
(NR − (N + 1)r) − |B|q2/β

(T − t)q1l1+q2l2

(
R3(3N + 1)

6(N + 1)3

)q1+q2

.

(4.6)

Similarly, ifNR/(N + 1) < r ≤ R, then

ũt −Δũm − ṽp1‖ũ‖p2α ≤ l1R
3/6

(T − t)l1+1
+

mVm−1(r)

(T − t)ml1+2σ
(NR − (N + 1)r), (4.7)

ṽt −Δṽn − ũq1‖ṽ‖q2β ≤ l2R
3/6

(T − t)l2+1
+

nV n−1(r)

(T − t)nl2+2σ
(NR − (N + 1)r). (4.8)
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(1) Ifm > p2, n > q2 and p1q1 > (m−p2)(n−q2), by Lemma 2.6, there exist two positive
constants l1, l2 large enough that

p1l2 + p2l1 > ml1, q1l1 + q2l2 > nl2, (m − 1)l1 > 1, (n − 1)l2 > 1. (4.9)

Then, we can choose σ > 0 sufficiently small such that

p1l2 + p2l1 > ml1 + 2σ > ml1 > l1 + 1, q1l1 + q2l2 > nl2 + 2σ > nl2 > l2 + 1. (4.10)

Hence, for sufficiently small T > 0, (4.6)–(4.8) imply that

ũt −Δũm − ṽp1‖ũ‖p2α ≤ 0, ṽt −Δṽn − ũq1‖ṽ‖q2β ≤ 0, (x, t) ∈ B × (0, T). (4.11)

Since ψ(0) > 0 and ψ(x) is continuous, there exist two positive constants ρ and ε such
that ψ(x) ≥ ε for all x ∈ B(0, ρ) ⊂ B(0, R). Choose T small enough to insure B(0, RTσ) ⊂
B(0, ρ) ⊂ Ω, hence ũ ≤ 0, ṽ ≤ 0 on ∂Ω × (0, T), and from (4.3) it follows that ũ(x, 0) ≤
Kψ(x), ṽ(x, 0) ≤ Kψ(x) for sufficiently large K. By comparison principle, we have (ũ, ṽ) ≤
(u, v) provided that u0(x) ≥ Kψ(x) and v0(x) ≥ Kψ(x). It follows that (u, v) blows up in
finite time.

(2)Next, we consider the casem > p2, n > q2 and p1q1 = (m−p2)(n−q2). Clearly, there
exist two positive constants l1, l2 such that

ml1 = p1l2 + p2l1, nl2 = q1l1 + q2l2, (m − 1)l1 > 1, (n − 1)l2 > 1. (4.12)

Denote by λBR > 0 and φR(r) the first eigenvalue and the corresponding eigenfunction
of the following eigenvalue problem:

−φ′′(r) − N − 1
r

φ′(r) = λφ(r), r ∈ (0, R); φ′(0) = 0, φ(R) = 0. (4.13)

It is well known that φR(r) can be normalized as φR(r) > 0 in B and φR(0) = maxBφR(r) = 1.
By the property (let τ = r/R) of eigenvalues and eigenfunctions we see that λBR = R−2λB1 and
φR(r) = φ1(r/R) = φ1(τ), where λB1 and φ1(τ) are the first eigenvalue and the corresponding
normalized eigenfunction of the eigenvalue problem in the unit ball B1(0). Moreover,

max
B1

φ1(τ) = φ1(0) = φR(0) = max
B
φR(r) = 1. (4.14)

Similar to (4.1), we define the functions ũ(x, t), ṽ(x, t) in the form

ũ(x, t) =
1

(T − t)l1
φl1R(|x|), ṽ(x, t) =

1

(T − t)l2
φl2R(|x|). (4.15)
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In the following, we will prove that (ũ, ṽ) blows up in finite time in the ball B = B(0, R).
Because of so, (ũ, ṽ) does blow up in the larger domain Ω. Calculating directly, we have

ũt −Δũm − ṽp1‖ũ‖p2α ≤ φl1R

(T − t)l1+1
(

l1 − 1

(T − t)ml1−l1−1
(c1 − λBRml1)

)

,

ṽt −Δṽn − ũq1‖ṽ‖q2β ≤ φl2R

(T − t)l2+1
(

l2 − 1

(T − t)nl2−l2−1
(c2 − λBRnl2)

)

,

(4.16)

where

c1 = φ
p1l2
R

∥
∥
∥φl1R

∥
∥
∥
p2

α
≤ K1R

Np2/α, c2 = φ
q1l1
R

∥
∥
∥φl2R

∥
∥
∥
q2

β
≤ K2R

Nq2/β (4.17)

and K1, K2 are constants independent of R. Then, in view of λBR = R−2λB1 , we may assume
that R, that is, the ball B, is sufficiently large that

λBR < min
{
c1
ml1

,
c2
nl2

}
. (4.18)

Hence, for sufficiently small T > 0, (4.16) implies that

ũt −Δũm − ṽp1‖ũ‖p2α ≤ 0, ṽt −Δṽn − ũq1‖ṽ‖q2β ≤ 0. (4.19)

Therefore, (ũ, ṽ) is a positive subsolution of (1.1) in the ball B, which blows up in finite
time provided the initial data is sufficiently large that

ũ(x, 0) = T−l1φl1R(|x|) ≤ u0(x), ṽ(x, 0) = T−l2φl2R(|x|) ≤ v0(x) (4.20)

in the ball B.
(3) Finally, if m ≤ p2 or n ≤ q2, there also exist two positive constants l1, l2 to satisfy

(4.9). Similar to the proof of case (1), we can get that (ũ, ṽ) is a subsolution of (1.1), which
blows up in finite time.

Thus the proof of Theorem 1.2 is completed.
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