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Self-organizing map (SOM) neural networks have been widely applied in information sciences.
In particular, Su and Zhao proposes in (2009) an SOM-based optimization (SOMO) algorithm
in order to find a wining neuron, through a competitive learning process, that stands for the
minimum of an objective function. In this paper, we generalize the SOM-based optimization
(SOMO) algorithm to so-called SOMO-m algorithm with m winning neurons. Numerical
experiments show that, for m > 1, SOMO-m algorithm converges faster than SOM-based
optimization (SOMO) algorithm when used for finding the minimum of functions. More
importantly, SOMO-m algorithm with m ≥ 2 can be used to find two or more minimums
simultaneously in a single learning iteration process, while the original SOM-based optimization
(SOMO) algorithm has to fulfil the same task much less efficiently by restarting the learning
iteration process twice or more times.

1. Introduction

Self-organizing map (SOM) neural networks have been widely applied in information
sciences [1–7]. In particular, an SOM-based optimization (SOMO) algorithm is proposed in
[8, 9] to find a winning neuron, through a competitive learning process, that stands for the
minimum of an objective function. They compared the SOM-based optimization (SOMO)
algorithm with genetic algorithms [10, 11] and particle swarm optimization algorithm [12–
17], and they showed that the SOM-based optimization (SOMO) algorithm can locate the
minimum much faster than the genetic algorithm and the particle swarm optimization
algorithm.

The aim of this paper is to generalize SOMO algorithm to so called SOMO-m algorithm
to find mwinning neurons in a single learning process. A separation technique is introduced
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in the learning process to prevent the accumulation of the m-wining neurons. Numerical
experiments show that, form ≥ 2, SOMO-m algorithm converges faster than SOMOalgorithm
when they are used for finding the minimum of functions. Amore important merit of SOMO-
m algorithm with m ≥ 2 is that it can find two or more minimums simultaneously in a single
learning iteration process, while the original SOMO algorithm has to fulfil the same task
much less efficiently by restarting the learning iteration process twice or more times.

This paper is organized as follows. In Section 2, a brief introduction of SOMO
algorithm is given. Our SOMO-m algorithm is proposed in Section 3. Section 4 is devoted
to some supporting numerical simulations.

2. Original SOM-Based Optimization (SOMO) Algorithm

Self-organizing map (SOM) is an unsupervised learning algorithm proposed by Kohonen
[18–20]. The principal goal of the SOM algorithm is to map an incoming pattern in a
higher dimensional space into a lower (usually one or two) dimensional space, and perform
this transforation adaptively in a topological ordered fashion. The applications of SOM
range widely from simulations used for the purpose of understanding and modeling of
computational maps in the brain to subsystems for engineering applications such as speech
recognition, vector quantization and cluster analysis [18–26].

Different from the usual SOM algorithm, an SOM-Based optimization (SOMO)
algorithm is introduced in Su and Zhao [8] for continuous optimization. In the following,
let us describe SOMO algorithm [8] used for finding the minimum point x∗ of a function
f(x), x ∈ Rn. The SOMO network contains M × N neurons arranged as a two dimensional
array. For each neuron (i, j), its weight Wi,j is a vector in Rn, where 1 ≤ i ≤ M and 1 ≤ j ≤ N

for some positive integers M and N. For a special input x = (x1, . . . , xn) = (1, 1, . . . , 1) ∈ Rn,
the winner out of all the neurons is defined as

(
i∗, j∗

)
= arg

1≤i≤M,1≤j≤N
min f

((
Wi,j

)

1
× x1, . . . ,

(
Wi,j

)

n
× xn

)

= arg
1≤i≤M,1≤j≤N

min f
((

Wi,j

)

1
× 1, . . . ,

(
Wi,j

)

n
× 1

)

= arg
1≤i≤M,1≤j≤N

min f
(
Wi,j

)
.

(2.1)

The idea of SOM training is applied to the network such that the weight Wi∗,j∗ of the winner
will get closer and closer to the minimum point x∗ during the iterative training process. The
detail of the training process is as follows:

Step 1. Initialization.

Substep 1 (Initialization of the neurons on the four corners). Theweight vectors of the neurons
on the corners are initialized as follows:

W1,1 = (l1, l2, . . . , ln)
T ,

WM,N = (h1, h2, . . . , hn)
T ,
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W1,N =
(
l1, l2, . . . , l�n/2�, h�n/2�+1, . . . , hn

)T
,

WM,1 =
(
h1, h2, . . . , h�n/2�, l�n/2�+1, . . . , ln

)T
.

(2.2)

Here, the two points (l1, l2, . . . , ln)
T and (h1, h2, . . . , hn)

T are randomly chosen and far enough
from each other.

Substep 2 (Initialization of the neurons on the four edges). The initialization of the weights of
the neurons on the four edges is as follows:

W1,j =
W1,N −W1,1

N − 1
(
j − 1

)
+W1,1

=
j − 1
N − 1

W1,N +
N − j

N − 1
W1,1,

WM,j =
WM,N −WM,1

N − 1
(
j − 1

)
+WM,1

=
j − 1
N − 1

WM,N +
N − j

N − 1
WM,1,

Wi,1 =
WM,1 −W1,1

M − 1
(i − 1) +W1,1

=
i − 1
M − 1

WM,1 +
M − i

M − 1
W1,1,

Wi,N =
WM,N −W1,N

M − 1
(i − 1) +W1,N

=
i − 1
M − 1

WM,N +
M − i

M − 1
W1,N,

(2.3)

where i = 2, . . . ,M − 1 and j = 2, . . . ,N − 1.

Substep 3 (Initialization of the remaining neurons).

Wi,j =
Wi,N −Wi,1

N − 1
(
j − 1

)
+Wi,1

=
j − 1
N − 1

Wi,N +
N − j

N − 1
W1,N,

(2.4)

where i = 2, . . . ,M − 1 and j = 2, . . . ,N − 1.

Substep 4 (Random noise). A small amount of random noise is added for each weight so as
to keep the weight vectors from being linearly dependent as follows:

Wi,j = Wi,j + t (2.5)

for 1 ≤ i ≤ M and 1 ≤ j ≤ N, where t denotes a small random noise.
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Step 2. Winner finding.

(
i∗, j∗

)
= arg

1≤i≤M,1≤j≤N
min f

(
Wi,j

)
(2.6)

Step 3. Weights updating. The weights of the winner and its neighbors are adjusted by the
following formula:

Wi,j(t + 1) = Wi,j(t) + ηβ
(
i∗, j∗, i, j

)[
Wi∗,j∗(t) −Wi,j(t)

]

+ λ
(
1 − β

(
i∗, j∗, i, j

))
p for 1 ≤ i ≤ M, 1 ≤ j ≤ N, t = 0, 1, . . . ,

(2.7)

where the parameters η and λ are real-valued constants which can be either constants
predefined by the user or time-varying parameters which decrease gradually when time t
increases. d(i∗, j∗, i, j) is the lateral distance between winning neuron (i∗, j∗) and neuron (i, j);
the randomly chosen vector p is called the perturbation vector, and

β
(
i∗, j∗, i, j

)
= 1 − d

(
i∗, j∗, i, j

)

√
M2 +N2

. (2.8)

Step 4. Go to step 2 until a prespecified number of generations is achieved, or some kind of
termination criterion is satisfied.

3. SOMO-m Algorithm

In this section, let us present our SOMO-m algorithm. We divide the section into two
subsections, dealing with the training algorithms for finding one minimum and two minima
of a function, respectively.

3.1. SOMO-m Algorithm for Finding One Minimum

The SOMO-m algorithm for finding one minimum of a function f(x) is as follows:

Step 1. The initialization of SOMO-m algorithm is the same as that of SOMO algorithm.
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Step 2. This step aims to findmwinning neurons, denoted by (i∗1, j
∗
1), (i

∗
2, j

∗
2), . . . , (i

∗
m, j

∗
m)with

the best objective function values among the neurons as follows:

(
i∗1, j

∗
1

)
= arg

1≤i≤M,1≤j≤N
min f

(
Wi,j

)
,

(
i∗2, j

∗
2
)
= arg

i∈{1,...,M}\S1,j∈{1,...,N}\T1
min f

(
Wi,j

)
,

...

(
i∗m, j

∗
m

)
= arg

i∈{1,...,M}\Sm,j∈{1,...,N}\Tm
min f

(
Wi,j

)
,

(3.1)

where

S1 =
{
i :

∣∣i − i∗1
∣∣ ≤ R1

}
, T1 =

{
j :

∣∣j − j∗1
∣∣ ≤ R1

}
, (3.2)

S2 =
{
i :

∣∣i − i∗2
∣∣ ≤ R2

}
, T2 =

{
j :

∣∣j − j∗2
∣∣ ≤ R2

}
,

...
(3.3)

Sm = {i : |i − i∗m| ≤ Rm}, Tm =
{
j :

∣∣j − j∗r
∣∣ ≤ Rm

}
, (3.4)

Sm = (S1 ∪ · · · ∪ Sm), Tm = (T1 ∪ · · · ∪ Tm), (3.5)

and R1, R2, . . . , Rm are suitably chosen sizes of neighborhoods.

Step 3. The weights of the winners and its neighbors are adjusted by the following formula:

Wi,j(t + 1) = Wi,j(t) +
m∑

r=1

ηrβ
(
i∗r , j

∗
r , i, j

)[
Wi∗r ,j∗r

(t) −Wi,j(t)
]

+
m∑

r=1

λr
(
1 − β

(
i∗r , j

∗
r , i, j

))
p 1 ≤ i ≤ M, 1 ≤ j ≤ N,

(3.6)

where

β
(
i∗r , j

∗
r , i, j

)
= 1 − d

(
i∗r , j

∗
r , i, j

)

√
M2 +N2

. (3.7)

The ηr and λr are real-valued parameters which can be constants predefined by the user
or time-varying parameters, which decreases gradually with increasing time t, and p is a
perturbation vector.

Step 4. Go to step 2 until a prespecified number of generations is achieved or some kind of
termination criteria is satisfied.
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We first remark that in the above Step 2, we require the m winners to be away from
each other by using the neighborhoods Sm and Tm, such that the winners can spread around
rather than accumulate in one point. Secondly, we find in our numerical experiments that it
is OK to choose λr and ηr as either small constants independent of time t or small variables
decreasing with increasing time t. Thirdly, we find that it is better to choose η1 < η2 ≤ · · · ≤ ηm.
The reason for this may be the following: A smaller constant η1 might help for the first winner
to converge to the minimum, while the larger ηr for r > 1 might help for the other winners to
reach a larger searching area.

3.2. SOMO-2 Algorithm for Two Minima

Here we discuss SOMO-2 algorithm for finding two minima of a function simultaneously.
It is an easy matter to generalize the algorithm for finding three or more minima. SOMO-2
algorithm has the same training steps as those in the last subsection with m = 2 for finding
one minimum, except the step of weights updating process, which is as follows:

For the neurons (i, j) in the neighborhood of the first winner (i∗1, j
∗
1) satisfying p1 ≤ i ≤

p2, q1 ≤ j ≤ q2, where

p1 = max
(
i∗1 − R1, 1

)
,

p2 = min
(
i∗1 + R1,M

)
,

q1 = max
(
j∗1 − R1, 1

)
,

q2 = min
(
j∗1 + R1,N

)
.

(3.8)

The weights updating rule is

Wi,j(t + 1) = Wi,j(t) + η1β1
(
i∗1, j

∗
1 , i, j

)[
Wi∗1,j

∗
1
(t) −Wi,j(t)

]
+ λ1

(
1 − β1

(
i∗1, j

∗
1 , i, j

))
p, (3.9)

where

β1
(
i∗1, j

∗
1 , i, j

)
= 1 − d

(
i∗1, j

∗
1 , i, j

)

√
M2 +N2

. (3.10)

For the rest (i, j) neurons,

Wi,j(t + 1) = Wi,j(t) + η2β2
(
i∗2, j

∗
2 , i, j

)[
Wi∗2,j

∗
2
(t) −Wi,j(t)

]
+ λ2

(
1 − β2

(
i∗2, j

∗
2 , i, j

))
p, (3.11)

where

β2
(
i∗2, j

∗
2 , i, j

)
= 1 − d

(
i∗2, j

∗
2 , i, j

)

√
M2 +N2

. (3.12)

We see that, in the training, the second winner (i∗2, j
∗
2) does not affect the neighboring

neurons of the first winner (i∗1, j
∗
1), but does affect all the other neurons. Therefore, hopefully
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the first winner will converges to the minimum point of the function f(x), while the second
winner converges to another minimum point.

4. Simulation Results

4.1. Objective Functions

In this subsection, we use our SOMO-m methods to minimize the following functions.

(1) Step function

f
(
x
)
=

30∑

i=1

(|xi + 0.5|)2. (4.1)

(2) Griewant function

f
(
x
)
=

1
4000

30∑

i=1

(xi − 100)2 −
10∏

i=1

cos
(
xi − 100√

i

)
+ 1. (4.2)

(3) Giunta function

f
(
x
)
=

30∑

i=1

sin
(
16
15

xi − 1
)
+ sin2

(
16
15

xi − 1
)

+
1
50

sin
(
4
(
16
15

xi − 1
))

+ 0.3.

(4.3)

(4)U1 function

f = − exp(−8 sin(πx)) − exp
(
9.85 sin

(
2πy

))
. (4.4)

(5)U2 function

f = exp
(−8 sin(πx) + sin

(
πy

)) − exp
(
sin(2.5πx) + sin

(
πy

))
. (4.5)

4.2. Parameters of Simulation

In Table 1 we present the global minima, dimensions, and the upper bound of the number of
generations for optimization algorithms. Figure 1 illustrates the graphs of these five functions
in two dimensional space. The neurons are arranged as a 30 × 30 array, namely,M = N = 30.
For SOMO algorithm, we set η = 0.2 and λ = 0.01; for SOMO-2, η1 = 0.2, η2 = 0.3, λ1 = 0.01,
and λ2 = 0.001; for SOMO-3, η1 = 0.2, η2 = 0.3, η3 = 0.35, λ1 = 0.01, λ2 = 0.001, and λ3 = 0.0005.
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Table 1: Parameters for five functions.

Test function Dimensions Initial range Minimum Number of generations

Step 10 −100 ≤ xi ≤ 100 0 100

Griewank 10 −600 ≤ xi ≤ 600 0 100

Giunta 30 −10 ≤ xi ≤ 10 ≈ 0.9 100

U1 function 2 0 ≤ xi ≤ 1 100

U2 function 2 0 ≤ xi ≤ 1 100

(a) Step function (b) Griewant function

(c) Giunta function (d) U1 function

(e) U2 function

Figure 1: Graphs of the five objective functions.
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Table 2: Comparison of SOMO, SOMO-2, and SOMO-3 for finding one minimum.

Test function Algorithm Mean Standard deviation
Time
mean
(s)

Time
SD (s)

SOMO 1.6778e − 016 2.4504e − 016 1.3813 1.4008

Step SOMO-2 1.1321e − 019 8.3427e − 020 1.0973 1.1419

SOMO-3 7.8070e − 020 5.7362e − 020 0.8743 0.8686

SOMO 5.1773e − 015 2.8126e − 016 1.7502 1.1681

Griewant SOMO-2 2.8126e − 016 3.7420e − 016 1.1681 1.1324

SOMO-3 2.2204e − 017 6.14813e − 017 0.9849

SOMO 0.9670 1.4901e − 009 1.0116 1.0049

Giunta SOMO-2 0.9670 9.2269e − 011 0.7087 0.7053

SOMO-3 0.9670 5.8655e − 012 0.6217 0.6451

SOMO −1.896401167771170e + 004 1.018269572071048e − 007 0.8009 0.7584

U1 function f SOMO-2 −1.896401167771323e + 004 2.722830731013220e − 009 0.6168 0.6438

SOMO-3 −1.896401167771335e + 004 2.146099170750331e − 011 0.4657 0.4778

SOMO −7.36465824205229 9.781475238601051e − 014 2.1060 2.1278

U2 function f SOMO-2 −7.36465824208548 2.101813757029311e − 015 1.5919 1.5198

SOMO-3 −7.36465824208548 2.394240849331165e − 015 0.9831 0.9525

4.3. Simulations of SOMO-m Algorithm for One Minimum

In this subsection, we investigate the performance of SOMO-m algorithm for finding one
minimum. For each function, each algorithm conducted 30 runs. The stop criterion for each
run is that either 100 generations are iteratively generated, or before then if the difference
of two successive minima in the iteration process is less than a prescribed tolerance ε > 0.
The best solutions found for each function and each run were recorded and, for instance,
the mean column in Table 2 presents the average of the 30 best solutions of the 30 runs,
respectively. Tomeasure and compare the performance of SOMO-3, themean time, that is, the
average of processing time over 30 runs is recorded. Table 2 tabulates the comparison of the
simulation results of SOMO, SOMO-2, and SOMO-3 algorithms. The mean column and the
standard deviation (SD) column represent the mean and the standard deviation (SD) of the
best solutions of 30 runs. The highlighted (bold) entries correspond to best solutions found
by SOMO-3. Figure 2 shows the performances of SOMO, SOMO-2, and SOMO-3 algorithms
in typical runs.

Now, we discuss the accuracy of the algorithms. We measure the errors for each
algorithm over the 30 runs as follows:

E =
1
30

30∑

l=1

∣∣∣xl − x∗
∣∣∣, (4.6)

where xl is the approximate solution of lth run, and x∗ is the real minimum of the function.
Table 3 tabulates the errors of SOMO, SOMO-2, and SOMO-3 algorithms, respectively.
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Figure 2: Best performance curves for SOMO, SOMO-2, and SOMO-3 algorithms, respectively.
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Table 3: Error of SOMO, SOMO-2, and SOMO-3.

Test function Algorithm Error

SOMO 7.2868e − 017

Step SOMO-2 4.0385e − 019

SOMO-3 5.3813e − 020

SOMO 6.4936e − 017

Griewank SOMO-2 2.2973e − 019

SOMO-3 6.8401e − 020

SOMO 0.067056308053595

Giunta SOMO-2 0.067056308053587

SOMO-3 0.067056308053585

Table 4: Comparison of SOMO-2 and the original SOMO algorithms for finding two minima.

Test functionAlgorithm Mean Standard deviation
Time
mean
(s)

Time
SD (s)

SOMO

First minimum −7.36465824205229 9.781475238601051e − 014 2.1060 2.1278

U2 function
Second minimum −5.99322845918991 0.00379247207700 2.9716 2.865

SOMO-2

First minimum −7.36465824124180 4.047965312150572e − 009
1.4967 1.4237

Second minimum −6.07080647154294 6.025651408745671e − 013

SOMO

First minimum −1.895835670663015e + 004 3.927781801202260e − 010 1.2414 1.1168

U1 function
Second minimum −1.895837311768572e + 004 4.152186941602799e − 009 1.1343 1.0938

SOMO-2

First minimum −1.895837311745155e + 004 2.482103550304831e − 007
0.5536 0.5631

Second minimum −1.895837311768680e + 004 2.906907306783492e − 009

We draw the following conclusions from the simulations in this subsection for finding
one minimum.

(1) SOMO-3 algorithm shows the best results for all functions based on the
comparisons of the means of the best objective value and the processing time.

(2) As shown in Figure 2, the SOMO-3 algorithm locates the minima faster than
SOMO and SOMO-2 algorithms.

(3) In Table 3, the bold entries show that the error corresponding to SOMO-3
algorithm is smaller than those of SOMO and SOMO-2 algorithms.

4.4. Simulations of SOMO-2 Algorithm for Two Minima

In this subsection, we present the simulation results for the case of finding simultaneously
two minima of a function. The best solutions found for each run after prespecified number of
generations were recorded. Table 4 tabulates the comparison of the simulation results. The
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mean column and the standard deviation column represents the mean and the standard
deviation of the best solutions of 30 runs.

Based on observation from Table 4, our conclusion for finding simultaneously two
minima of a function is as follows:

The proposed SOMO-2 algorithm can find two minima of a function simultaneously
in a single learning iteration process, while the original SOM-based optimization (SOMO)
algorithm has to fulfil the same task much less efficiently by restarting the learning iteration
process twice or more times.
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