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Wepropose a price gamemodel of irrigationwater in a coastal irrigation district.Then,we discuss the stability and codimension-two
period-doubling (flip) bifurcation.Then, the MATLAB package Cl MatContM is employed to illustrate its numerical bifurcations-
based continuation methods. Lastly, the 0-1 test algorithm is used to compute the median value of correlation coefficient which can
indicate whether the underlying dynamics is regular or chaotic.

1. Introduction

Water scarcity is one of the key problems affecting most
countries in the world. With a burgeoning population, food
price volatility, and climate change, water scarcity would
also fuel future global conflict. Water scarcity is exacerbated
by the indiscriminate discharge of industrial and municipal
wastewater and is likely to affect the supply and demand
of grain in the years ahead. Irrigation water availability is
decreasing in many places where crop and plant production
is taking place. Not only is there no set of efficient tech-
nique that can suddenly eliminate water scarcity, but also
there is no optimal institutional arrangement for water, and
rather it is critical to understand the potential contributions,
facilitating conditions, and limitations of each [1, 2]. One of
the important causes of water scarcity is that the demand
exceeds a finite supply. All over the world, water regulations
have historically focused on supply management. In fact,
pricing mechanism may turn the tide against water scarcity
by improving the water use efficiency [3–6]. Thereinto, the
price game between water oligopolies is an important pricing
mechanism.One of the simplest the price games is price game
of irrigationwater in a coastal irrigation district because there

is little demand diversity of the irrigation water type among
farmers. It will be considered in this paper.

In recent years, a lot of research works [7–14] have shown
that the game theory plays an important role in the economics
and management field. Ji et al., Son et al., and Skoulidas
et al. [15–17] studied the game model in an electric power
market. Mu et al. [18, 19] analyzed the game model in a real
estate market. Liu et al. [20] discussed the minority game
in a financial market. Gkonis and Psaraftis [21] proposed
a gamemodel in the LNGmarket. Sun andMa [22] presented
a game model in Chinese cold rolled steel market. Sugawara
and Omori [23] considered the duopoly in the Japanese
airline market. Chung et al. [24] applied the gamemodel into
pollution permit markets. Ma and Zhang [25] build a price
game in a property insurance market.

Some references [26–32] have reported the complex
dynamics of game model, such as bifurcation and chaos.
Analyzing bifurcation and chaos is not an easy task for
most of researchers. Fortunately, there are many powerful
methods for us to study bifurcation and chaos, such as 0-1
test algorithm for chaos [33–38], MATLAB packageMatCont
series [39–43] for the bifurcation of discrete, and continuous
dynamical systems.
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Figure 1: Schematic diagram of water supply in the coastal irrigation district.

This paper is organized as follows. In Section 2, a price
game model of irrigation water in a coastal irrigation district
is presented. In Section 3, the fixed points and their stabilities
are studied. In Section 4, codimension-two period-doubling
(flip) bifurcation is discussed. In Section 5, the 0-1 test algo-
rithm and continuationmethods are employed to validate the
main results. Finally, conclusions in Section 6 close the paper.

2. A Pricing Game Model

In a coastal irrigation district, water mainly exists in ocean,
rivers, lakes, or subterranean streams. But seawater and
wastewater cannot directly be used for irrigation because the
salt and pollutants will not allow the crops to grow. Generally
speaking, groundwater can be directly used as irrigation
water, but seawater and wastewater need to be pumped
to a desalination plant and a wastewater treatment plant,
respectively, and to be treated to be suitable for irrigation.
Taking such factors as the freshwater scarcity, the high cost of
wastewater treatment, and seawater desalination into consid-
eration, wastewater treatment and seawater desalination have
to rely on the help of government subsidies or tax breaks.

Assumption 1. As shown in Figure 1, firms X, Y, and Z are the
three water oligopolies of the irrigation water market in the
coastal irrigation district. Firm X supplies irrigation water by
directly pumping from rivers, lakes, or subterranean streams,
and firmY supplies irrigation water by wastewater treatment,
and firm Z supplies irrigation water by seawater desalination.

Assumption 2. Firms X, Y, and Z compete with making
different price of irrigation water in discrete-time periods
𝑡 = 0, 1, 2, . . .. Consider that 𝑝

𝑥
𝑡

, 𝑝
𝑦
𝑡

, and 𝑝
𝑧
𝑡

represent,
respectively, the irrigation water price of firms X, Y, and Z
during period 𝑡 = 0, 1, 2, . . ..

Assumption 3. The quantities, in which firms X, Y, and Z
sell, respectively,𝑄

𝑥
𝑡

,𝑄
𝑦
𝑡

, and𝑄
𝑧
𝑡

, are linear inverse demand
functions determined by the following equations:

𝑄
𝑥
𝑡

= 𝑎 − 𝑏𝑝
𝑥
𝑡

+ 𝑑 (𝑝
𝑦
𝑡

+ 𝑝
𝑧
𝑡

) ,

𝑄
𝑦
𝑡

= 𝑎 − 𝑏𝑝
𝑦
𝑡

+ 𝑑 (𝑝
𝑥
𝑡

+ 𝑝
𝑧
𝑡

) ,

𝑄
𝑧
𝑡

= 𝑎 − 𝑏𝑝
𝑧
𝑡

+ 𝑑 (𝑝
𝑥
𝑡

+ 𝑝
𝑦
𝑡

) ,

(1)

where 𝑎, 𝑏, 𝑑 > 0. The parameter 𝑑 denotes the extent to
which a firm’s irrigation water is substituted by its rivals’
water.

Assumption 4. The cost functions of firms X, Y, and Z have
the following linear forms:

𝐶
𝑥
𝑡

= 𝑐
1
𝑄
𝑥
𝑡

, 𝐶
𝑦
𝑡

= 𝑐
2
𝑄
𝑦
𝑡

, 𝐶
𝑧
𝑡

= 𝑐
3
𝑄
𝑧
𝑡

, (2)

where parameters 𝑐
𝑖
> 0 (𝑖 = 1, 2, 3) are marginal costs of the

firms X, Y, and Z, respectively.

Assumption 5. The profit functions of firms X, Y, and Z have
the following forms:

Π
𝑥
𝑡

= 𝑄
𝑥
𝑡

𝑝
𝑥
𝑡

− 𝐶
𝑥
𝑡

= (𝑝
𝑥
𝑡

− 𝑐
1
) (𝑎 − 𝑏𝑝

𝑥
𝑡

+ 𝑑 (𝑝
𝑦
𝑡

+ 𝑝
𝑧
𝑡

)) ,

Π
𝑦
𝑡

= 𝑄
𝑦
𝑡

𝑝
𝑦
𝑡

+ 𝑄
𝑦
𝑡

𝑠
2
− 𝐶

𝑦
𝑡

= (𝑝
𝑦
𝑡

+ 𝑠
2
− 𝑐
2
) (𝑎 − 𝑏𝑝

𝑦
𝑡

+ 𝑑 (𝑝
𝑥
𝑡

+ 𝑝
𝑧
𝑡

)) ,

Π
𝑧
𝑡

= 𝑄
𝑧
𝑡

𝑝
𝑧
𝑡

+ 𝑄
𝑧
𝑡

𝑠
3
− 𝐶

𝑧
𝑡

= (𝑝
𝑧
𝑡

+ 𝑠
3
− 𝑐
3
) (𝑎 − 𝑏𝑝

𝑧
𝑡

+ 𝑑 (𝑝
𝑥
𝑡

+ 𝑝
𝑦
𝑡

)) ,

(3)

where 𝑠
2
and 𝑠

3
> 0 are the intensity coefficients of

government support (such as subsidies and tax breaks) for the
firms Y and Z, respectively.

Assumption 6. Firms X, Y, and Z always make the optimal
price decision for the maximal marginal profit in every single
period.

The water prices of firms X, Y, and Z in period (𝑡 + 1) are
decided by solving the following optimization problem:

𝑝
𝑥
𝑡+1

= argmax
𝑝
𝑥

∏

𝑥

(𝑝
𝑥
𝑡

, 𝑝
𝑒
𝑥

𝑦
𝑡+1

, 𝑝
𝑒
𝑥

𝑧
𝑡+1

) ,

𝑝
𝑦
𝑡+1

= argmax
𝑝
𝑦

∏

𝑥

(𝑝
𝑒
𝑦

𝑥
𝑡+1
, 𝑝
𝑦
𝑡

, 𝑝
𝑒
𝑦

𝑧
𝑡+1
) ,

𝑝
𝑧
𝑡+1

= argmax
𝑝
𝑧

∏

𝑥

(𝑝
𝑒
𝑧

𝑥
𝑡+1

, 𝑝
𝑒
𝑧

𝑦
𝑡+1

, 𝑝
𝑧
𝑡

) ,

(4)

where 𝑝𝑒𝑥
𝑦
𝑡+1

represents the expectation of firm X about the
water price of firm Y during period 𝑡 + 1. Consider that 𝑝𝑒𝑥

𝑧
𝑡+1

,
𝑝
𝑒
𝑦

𝑥
𝑡+1
, 𝑝𝑒𝑦
𝑧
𝑡+1
, 𝑝𝑒𝑧
𝑥
𝑡+1

, and 𝑝𝑒𝑧
𝑦
𝑡+1

may be explained by analogy.
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Assumption 7. Each firm expects that its rivals’ water price in
period (𝑡 + 1) will remain the same as in period (𝑡).

Thus,

𝑝
𝑒
𝑥

𝑦
𝑡+1

= 𝑝
𝑒
𝑧

𝑦
𝑡+1

= 𝑝
𝑦
𝑡

, 𝑝
𝑒
𝑥

𝑧
𝑡+1

= 𝑝
𝑒
𝑦

𝑧
𝑡+1
= 𝑝

𝑧
𝑡

,

𝑝
𝑒
𝑦

𝑥
𝑡+1
= 𝑝

𝑒
𝑧

𝑥
𝑡+1

= 𝑝
𝑥
𝑡

.

(5)

The margin profits of firms X, Y, and Z in period 𝑡 are
given, respectively, by

𝜕Π
𝑥
𝑡

𝜕𝑝
𝑥
𝑡

= 𝑎 − 2𝑏𝑝
𝑥
𝑡

+ 𝑑 (𝑝
𝑦
𝑡

+ 𝑝
𝑧
𝑡

) + 𝑏𝑐
1
,

𝜕Π
𝑦
𝑡

𝜕𝑝
𝑦
𝑡

= 𝑎 − 2𝑏𝑝
𝑦
𝑡

+ 𝑑 (𝑝
𝑥
𝑡

+ 𝑝
𝑧
𝑡

) + 𝑏 (𝑐
2
− 𝑠
2
) ,

𝜕Π
𝑧
𝑡

𝜕𝑝
𝑧
𝑡

= 𝑎 − 2𝑏𝑝
𝑧
𝑡

+ 𝑑 (𝑝
𝑥
𝑡

+ 𝑝
𝑦
𝑡

) + 𝑏 (𝑐
3
− 𝑠
3
) .

(6)

Let (6) be equal to 0; one can obtain the reaction functions
of firms X, Y, and Z; that is, the optimal water prices are as
follows:

𝑝
∗

𝑥
=

𝑎 + 𝑑 (𝑝
𝑦
+ 𝑝

𝑧
) + 𝑏𝑐

1

2𝑏
,

𝑝
∗

𝑦
=
𝑎 + 𝑑 (𝑝

𝑥
+ 𝑝

𝑧
) + 𝑏 (𝑐

2
− 𝑠
2
)

2𝑏
,

𝑝
∗

𝑧
=

𝑎 + 𝑑 (𝑝
𝑥
+ 𝑝

𝑦
) + 𝑏 (𝑐

3
− 𝑠
3
)

2𝑏
.

(7)

Assumption 8. Firm X uses bounded rationality to make its
price decisions with local information based on the marginal
profits 𝜕Π

𝑥
/𝜕𝑝

𝑥
and increase (decrease) its water prices in

period (𝑡 + 1) if the marginal profit is positive (negative)
[8, 29, 44].

The above adjustment mechanism of firm X has been
called myopic by Dixit [45]. The dynamical adjustment
mechanism of firm X can be written as follows:

𝑝
𝑥
𝑡+1

= 𝑝
𝑥
𝑡

+ 𝛼𝑝
𝑥
𝑡

𝜕Π
𝑥
𝑡

𝜕𝑝
𝑥
𝑡

, (8)

where 𝛼 > 0 represents the adjustment speed of firm X.

Assumption 9. Firm Y is an adaptive decision maker and has
adaptive expectations.Thus, its price decision in period (𝑡+1)
is mainly based on its reaction function and price in period
(𝑡).

So, the price adjustment mechanism of firm Y can be
written as follows:

𝑝
𝑦
𝑡+1

= (1 − 𝛽) 𝑝
𝑦
𝑡

+ 𝛽𝑝
∗

𝑦
𝑡

, (9)

where 𝛽 > 0 represents the adjustment speed of firm Y.

Assumption 10. Firm Z has simple rationality; that is, its price
decision in period (𝑡 + 1) is mainly based on its optimal
reaction function in period (𝑡).

Thus, the price adjustment mechanism of firm Z can be
expressed as follows:

𝑝
𝑧
𝑡+1

= 𝑝
∗

𝑧
𝑡

. (10)

So, the repeated price game of irrigation water in the coastal
irrigation district has the following nonlinear form:

𝑝
𝑥
𝑡+1

= 𝑝
𝑥
𝑡

+ 𝛼𝑝
𝑥
𝑡

(𝑎 − 2𝑏𝑝
𝑥
𝑡

+ 𝑑 (𝑝
𝑦
𝑡

+ 𝑝
𝑧
𝑡

) + 𝑏𝑐
1
) ,

𝑝
𝑦
𝑡+1

= (1 − 𝛽) 𝑝
𝑦
𝑡

+
𝛽

2𝑏
(𝑎 + 𝑑 (𝑝

𝑥
𝑡

+ 𝑝
𝑧
𝑡

) + 𝑏 (𝑐
2
− 𝑠
2
)) ,

𝑝
𝑧
𝑡+1

=
1

2𝑏
(𝑎 + 𝑑 (𝑝

𝑥
𝑡

+ 𝑝
𝑦
𝑡

) + 𝑏 (𝑐
3
− 𝑠
3
)) .

(11)

In what follows, we will focus on how the government
supports intensities 𝑠

2
and 𝑠

3
> 0 which have an effect on

the complex dynamics of the irrigation water price game.

3. Stability of Fixed Points

The fixed points of the system (11) satisfy the following
algebraic system:

𝑝
𝑥
+ 𝛼𝑝

𝑥
(𝑎 − 2𝑏𝑝

𝑥
+ 𝑑 (𝑝

𝑦
+ 𝑝

𝑧
) + 𝑏𝑐

1
) = 0,

(1 − 𝛽) 𝑝
𝑦
+
𝛽

2𝑏
(𝑎 + 𝑑 (𝑝

𝑥
+ 𝑝

𝑧
) + 𝑏 (𝑐

2
− 𝑠
2
)) = 0,

1

2𝑏
(𝑎 + 𝑑 (𝑝

𝑥
+ 𝑝

𝑦
) + 𝑏 (𝑐

3
− 𝑠
3
)) = 0.

(12)

By simple computation, one can obtain two fixed points 𝐸
0
=

(𝑝
𝑥
0

, 𝑝
𝑦
0

, 𝑝
𝑧
0

) and 𝐸
1
= (𝑝

𝑥
1

, 𝑝
𝑦
1

, 𝑝
𝑧
1

), where

𝑝
𝑥
0

= 0,

𝑝
𝑦
0

=
𝑎𝑑 + 𝑏𝑑𝑐

3
− 𝑏𝑑𝑠

3
+ 2𝑎𝑏 + 2𝑏

2

𝑐
2
− 2𝑏

2

𝑠
2

4𝑏
2
− 𝑑

2
,

𝑝
𝑧
0

=
2𝑎𝑏 + 2𝑏

2

𝑐
3
− 2𝑏

2

𝑠
3
+ 𝑎𝑑 + 𝑏𝑑𝑐

2
− 𝑏𝑑𝑠

2

4𝑏
2
− 𝑑

2
,

𝑝
𝑥
1

=

𝑎𝑑 + 2𝑏 (𝑎 + 𝑏𝑐
1
) − 𝑏𝑑 (𝑐

1
− 𝑐
2
− 𝑐
3+𝑠
2

+ 𝑠
3
)

2 (2𝑏 + 𝑑) (𝑏 − 𝑑)
,

𝑝
𝑦
1

=

2𝑏
2

(𝑐
2
− 𝑠
2
) + 𝑏𝑑 (𝑐

1
− 𝑠
3
− 𝑐
2+𝑐
3

+ 𝑠
2
) + 𝑎 (2𝑏 + 𝑑)

2 (2𝑏 + 𝑑) (𝑏 − 𝑑)
,

𝑝
𝑧
1

=
2𝑏
2

(𝑐
3
− 𝑠
3
) + 𝑏𝑑 (𝑐

1
+ 𝑐
2
− 𝑐
3
− 𝑠
2
+ 𝑠
3
) + 𝑎 (2𝑏 + 𝑑)

2 (2𝑏 + 𝑑) (𝑏 − 𝑑)
.

(13)

If the characteristic polynomial of a 3-order squarematrix
can be written as

𝑃 (𝜆) = (𝜆)
3

+ 𝑎
2
𝜆
2

+ 𝑎
1
𝜆 + 𝑎

0
= 0, (14)
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then one can get directly the following Lemma 11 from the
Jury stability criterion.

Lemma 11. A necessary and sufficient condition that the
characteristic polynomial of a matrix 𝐴 = (𝑎

𝑖𝑗
)
3×3

has all of
its roots inside the unit circle is that

1 + 𝑎
0
+ 𝑎

1
+ 𝑎

2
> 0,

1 − 𝑎
0
+ 𝑎

1
− 𝑎

2
> 0,

1 − 𝑎
2

0
>

𝑎
1
− 𝑎

0
𝑎
2


,


𝑎
0


< 1.

(15)

3.1. Stability of 𝐸
0
. The Jacobian matrix of system (11) at the

point 𝐸
0
can be written as

𝐴 (𝐸
0
) =

[
[
[
[
[
[
[

[

1 + 𝛼 (𝑎 + 𝑑 (𝑦
0
+ 𝑧

0
) + 𝑏𝑐

1
) 0 0

𝛽𝑑

2𝑏
1 − 𝛽

𝛽𝑑

2𝑏

𝑑

2𝑏

𝑑

2𝑏
0

]
]
]
]
]
]
]

]

. (16)

Its characteristic polynomial can be written as

𝑃 (𝜆) = (𝜆)
3

+ 𝐴
2
𝜆
2

+ 𝐴
1
𝜆 + 𝐴

0
= 0, (17)

where 𝐴
2
= 𝛽 − 𝛼(𝑎 + 𝑑𝑦

0
+ 𝑑𝑧

0
+ 𝑏𝑐

1
) − 2, 𝐴

1
= 𝛼(1 −

𝛽)𝑏𝑐
1
+ ((𝑦

0
+ 𝑧

0
)(1 − 𝛽)𝑑 + 𝑎(1 − 𝛽))𝛼 + 1 − 𝛽 − (𝛽𝑑

2

/4𝑏
2

),
and 𝐴

0
= (−1 − 𝛼𝛽(𝑎 + 𝑑(𝑦

0
+ 𝑧

0
) + 𝑏𝑐1))𝑑

2

/4𝑏
2.

From Lemma 11, one can get the locally asymptotically
stable regionΩ

𝐸
0

(𝑠
2
, 𝑠
3
) with respect to parameters (𝑠

2
, 𝑠
3
) as

follows:

Ω
𝐸
0

(𝑠
2
, 𝑠
3
) = { (𝑠

2
, 𝑠
3
) : 1 + 𝐴

0
+ 𝐴

1
+ 𝐴

2
> 0,

1 − 𝐴
0
+ 𝐴

1
− 𝐴

2
> 0,

1 − 𝐴
2

0
>

𝐴
1
− 𝐴

0
𝐴
2


,

𝐴
0


< 1} .

(18)

3.2. Stability of 𝐸
1
. The Jacobian matrix of system (11) at the

point 𝐸
1
has the following form:

𝐴(𝐸
1
)

=

[
[
[
[
[
[
[

[

1 + 𝑎𝛼 − 4𝛼𝑏𝑝
𝑥1
+ 𝛼𝑑𝑝

𝑦1
+ 𝛼𝑑𝑝

𝑧1
+ 𝛼𝑏𝑐

1
𝛼𝑑𝑝

𝑥1
𝛼𝑑𝑝

𝑥1

𝛽𝑑

2𝑏

1 − 𝛽

𝛽𝑑

2𝑏

𝑑

2𝑏

𝑑

2𝑏

0

]
]
]
]
]
]
]

]

.

(19)

Its characteristic polynomial can be written as

𝑃 (𝜆) = (𝜆)
3

+ 𝑎
2
𝜆
2

+ 𝑎
1
𝜆 + 𝑎

0
= 0, (20)

where 𝑎
0
= 𝑊

5
(𝑊
4
(𝑠
2
+𝑠
3
)+𝑊

1
+𝑊

2
+𝑊

3
), 𝑎
1
= 𝑊

5
(𝑊
11
(𝑠
2
+

𝑠
3
) +𝑊

6
+𝑊

7
+𝑊

8
+𝑊

9
+𝑊

10
), 𝑎
2
= 𝑊

5
(𝑊
13
(𝑠
2
+ 𝑠
3
) +𝑊

12
),

𝑊
0
= 𝑐

1
− 𝑐
2
− 𝑐
3
,𝑊

1
= 𝛽(𝛼𝑏𝑊

0
− 𝑎𝛼 − 1)𝑑

4,𝑊
2
= (((1 −

4𝛽)𝑎𝛼−𝛽)−((2𝑐
2
+2𝑐

3
)𝛽+𝑊

0
)𝛼𝑏)𝑏𝑑

3,𝑊
3
= (2(1−2𝛽)𝛼𝑏

3

𝑐
1
+

((1 − 2𝛽)2𝑎𝛼 + 2𝛽)𝑏
2

)𝑑
2, 𝑊

4
= 2𝛼𝛽𝑏

2

𝑑
3

− 𝛼𝑏
2

𝑑
3

+ 𝛼𝛽𝑏𝑑
4,

𝑊
5
= 1/(8𝑏

4

− 4𝑏
3

𝑑 − 4𝑑
2

𝑏
2

), 𝑊
6
= 8𝛼(𝛽 − 1)𝑏

5

𝑐
1
, 𝑊

7
=

(𝛼(4−𝛽)𝑑𝑊
0
+8(𝛽−1)(𝑎𝛼−1))𝑏

4,𝑊
8
= 2𝑑((2(𝛽−1)(𝑎𝛼+1)−

𝛼(1+𝛽)𝑐
1
𝑑)𝑏

3,𝑊
9
= ((𝑊

0
(𝛽+1)𝛼𝑑+2(𝛽−(𝛽+1)𝑎𝛼−2))𝑏

2

𝑑
2,

𝑊
10
= 𝑑

4

𝛽 + (𝛽 − 𝛼(𝛽 + 1))𝑎𝑏𝑑
3, 𝑊

11
= 𝑑

3

𝛼𝑏
2

+ 4𝛼𝑏
4

𝑑 +

𝛼𝑏
2

𝑑
3

𝛽−4𝛼𝑏
4

𝑑𝛽,𝑊
12
= 8𝛼𝑏

5

𝑐
1
+4(2𝑎𝛼+2𝛽−𝛼𝑑𝑊

0
−4)𝑏

4

+

4(2 + 𝑎𝛼 − 𝛽)𝑑𝑏
3

+ 4(2 − 𝛽)𝑏
2

𝑑
2, and𝑊

13
= −4𝛼𝑏

4

𝑑.
It is obvious that the fixed point 𝐸

1
is locally asymptot-

ically stable if and only if Lemma 11 holds. One can get the
locally asymptotically stable regionΩ

𝐸
1

(𝑠
2
, 𝑠
3
)with respect to

parameters (𝑠
2
, 𝑠
3
) as follows:

Ω
𝐸
1

(𝑠
2
, 𝑠
3
) = { (𝑠

2
, 𝑠
3
) : 1 + 𝑎

0
+ 𝑎

1
+ 𝑎

2
> 0,

1 − 𝑎
0
+ 𝑎

1
− 𝑎

2
> 0,

1 − 𝑎
2

0
>

𝑎
1
− 𝑎

0
𝑎
2


,

𝑎
0


< 1} .

(21)

3.3. Parameter Basin with respect to (𝑠
2
,𝑠
3
). Let 𝛼 = 0.36,

𝛽 = 0.2, 𝑎 = 6, 𝑏 = 2.5, 𝑐
1
= 0.1, 𝑐

2
= 0.3, and

𝑐
3
= 0.4; a parameter basin with respect to the parameters

(𝑠
2
, 𝑠
3
) is shown in Figure 2, in which the two red regions

correspond to Ω
𝐸
0

(𝑠
2
, 𝑠
3
) and Ω

𝐸
1

(𝑠
2
, 𝑠
3
), respectively, which

are asymptotically stable state, the blue region denotes stable
cycles of period two, the yellow region denotes chaotic state,
and the white region denotes divergence state, as shown in
Table 1.

The regionsΩ
𝐸
0

(𝑠
2
, 𝑠
3
) andΩ

𝐸
1

(𝑠
2
, 𝑠
3
) show that the price

game for irrigation water will reach the Nash equilibrium
by modulating limited times with random initial prices.
Obviously, 𝐸

0
= (𝑝

𝑥
0

, 𝑝
𝑦
0

, 𝑝
𝑧
0

) is a bounded equilibrium
point [46], which indicates that 𝑝

𝑥
0

= 0; that is, free supply of
irrigation water is an optimal strategy of firmX. But, in fact, it
will never happen in the real word.Thus, 𝐸

0
is not considered

in the paper. And 𝐸
1
= (𝑝

𝑥
1

, 𝑝
𝑦
1

, 𝑝
𝑧
1

) is a Nash equilibrium
point, which is practical and feasible. So, we will continue to
discuss 𝐸

1
in the sections below.

4. Codimension-Two Period-Doubling
(Flip) Bifurcation

There are many bifurcation theories [47–49] that can be used
into system (11), but the Kuznetsov bifurcation theory [50]
is more effective to discuss the bifurcation in system (11). In
what follows, we let 𝛼 = 0.36, 𝛽 = 0.2, 𝑎 = 6, 𝑏 = 2.5, 𝑐

1
= 0.1,

𝑐
2
= 0.3, and 𝑐

3
= 0.4. The system (11) can be rewritten as

follows:

𝑝
𝑥
𝑡+1

= 𝑝
𝑥
𝑡

+ 1.8𝑝
𝑥
𝑡

(1.25 − 𝑝
𝑥
𝑡

+ 0.11 (𝑝
𝑦
𝑡

+ 𝑝
𝑧
𝑡

)) ,

𝑝
𝑦
𝑡+1

= 0.8𝑝
𝑦
𝑡

+ 0.022 (𝑝
𝑥
𝑡

+ 𝑝
𝑧
𝑡

) − 0.1𝑠
2
+ 0.27,

𝑝
𝑧
𝑡+1

= 0.11 (𝑝
𝑥
𝑡

+ 𝑝
𝑦
𝑡

) − 0.5𝑠
3
+ 1.4.

(22)
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Figure 2: Parameter basin versus the parameters (𝑠
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).

Table 1: Legend of the color coding for Figure 2.

No. Polyarea Color State type Fixed point

1 OAF Yellow Strange attractor
2 ABEF Blue Period-twocycle
3 BCDE Red Stable
4 CGPD Red Stable
5 GHNP Blue Period-twocycle
6 HIJLMN Yellow Strange attractor
7 JKL White Divergence

𝐸1

𝐸1

𝐸1

𝐸0

𝐸0

𝐸0

𝐸0

Its Nash equilibrium 𝐸
1
= (1.096671926,1.186762016 −

0.4504504505𝑠
2
, 2.580653598 + 0.4504504505𝑠

2
). The Jaco-

bian matrix of system (22) at the point 𝐸
1
is

𝐴
𝑝𝑏
(𝐸
1
) = [

[

−0.974 0.217 0.217

0.022 0.8 0.022

0.11 0.11 0

]

]

, (23)

which has a simple real eigenvalue 𝜆
1
= −1 and other two

eigenvalues 𝜆
2
= 0.0195 and 𝜆

3
= 0.807. From Figures 2, 3,

and 4, one can find that a period-doubling bifurcation occurs
when a simple real eigenvalue 𝜆

1
= −1 crosses the boundary

𝐵𝐸 of the stability region Ω
𝐸
1

(𝑠
2
, 𝑠
3
). That is, the critical

parameters values s
2
and 𝑠

3
satisfy 𝑠

2
+ 𝑠
3
= 8.463662665 at

the boundary 𝐵𝐸 of the stability regionΩ
𝐸
1

(𝑠
2
, 𝑠
3
).

When the fixed point 𝐸
1
loses stability via a period-

doubling bifurcation point, the restriction of system (22) to
a one-dimensional center manifold at the critical parameter
value can be transformed to the normal form as follows:

𝑋
𝑛+1

= −𝑋
𝑛
+
1

6
𝑏
1
𝑋
3

𝑛
+ 𝑂 (𝑋

4

𝑛
) , 𝑋

𝑛
∈ R

1

, (24)

where 𝑏
1
̸= 0 is called normal form coefficient [50], which is

given by

𝑏
1
=
1

6
⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞) + 3𝐵 (𝑞, (𝐼

3
− 𝐴)

−1

𝐵 (𝑞
,
𝑞))⟩ , (25)
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Figure 3: The Lyapunov exponent spectrum (blue, green, and red)
and bifurcation of 𝑝

𝑥
(pinkish red) versus the parameters 𝑠

2
when

𝑠
3
= 0.4.

where 𝐼
3
is the unit 3 × 3 matrix, 𝐴𝑞 = −𝑞, 𝐴𝑇𝑝 = −𝑝,

𝐴 = 𝐴
𝑝𝑏
(𝐸
1
), ⟨𝑞, 𝑞⟩ = ⟨𝑝, 𝑞⟩ = 1, ⟨, ⟩ denotes the inner

product, and the multilinear functions 𝐵 and 𝐶 are defined,
respectively, by

𝐵
𝑖
(𝑥, 𝑦) =

𝑛

∑

𝑗,𝑘=1

𝜕
2

𝑋
𝑖
(𝜉, 0)

𝜕𝜉
𝑗
𝜕𝜉
𝑘

𝜉=0

𝑥
𝑗
𝑦
𝑘
, 𝑖 = 1, 2,

𝐶
𝑖
(𝑥, 𝑦, 𝑧) =

𝑛

∑

𝑗,𝑘,𝑙=1

𝜕
3

𝑋
𝑖
(𝜉, 0)

𝜕𝜉
𝑗
𝜕𝜉
𝑘
𝜕𝜉
𝑙

𝜉=0

𝑥
𝑗
𝑦
𝑘
𝑧
𝑙
, 𝑖 = 1, 2.

(26)

For the system (22),

𝑞 = (−0.994075101, 0.01082788553, 0.1081571934)
𝑇

,

𝑝 = (−0.9818661631, 0.1055591755, 0.2108811391)
𝑇

,

𝐵 (𝜉, 𝜂) = (

0.198 (𝜉
1
𝜂
2
+ 𝜉
1
𝜂
3
+ 𝜉
2
𝜂
1
+ 𝜉
3
𝜂
1
) − 3.6𝜉

1
𝜂
1

0

0

) ,

𝐶 (𝜉, 𝜂, 𝜁) = (

0

0

0

) .

(27)

One can obtain

𝐵 (𝑞, 𝑞) = (

−3.604306026

0

0

) ,

𝐵 (𝑞, (𝐼
3
− 𝐴)

−1

𝐵 (𝑞
,
𝑞)) = (

−6.669763092

0

0

) ,

𝐶 (𝑞, 𝑞, 𝑞) = (

0

0

0

) .

(28)
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Figure 4: The Lyapunov exponent spectrum (blue, green, and red)
and bifurcation of 𝑝

𝑥
(pinkish red) versus the parameters 𝑠

3
when

s
2
= 0.2.

So, the critical normal form coefficient

𝑏
1
= 3.274406 > 0, (29)

whichmeans that the period-doubling bifurcation at the fixed
point 𝐸

1
is supercritical.

5. Numerical Simulation

From Figures 3 and 4, it can be observed that there is a very
good agreement between the bifurcation diagram and the
Lyapunov exponent spectrum. What is more, it can be find
that the Lyapunov exponent spectrum and the bifurcation
diagrams in Figures 3 and 4 well coincide with the parameter
basin diagram in Figure 2, respectively. In this section, the
numerical bifurcation and chaos will be employed to verify
the above main results.

5.1. Numerical Bifurcation. In this subsection, based on
continuationmethods [51], wewill discuss numerical bifurca-
tions by using the MATLAB package Cl MatContM [39–43].

Firstly, we consider that𝐸
1
= (1.596211596, 1.596211596,

1.551166551) which is in the stable region BCDE of Figure 2.
We do a numerical continuation of 𝐸

1
with 𝑠

2
free, and 𝑠

3
=

0.4 fixed, as shown in Figure 5 and Table 2. Switchings at PD
points of the second and fourth iterates are given in Figure 6.

Secondly, from the fixed point 𝐸
1
= (1.596211596,

1.596211596, 1.551166551), we do a numerical continuation
of 𝐸

1
with 𝑠

2
= 0.2 fixed and 𝑠

3
free, as shown in Figure 7 and

Table 3.
In Tables 2 and 3, the first three entries of 𝑥 are the

coordinate values of the fixed point 𝐸
1
, and the last entry

of 𝑥 is the value of the free parameters 𝑠
2
or 𝑠

3
at the

corresponding bifurcation point. It is obvious that the normal
form coefficient of the PD point is 3.274406, confirming (29).
What is more, the detected bifurcation points in Figures 5
and 6 are in accordance with the statement in Figure 2. In
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0
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1.6
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𝑠2

𝑥

BP

Figure 5: Continuation of 𝐸
1
in (𝑠

2
,𝑥)-space.

addition, the label “PD” means that a period-doubling (flip)
bifurcation occurs. In Table 2, the critical point “2-cycle”
means that a stable 2-cycle is born when 𝑠

2
< 8.063663, “4-

cycle”means that a stable 4-cycle is bornwhen 𝑠
2
< 4.045975,

and so on.

5.2. Numerical Chaos. In the above section, the Wolf algo-
rithm [52] is employed to calculate the Lyapunov exponent
spectrum shown in Figures 3 and 4, by which one can find
chaos when a largest Lyapunov exponent is greater than 0. In
this section, we will use a reliable and efficient binary test for
the chaos (called “0-1 test”) to detect chaotic attractors.

5.2.1. The 0-1 Test Algorithm. The 0-1 test algorithm [33–38]
can be described as follows.

Consider a discrete set ofmeasurement data𝜙(𝑛) sampled
at times 𝑛 = 1, 2, 3, . . . , 𝑁, where𝑁 is the amount of the data.

Step 1. Choose a random number 𝑐 ∈ (𝜋/5, 4𝜋/5), and define
the following new coordinates (𝑝

𝑐
(𝑛), 𝑠

𝑐
(𝑛)):

𝑝
𝑐
(𝑛) =

𝑛

∑

𝑗=1

𝜙 (𝑗) cos (𝜃 (𝑗)) ,

𝑠
𝑐
(𝑛) =

𝑛

∑

𝑗=1

𝜙 (𝑗) sin (𝜃 (𝑗)) ,

(30)

where

𝜃 (𝑗) = 𝑗𝑐 +

𝑗

∑

𝑖=1

𝜙 (𝑗) , 𝑗 = 1, 2, 3, . . . , 𝑛. (31)

Step 2. Define the mean square displacement 𝑀
𝑐
(𝑛) as

follows:

𝑀
𝑐
(𝑛) = lim

𝑁→∞

1

𝑁

𝑁

∑

𝑗=1

(𝑝
𝑐
(𝑗 + 𝑛) − 𝑝

𝑐
(𝑗))

2

+ (𝑠
𝑐
(𝑗 + 𝑛) − 𝑠

𝑐
(𝑗))

2

, 𝑛 ∈ [1,
𝑁

10
] .

(32)
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Table 2: Numerical continuation of 𝐸
1
with control parameter 𝑠

2
as shown in Figure 5.

No. Label 𝑥 Normal form coefficient Critical point
1 PD (1.096672 −2.445180 1.051627 8.063663) 3.274406𝑒 + 00 2-cycle
2 PD (0.830878 −0.392361 1.333279 4.045975) 1.868612𝑒 + 01 4-cycle
3 PD (1.612503 −0.400875 1.248237 4.045975) 9.352670𝑒 + 01 4-cycle
4 PD (0.702644 0.038991 1.393175 3.208909) 5.559248𝑒 + 02 8-cycle
5 PD (1.019443 0.033503 1.378263 3.208909) 1.160791𝑒 + 02 8-cycle
6 PD (1.594166 0.026410 1.281580 3.208909) 5.498331𝑒 + 02 8-cycle
7 PD (1.727479 0.028661 1.315824 3.208909) 3.265258𝑒 + 03 8-cycle

Table 3: Numerical continuation of 𝐸
1
with control parameter 𝑠

3
as shown in Figure 6.

No. Label 𝑥 Normal form coefficient Critical point
1 PD (1.096672 1.096672 −2.490564 8.263663) 3.274406𝑒 + 00 2-cycle
2 PD (0.830878 1.340060 −0.399142 4.245975) 1.868612𝑒 + 01 4-cycle
3 PD (1.612503 1.331546 −0.484184 4.245975) 9.352670𝑒 + 01 4-cycle
4 PD (0.702644 1.394355 0.037811 3.408909) 5.559248𝑒 + 02 8-cycle
5 PD (1.019443 1.388868 0.022899 3.408909) 1.160791𝑒 + 02 8-cycle
6 PD (1.594166 1.381774 −0.073784 3.408909) 5.498331𝑒 + 02 8-cycle
7 PD (1.727479 1.384026 −0.039540 3.408909) 3.265258𝑒 + 03 8-cycle

Step 3. Define themodifiedmean square displacement𝐷
𝑐
(𝑛)

as follows:

𝐷
𝑐
(𝑛) = 𝑀

𝑐
(𝑛) − ( lim

𝑁→∞

1

𝑁

𝑁

∑

𝑗=1

𝜙 (𝑗))

2

1 − cos 𝑛𝑐
1 − cos 𝑐

, (33)

Step 4. Define the median value of correlation coefficient 𝐾
as follows:

𝐾 = median (𝐾
𝑐
) , (34)

where

𝐾
𝑐
=

cov (𝜉, Δ)
√var (𝜉) var (Δ)

∈ [−1, 1] , (35)

in which 𝜉 = (1, 2, 3, . . . , 𝑛cut), Δ = (𝐷
𝑐
(1),𝐷

𝑐
(2),. . .,

𝐷
𝑐
(𝑛cut)), 𝑛cut = round(𝑁/10), and the covariance and

variance are defined with vectors 𝑥, 𝑦 of length 𝑞 as follows:

cov (𝑥, 𝑦) = 1
𝑞

𝑞

∑

𝑗=1

(𝑥 (𝑗) − 𝑥) (𝑦 (𝑗) − 𝑦) ,

𝑥 =
1

𝑞

𝑞

∑

𝑗=1

𝑥 (𝑗) , var (𝑥) = cov (𝑥, 𝑥) .

(36)

Step 5. Interpret the outputs as follows:

(1) 𝐾 ≈ 0 indicates that the underlying dynamics is
regular (i.e., periodic or quasiperiodic), whereas 𝐾 ≈

1 indicates that the underlying dynamics is chaotic;
(2) bounded trajectories in the (𝑝, 𝑠)-plane imply that

the underlying dynamics is regular, whereas the
Brownian-like (unbounded) trajectories imply that
the underlying dynamics is chaotic.
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Figure 6: Curves of fixed points of the 1st, 2nd, and 4th iterates.

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

𝑠3

𝑥
PD 1

PD 2
PD 4

PD 5

PD 7

PD 6
PD 3

BP

Figure 7: Continuation of 𝐸
1
in (𝑠

3
,𝑥)-space.

5.2.2. Application. We use the data set 𝑝
𝑥
of the system (22)

to implement the 0-1 test with 𝑠
2
and 𝑠

2
, respectively.The new
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Figure 11: 𝐾 and the largest Lyapunov exponent versus 𝑠
2
∈ [0, 25]

and 𝑠
3
= 0.4.

0 50 100

0

10

20

30

40

50

−40

−30

−20

−10

−50

𝑠

𝑝

Figure 12: Plots versus 𝑠
2
= 0.1 and 𝑠

3
= 0.4 in new coordinates

(𝑝, 𝑠) space.

1.4
1.45

1.5
1.55

1.6
1.65

0
1

2
3

1.58

1.6

1.62

1.64

1.66

1.68

𝑝
𝑦

𝑃
𝑥

𝑃𝑧

Figure 13: Plots versus 𝑠
2
= 0.1 and 𝑠

3
= 0.4 in the original state

space.



Discrete Dynamics in Nature and Society 9

coordinates variables (𝑝, 𝑠) are shown in Figures 8, 9, 10, 11, 12,
and 13.

When 𝑠
2
= 0.2 is fixed and 𝑠

3
varies from 0 to 25 in

increments of 0.05, one can get the diagram of 𝐾 value as
shown in Figure 8, which is consistent with the numerical
simulation in the above sections. If 𝑠

3
= 1, then𝐾 ≈ 1, which

means that the system is chaotic as shown in Figures 9 and 10.
Similarly, fixing 𝑠

3
= 0.4 and varying 𝑠

2
from 0 to 25 in

increments of 0.05, one can get the diagram of 𝐾 value as
shown in Figure 11, which well coincides with the numerical
simulation in the above sections. If 𝑠

2
= 0.1, then 𝐾 ≈ 1,

which means that the system is chaotic as shown in Figures
12 and 13.

From Figures 8 and 11, it can be observed that there is a
very good agreement between the largest Lyapunov exponent
and the median value of correlation coefficient 𝐾.

6. Conclusion

In this paper, we have proposed a nonlinear discrete price
gamemodel of irrigation water in a coastal irrigation district.
Its stability and codimension-two period-doubling (flip)
bifurcation are emphatically discussed. Based on continu-
ation methods, its numerical bifurcations are analyzed by
using the MATLAB package Cl MatContM. Its numerical
chaos is shown by means of the 0-1 test algorithm.

Acknowledgments

Thiswork is supported partly by the Excellent Young Scientist
Foundation of Shandong Province (Grant no. BS2011SF018),
the National Social Science Foundation of China (Grant no.
12BJY103), theHumanities and Social Sciences Foundation of
theMinistry of Education of China (Grant no. 11YJCZH200),
and theNationalNatural Science Foundation ofChina (Grant
no. 71272148).

References

[1] D. Merrey, R. Meinzen-Dick, P. Mollinga, and E. Karar, “Policy
and institutional reform processes for sustainable agricultural
water management: the art of the possible,” in Water for Food
Water for Life: A Comprehensive Assessment of Water Manage-
ment in Agriculture, D. Molden, Ed., pp. 193–232, Earthscan,
London, UK, 2007.

[2] R. Meinzen-Dick, “Beyond panaceas in water institutions,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 104, no. 39, pp. 15200–15205, 2007.

[3] W. Shaw, Water Resource Economics And Policy: An Introduc-
tion, Edward Elgar, Cheltenham, UK, 2005.

[4] R. Griffin, Water Resource Economics: The Analysis of Scarcity,
Policies, and Projects, MIT Press, Cambridge, Mass, USA, 2006.

[5] R. Johansson, Y. Tsur, T. Roe, R. Doukkali, and A. Dinar,
“Pricing irrigationwater: a reviewof theory and practice,”Water
Policy, vol. 4, no. 2, pp. 173–199, 2002.

[6] K. Schoengold, “Irrigation water pricing: the gap between the-
ory and practice,” American Journal of Agricultural Economics,
vol. 92, no. 5, pp. 1497–1498, 2010.

[7] B. Xin, J. Ma, and Q. Gao, “Complex dynamics of an adnascent-
type gamemodel,”Discrete Dynamics in Nature and Society, vol.
2008, Article ID 467972, 12 pages, 2008.

[8] B. Xin and T. Chen, “Master-slave bertrand game model,”
Economic Modelling, vol. 28, no. 4, pp. 1864–1870, 2011.

[9] W. Ji and D. Xu, “Complexity of discrete investment competi-
tion model based on heterogeneous participants,” International
Journal of Computer Mathematics, vol. 89, no. 4, pp. 492–498,
2012.

[10] T. Puu, “Chaos in business cycles,” Chaos, Solitons and Fractals,
vol. 1, no. 5, pp. 457–473, 1991.

[11] G. Bischi, A. Naimzada, and L. Sbragia, “Oligopoly games
with local monopolistic approximation,” Journal of Economic
Behavior & Organization, vol. 62, no. 3, pp. 371–388, 2007.

[12] H. N. Agiza and A. A. Elsadany, “Nonlinear dynamics in the
Cournot duopoly game with heterogeneous players,” Physica A,
vol. 320, no. 1–4, pp. 512–524, 2003.

[13] J. Wouter and H. Den, “The importance of the number of dif-
ferent agents in a heterogeneous asset-pricingmodel,” Journal of
Economic Dynamics & Control, vol. 25, no. 5, pp. 721–746, 2001.

[14] A. Elsadany, “Competition analysis of a triopoly game with
bounded rationality,” Chaos Solitons & Fractals, vol. 45, no. 11,
pp. 1343–1348, 2012.

[15] W. Ji, “Chaos and control of game model based on het-
erogeneous expectations in electric power triopoly,” Discrete
Dynamics in Nature and Society, vol. 2009, Article ID 469564, 8
pages, 2009.

[16] Y. Son, R. Baldick, K. Lee, and S. Siddiqi, “Short-term electricity
market auction game analysis: uniform and pay-as-bid pricing,”
IEEE Transactions on Power Systems, vol. 19, pp. 1990–1998,
2004.

[17] C. C. Skoulidas, C. D. Vournas, and G. P. Papavassilopoulos,
“An adaptive learning gamemodel for interacting electric power
markets,” Infor, vol. 48, no. 4, pp. 261–266, 2010.

[18] L. Mu, P. Liu, Y. Li, and J. Zhang, “Complexity of a real estate
game model with a nonlinear demand function,” International
Journal of Bifurcation and Chaos, vol. 21, no. 11, pp. 3171–3179,
2011.

[19] L. Mu, J. Ma, and L. Chen, “A 3-dimensional discrete model of
housing price and its inherent complexity analysis,” Journal of
Systems Science & Complexity, vol. 22, no. 3, pp. 415–421, 2009.

[20] X. Liu, X. Liang, and B. Tang, “Minority game and anomalies in
financial markets,” Physica A, vol. 333, pp. 343–352, 2004.

[21] K. Gkonis and H. Psaraftis, “The LNG market: a game the-
oretic approach to competition in LNG shipping,” Maritime
Economics & Logistics, vol. 11, pp. 227–246, 2009.

[22] Z. Sun and J.Ma, “Complexity of triopoly price game inChinese
cold rolled steel market,” Nonlinear Dynamics, vol. 67, no. 3, pp.
2001–2008, 2012.

[23] S. Sugawara and Y. Omori, “Duopoly in the Japanese airline
market: bayesian estimation for the entry game,” The Japanese
Economic Review, vol. 63, no. 3, pp. 310–332, 2012.

[24] S. Chung, R. Weaver, and T. Friesz, “Oligopolies in pollution
permit markets: a dynamic game approach,” International
Journal of Production Economics, vol. 140, no. 1, pp. 48–56, 2012.

[25] J. Ma and J. Zhang, “Price game and chaos control among
three oligarchs with dierent rationalities in property insurance
market,” Chaos, vol. 22, no. 4, Article ID 043120, 2012.

[26] F. Tramontana and A. E. A. Elsadany, “Heterogeneous triopoly
game with isoelastic demand function,” Nonlinear Dynamics,
vol. 68, no. 1-2, pp. 187–193, 2012.



10 Discrete Dynamics in Nature and Society

[27] J. Du, T. Huang, and Z. Sheng, “Analysis of decision-making in
economic chaos control,” Nonlinear Analysis, vol. 10, no. 4, pp.
2493–2501, 2009.

[28] W. Huang, “The long-run benefits of chaos to oligopolistic
firms,” Journal of Economic Dynamics & Control, vol. 32, no. 4,
pp. 1332–1355, 2008.

[29] J. Zhang, Q.Da, andY.Wang, “Thedynamics of Bertrandmodel
with bounded rationality,” Chaos, Solitons and Fractals, vol. 39,
no. 5, pp. 2048–2055, 2009.

[30] M. Kopel, “Simple and complex adjustment dynamics in
Cournot duopoly models,” Chaos, Solitons and Fractals, vol. 7,
no. 12, pp. 2031–2048, 1996.

[31] F. Tramontana, L. Gardini, and T. Puu, “Cournot duopoly when
the competitors operate multiple production plants,” Journal of
Economic Dynamics & Control, vol. 33, no. 1, pp. 250–265, 2009.

[32] F. Tramontana, “Heterogeneous duopoly with isoelastic
demand function,” Economic Modelling, vol. 27, no. 1, pp.
350–357, 2010.

[33] G. A. Gottwald and I. Melbourne, “On the implementation of
the 0-1 test for chaos,” SIAM Journal on Applied Dynamical
Systems, vol. 8, no. 1, pp. 129–145, 2009.

[34] G. A. Gottwald and I.Melbourne, “On the validity of the 0-1 test
for chaos,” Nonlinearity, vol. 22, no. 6, pp. 1367–1382, 2009.

[35] G. Gottwald and I. Melbourne, “Comment on Reliability of the
0-1 test for chaos,” Physical Review E, vol. 77, no. 2, part 2, 3
pages, 2008.

[36] I. Falconer, G. A. Gottwald, I. Melbourne, and K. Wormnes,
“Application of the 0-1 test for chaos to experimental data,”
SIAM Journal on Applied Dynamical Systems, vol. 6, no. 2, pp.
395–402, 2007.

[37] K. Sun, X. Liu, and C. Zhu, “The 0-1 test algorithm for chaos
and its applications,” Chinese Physics B, vol. 19, no. 11, Article ID
110510, 2010.

[38] L. Yuan and Q. Yang, “A proof for the existence of chaos in dif-
fusively coupled map lattices with open boundary conditions,”
Discrete Dynamics in Nature and Society, vol. 2011, Article ID
174376, 16 pages, 2011.

[39] W. Govaerts and A. Y. Kuznetsov, “Matcont: a Matlab software
project for the numerical continuation and bifurcation study
of continuous and discrete parameterized dynamical systems,”
http://sourceforge.net.

[40] W. Govaerts, R. K. Ghaziani, Yu. A. Kuznetsov, and H. G. E.
Meijer, “Numerical methods for two-parameter local bifurca-
tion analysis of maps,” SIAM Journal on Scientific Computing,
vol. 29, no. 6, pp. 2644–2667, 2007.

[41] W. Govaerts and R. K. Ghaziani, “Stable cycles in a Cournot
duopoly model of Kopel,” Journal of Computational and Applied
Mathematics, vol. 218, no. 2, pp. 247–258, 2008.

[42] R. K. Ghaziani, W. Govaerts, and C. Sonck, “Resonance
and bifurcation in a discrete-time predator-prey system with
Holling functional response,” Nonlinear Analysis, vol. 13, no. 3,
pp. 1451–1465, 2012.

[43] R. K. Ghaziani, W. Govaerts, and C. Sonck, “Codimension-two
bifurcations of fixed points in a class of discrete prey-predator
systems,” Discrete Dynamics in Nature and Society, vol. 2011,
Article ID 862494, 27 pages, 2011.

[44] R.Gibbons,APrimer inGameTheory, Simon and Schuster,New
York, NY, USA, 1992.

[45] A. Dixit, “Comparative statics for oligopoly,” International
Economic Review, vol. 27, no. 1, pp. 107–122, 1986.

[46] G. Bischi and M. Kopel, “Equilibrium selection in a nonlinear
duopoly game with adaptive expectations,” Journal of Economic
Behavior & Organization, vol. 46, pp. 73–100, 2001.

[47] G. Wen, “Criterion to identify Hopf bifurcations in maps of
arbitrary dimension,” Physical Review E, vol. 72, no. 2, Article
ID 026201, p. 4, 2005.

[48] G.Wen,D. Xu, andX.Han, “On creation ofHopf bifurcations in
discrete-time nonlinear systems,” Chaos, vol. 12, no. 2, pp. 350–
355, 2002.

[49] Q. Lu, Bifurcation and Singularity, Shanghai Scientific and
Technological Education Publishing House, Shanghai, China,
1995.

[50] Y. A. Kuznetsov, Elements of Applied BifurcationTheory, vol. 112
ofAppliedMathematical Sciences, Springer,NewYork,NY,USA,
2nd edition, 1998.

[51] E. L. Allgower and K. Georg, Numerical Continuation Meth-
ods, vol. 13 of Springer Series in Computational Mathematics,
Springer, Berlin, Germany, 1990.

[52] A.Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determin-
ing Lyapunov exponents from a time series,” Physica D, vol. 16,
no. 3, pp. 285–317, 1985.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


