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Urban society is undergoing as profound a spatial transformation as that associated with the
emergence of the industrial city two centuries ago. To describe and measure this transition,
we introduce a new theory based on the concept that large-scale, complex systems composed
of many interacting elements, show a surprising degree of resilience to change, holding
themselves at critical levels for long periods until conditions emerge which move the system,
often abruptly, to a new threshold. This theory is called ’self-organized criticality’; it is
consistent with systems in which global patterns emerge from local action which is the
hallmark of self-organization, and it is consistent with developments in system dynamics and
their morphology which find expression in fractal geometry and weak chaos theory. We
illustrate the theory using a unique space-time series of urban development for Buffalo,
Western New York, which contains the locations of over one quarter of a million sites coded
by their year of construction and dating back to 1773, some 60 years before the city began to
develop. We measure the emergence and growth of the city using urban density functions
from which measures of fractal dimension are used to construct growth paths of the way the
city has grown to fill its region. These phase portraits suggest the existence of transitions
between the frontier, the settled agricultural region, the centralized industrial city and the
decentralized postindustrial city, and our analysis reveals that Buffalo has maintained itself
at a critical threshold since the emergence of the automobile city some 70 years ago. Our
implied speculation is: how long will this kind of urban form be maintained in the face of
seemingly unstoppable technological change?

Keywords." Urban growth, Urban density, Self-organized criticality, Phase transitions,
Fractal dimension, Buffalo, New York

THE URBAN TRANSITION

Paul Kennedy (1993) in his book Preparing for the
Twentyfirst Century suggests that during the next 25
years, the rate of world urbanization will be greater
than at any time in previous history and probably at
any time thereafter. By 2025, the population which

lives in cities will have increased from 37 percent at

present to close on 60 percent. New cities will not be
formed around manufacturing, nor around services
in the conventional sense, but around the con-
fluence of global flows of capital and labor, with a
somewhat less local economic rationale, at least
in the developing world, from that traditionally

Corresponding author. E-mail: mbatty@ucl.ac.uk.

109



110 M. BATTY AND Y. XIE

ascribed to the developed. Cities in developed
societies will also lose their traditional economic
focus around their historical cores as they continue
to spread and when entire societies become urba-
nized in this fashion, the very concept ofthe city will
have to be redefined. What physical form the urban
future will take is entirely unclear. It may be similar
to what already exists but it could equally be very
different for there is little sense, as yet, as to how
the deep-seated waves of technological change in
computation and communication will play them-
selves out.

These trends suggest that we are about to cross
some sort of threshold as we pass from cities
whose physical form is still reminiscent of indus-
trial society based on limited physical mobility and
abundant urban space, to cities where opportunities
for electronic mobility are vast but where available
living space will be scarcer. The transition from
agricultural to industrial society heralded in an age
where cities could be seen as simply larger versions
of the market towns and villages from which they
grew. But this was short-lived for the arrival of
the automobile produced a much more dispersed
form which is more characteristic of what, perhaps,
we should now refer to as the industrial city. What
will follow is unclear, but apart from these initial
thoughts, we will not try to answer this. Here we will
be much more concerned with how to formally
describe and measure the potential transition,
and we will do this by attempting to measure the
earlier transitions from data which refer to the
way industrial cities have grown during the last
200 years.
We will introduce a series of ideas from con-

temporary systems theory which provide a con-
sistent rationale for integrating the dynamics of
systems with their form and function. Per Bak
and his colleagues have devised a theory for large-
scale, complex systems which suggests that as such
systems evolve, they reach a critical threshold
embodying a fragile equilibrium which is main-
tained through a process of self-organization (Bak
et al., 1988). This is a theory of weak chaos which
they argue has very wide applicability to many

natural and artificial systems whose dynamics
consists of the action of local agents which generate
highly ordered global patterns. They argue that the
spatial and temporal ’fingerprints’ or ’signatures’ of
such systems have no characteristic length scales,
and are therefore fractal. Self-organized criticality,
as the theory has been called, is being applied to
a diverse range of systems; the most persuasive
examples involve earthquakes, forest fires, and
ecologies, but the theory is finding favor in areas
as different as the origins and evolution of life (Bak
and Sneppen, 1993), and the dynamics of the stock
market (Krugman, 1994). In short, self-organized
criticality is a good candidate for explaining the
evolutionary dynamics that can lead to any systems
whose temporal and spatial characteristics appear
fractal (Bak and Paczuski, 1993).

It is this applicability to fractal systems thatmakes
the theory relevant to urban form and structure, to
the morphology of cities. During the last decade,
fractal ideas have been applied to urban form,
exploiting the evident self-similarity which exists
within and between cities through their various hier-
archical orders such as central place theory, trans-
portation networks, and the scaling laws which are
consistent with urban densities (Batty and Longley,
1994; Frankhauser, 1994; Benguigui, 1992). None of
this is very surprising given the extensive interest
in physical form which fractal theory and computer
graphics havejointly stimulated. And many ofthese
ideas concerning cities were already buried deep
within urban and regional theory, ready to be
rediscovered and extended as soon as interest in
linking the physical form of the city to its socio-
economic functioning revived.
The prospect now exists, for the first time, of

developing a coherent and consistent dynamics of
urban evolution which is built around the current
fascination with the highly decentralized complex
systems whose operation is at the local level, and
which generates urban forms which are consistent
with the fractal patterns that have been widely
observed for cities. The task we set ourselves in this
paper is to show how this might be approached, to
provide a simple test of the theory’s consistency,
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and to apply these ideas to the major problem of
measuring the urban transition to a postindustrial
world. We urgently need to think about the future
evolution of urban form in the context of the shift
from cities based on energy and industry to those
based on information and services. The emergence
of ’world cities’ and ’edge cities’ are two features of
this change and the kinds of dynamic theories that
we will allude to here have, at least in principle, the
ability to make some sense of this type of phase
transition.

There is another relevant theme. Digital data are
becoming available for cities which record the
detailed location and attributes of individual sites
or land parcels, and from such sources, the urban
morphology of cities can be measured and visua-
lized across many scales. An important attribute of
such data, largely due to the fact that it is collected
for taxation purposes, is the age at which construc-
tion on the parcel first took place. When combined
with data from other sources, this is providing
varieties of space-time series which have rarely
been available hitherto. Theories which purport to
link local to global dynamics in space-time such as

self-organized criticality, now have a real chance of
empirical verification, at least in some part.
We will first introduce the theory, arguing that

systems whose morphologies display some stability
through time are likely to lie at a critical threshold,
which once disturbed, can generate abrupt transi-
tions to new regimes. The fingerprint of criticality
used here will be a measure of the fractal dimension
which, in the case of cities, is a measure of the rate
and extent to which the city fills its available space
through urban growth. There are other measures of
criticality although for real systems, these are hard
to observe from data and thus our test is necessarily
a partial one. We present the measures of space-
filling and urban density next, and then review
the data base which we use to test the theory.
This is based on several attributes at the scale of
land parcels in Buffalo, Western New York State,
amongst which the location and year of construc-
tion of all taxable properties in the metropolitan
area in 1989, have been recorded. We can construe

an appropriate space-time series from this and thus
measure the way the fractal dimension of the city
has changed over the last 200 years, from the time
when the agricultural frontier was first settled,
through the early growth of the industrial city as an

entrepot within the Great Lakes economic system,
until the emergence of the automobile city during
the last 70 years.

In later sections, we estimate and measure

various dimensions and densities associated with
this growth, and then discuss the extent to which
these results are consistent with the idea of self-
organized criticality. As we are at pains to imply,
our conclusions are tentative but they do suggest
that the city has reached a critical point. Our
speculation for Buffalo, as an archetype for all
emergent postindustrial cities, must be that a

major phase transition from the current urban
regime to one which is consistent with a new

technological era is increasingly likely. Our analysis
for Buffalo does not suggest such an imminent
change although we argue that elsewhere, in more
vibrant urban economies, such a transition might
already be detectable through the methods we
introduce here.

SELF-ORGANIZED CRITICALITY

Change occurs in cities through the addition of
new activities such as births and immigration, the
deletion of activities through deaths and emigra-
tion, but with most activities changing the pattern
of development through processes of redistribu-
tion. Whenever an activity changes its location, this
sets off a chain reaction in which other activities are
motivated to move as economic agents which
compose such activities readjust their locations to
the changed circumstances. The causes of such
reactions need not concern us here. They may be
due to life-cycle effects, preferences concerning
segregation and clustering, the changing economic
accessibility of various parts of the city, the supply
of new development sites or the demolition of old.
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The fact that the city continues to exist in much the
same form while these myriad of reactions play
themselves out within its overall fabric means
that such reactions do not continue indefinitely.
More importantly, they are consistent with main-

taining the existing organizational morphology of
the city.

Self-organized criticality is a theory built
around these interaction effects. In essence, the
theory postulates that when activities initiate moves
in time and space, the chain reactions which result
from such moves, follow distributions in time and
space which occur on all scales. In other words,
these reactions can range from simply one isolated
move to moves which involve all activities in the
system; there is no characteristic length of chain
in duration, no characteristic number or size of
activities involved, and no characteristic distance
over which the reaction takes place. In fact,
experiments with theoretical systems suggest that
the duration and size of activities involved in such
reactions follow power laws. The key finding for
such systems is that systems evolve to a form which
embodies the critical state in which these reactions
continually occur in such a manner that the critical
state of the system is preserved.
Bak et al. (1989) say:

"The canonical example of self-organized criticality is a
’pile of sand’. Imagine building up the pile by slowly
adding particles. As the pile grows, there will be bigger
and bigger avalanches. Eventually a statistical stationary
state is reached in which avalanches of all sizes occur, that
is the correlation length is infinite. Thus in analogy
with equilibrium thermodynamical systems, the state is
’critical’. It is self-organized because no fine-tuning of
external fields was needed to take the system to the critical
state: the criticality is unavoidable."

In the sand pile example which immediately
generalizes to related geophysical phenomena such
as earthquakes, river flow systems, and volcanic
eruptions (Turcotte, 1992; Rinaldo et al., 1993), the
critical state of the pile is its slope. Once this slope
is reached, dropping an additional grain of sand
on the top of the pile will cause an avalanche, thus
changing the critical slopes elsewhere in the pile.
Further grains will cause more avalanches, all of

which will be of different sizes and durations as the
pile continues to build back up to its critical value.
From experiments, the distributions of avalanches
over time that is, the number of avalanches of
duration time t, sometimes called lifetimes is

given as n(t) -; with the exponent/3 1.0 while
distribution over size the number of avalanches of
size s is given as n(s)s with the exponent- 0.4. As size varies with time, these exponents
can be simply related, the precise relation depend-
ing upon the physical configuration of the system
under study. The language and methods of the
theory are derived from statistical physics and
related to the ideas of phase transitions which make
their appearance in fractal growth (Barabasi and
Stanley, 1995) and percolation theory (Stauffer and
Aharony, 1992).

This might seem far removed from urban develop-
ment although the mechanisms of change which
drive the dynamics appear similar. The problem
however in applying this theory to large-scale
systems which are in some sense remote from
physical experimentation is assembling data on

the dynamics; in most applications to date, such
testing has been with computer simulations of what
are essentially idealized systems. Two applications
suggest quite close parallels with urban systems.
The first is based on an analysis of the ’Game of
Life’, a simple cellular automata which is usually
played out on a two-dimensional grid in which cells
become ’live’ if they are surrounded by three live

neighbors, or ’die’ if they are surrounded by more

than three (overcrowding) or less than two (isola-
tion). Bak et al. (1989), and Alstrom and Leao
(1994) show that the distributions n(t) and n(s),
which are formed from the chain reactions when
a dead cell is made live, follow power laws with

exponents / 1.4 and - 1.6. This implies that
’Life’ is a model which generates self-organized
criticality. More important from our perspective is
that the number of active sites at distance r from the
original site, which are set-off in the chain reaction,
scale as n(r) rD-1 where D is a fractal dimension
computed as approximately 1.7. This is the finding
that links this type of dynamics to the theory of the
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fractal city in which exponents of this value have
been widely observed (Batty and Longley, 1994;
Frankhauser, 1994).

Fractal growth models based on simple diffusion
mechanisms such as diffusion-limited aggregation
(DLA) provide very good analogs for city growth in
which the growth seed is the central business district

(CBD). These models have been widely researched
in non-equilibrium physics and the general con-
sensus is that their fractal dimension is approxi-
mately 1.7 in two-dimensional systems. Batty (1991)
has shown how this model can be used to simulate
urban growth and how robust the value of this
dimension is as the size and shape of the space
within which the city is grown change. Similar
models have been used for urban transport net-
works (Benguigui, 1992). A more direct link be-
tween fractal growth models and self-organized
criticality has been forged by Alstrom (1990) who
using branching theory provides an analysis of
the chain reactions contained in the dendrites
which make up such fractal growth. His model in
fact suggests that the fractal dimension of such
growth is D In 3/ln 2 1.585 while further experi-
mental evidence by Alstrom et al. (1990) suggests
that both DLA models and those based on inva-
sion percolation can be conceived of entirely as
sets of chains, the growth they simulate thus being
consistent with self-organized criticality.

Comprehensive testing of this theory depends
upon observations of the dynamics at the most
micro level in terms of chain reactions in time and
space as well as at the macro level in terms of fractal
patterns that are generated. For social systems,
such micro level information on chains is almost
impossible to collect. It does exist in some housing
market research, and it appears consistent with
White’s (1970) labor market vacancy chains and
Schelling’s (1978) models of residential segregation
and ordering which are based on reactive diffusions
of the kind implied by self-organized criticality. But
in general, it is unlikely that data sets can be easily
assembled from which the lifetime and size dis-
tributions, n(t) and n(s), could be estimated. It is
much more likely that the macro patterns consistent

with these dynamics can be measured. There is now
substantial work on measuring the fractal dimen-
sion associated with the population density pro-
files of different cities (Batty and Longley, 1994;
Frankhauser, 1994), and if this data were available
through time, then it would be possible to test
whether or not these patterns were consistent with
self-organized criticality. This of course would be a

very partial test of this theory but it would provide
some initial support. In fact, very little urban theory
ever gets tested in a comprehensive sense for most
is only validated at the occasional points where it

touches the real world.
Our task then in this paper is very clear. If we

can show that the fractal dimension of real cities is

comparatively stable over long periods of time, we
will have some confidence in thinking that the
theory of self-organized criticality has some rele-
vance to the way cities develop. This will force us to

consider other implications of the theory and other
ways in which it might be tested. It will also force us
to think more incisively about the ways in which
growing systems manifest such criticality and how
such criticality itself might change as technologies
which govern behavior in time and space change.
In short, the theory looks promising and some
bold claims have been made by its proponents.
Bak and Chen (1991) say: "To our knowledge, self-
organized criticality is the only model or mathe-
matical description that has led to a holistic theory
for dynamic systems".

URBAN DENSITY DISTRIBUTIONS AS
FRACTAL GROWTH

In western cities, population fills the space around
the origin of urban growth, typically the CBD,
according to an inverse distance relation reflected in
the power function

p(r) r

where p(r) is the density of population or develop-
ment at distance r from the origin (CBD), and c is a
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parameter of the distribution controlling the rate at
which density declines; strictly this is an elasticity.
The area associated with the distance r from the
CBD is A(r)= 7rr

2 and thus from Eq. (1), the popu-
lation n(r) associated with an increment of area
defined as dA(r)= 27rr is

n(r) p(r) dA(r) r1-C. (2)

We also need to compute the accumulation of
densities the cumulative population N(R) up
to distance R from the center whose origin is
arbitrarily set at r 1. Then from Eq. (1) or Eq. (2)

N(R) n(r) dr p(r)27rr dr

R2- RD,

the cumulative density P(R) thus being defined as

P(R) N(R) R_c"
A(R) (4)

evidence that 1.6<D < 1.9 (Batty and Longley,
1994).
Our test for self-organized criticality is quite

straightforward. We will compute the fractal dimen-
sion D from the Buffalo data for all the years in the
space-time series, using several methods of estima-
tion which we discuss in the Appendix to this paper.
Estimating fractal dimension has the same problems
as other methods of parameter estimation in that
different methods can lead to widely varying values.
We will postpone any further discussion of these
problems until we have explored the data set but it
is important to note that density functions detect
two related but often competing aspects of spatial
pattern the degree to which space is filled as well
as the rate at which it is filled. Different methods
emphasize these two features in different ways.

THE GROWTH OF METROPOLITAN
BUFFALO

We will use these four relations in Eqs. (1)-(4)
as our basic measures of urban spatial structure
throughout this paper. Note that the variable r
measures the distance associated with the density
or population at a point r and the variable R, the
distance associated with the density or population
accumulated up to the point R.
We use a power function rather than a negative

exponential because as we argue elsewhere, this
function is scale-invariant which we believe is a nec-

essary condition for the analysis of systems which
are growing in size and scale. Such functions are

consistent with the notion that the morphology and
density of the city is fractal, self-similar over several
orders of scale, hence applicable at different scales.
The density parameter c is thus directly related to the
fractal dimension D (= 2 c) which is a measure of
the extent to which two-dimensional space is filled by
the city. Ifall space is filled, D 2 and c 0 (uniform
density), while if only a line across the space is filled
then D and c 1. There are many arguments
which we present elsewhere that < D < 2 and
0 < c < 1, and there is now considerable empirical

Our space-time series contains all developed sites
by age and location which existed at the end of
March, 1989, in the Buffalo region. The data source
is from the New York State Equalization and
Assessment Board which monitors local property
taxation, and which is available digitally as raw
data records and in ARC-INFO coverages. These
types of file are updated yearly and they contain
extensive details of the physical condition and size
of all taxable properties. In 1989, there were some

336,334 records in the Erie County file within
which the Buffalo metropolitan area is situated.
Erie County is a reasonably good approximation
to Buffalo’s urban field although development to
the north in Niagara County and some very recent
suburban development to the east are excluded.
However of these records, only 250,455 are usable
for the remainder, mainly to the south and south
east of the urban area and on the southern border
of the region, have not been coded by year of con-
struction. We have used various methods to appro-
ximate this missing data, mainly remote sensing,
although we will use the original not modified data
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set here. We are however confident that the missing
data do not invalidate, in any way, the conclusions
that we are able to draw here (Batty and Howes,
1996). Clearly, this data set only contains a history
of the city from the vantage point of 1989, and given
the constraints on missing data and the fixed
regional space, all our subsequent analysis is neces-

sarily tentative.
Density models have been traditionally based on

population enumerated within large areas such as
blocks or tracts, rather than on individual sites for
which the actual location of each is known. Thus
our densities are densities of development rather
than population. The cumulative space-time series
aggregated to 30 year intervals from 1820 and

represented at 100m grid square resolution is
illustrated in Fig. from which the difficulty of
plotting many thousands of points to give a

complete impression of historical development is
obvious. The entire data are plotted at a larger
scale, but with the same resolution, in Fig. 2 where
the grey tones code development in 1989 and the
underlying topography are illustrated. The missing
data are clearly visible although as it is an arbitrary
slice through the chronology of the city’s develop-
ment, it is easy to show that its exclusion does not
distort the patterns implied within the remaining
series (Batty and Howes, 1996).
An explanation of these growth patterns is

required. Until around 1810, Buffalo was a frontier

1820 1850 1880

1920 1960

FIGURE The growth of Buffalo from 1750 to 1990.

1990
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FIGURE 2 Topography and development in 1989.

of urban America (Reps, 1965). The region was

sparsely settled and politically unstable in conflict
with the indigenous and neighboring population
in Canada. In fact, the British burnt the "village"
of Buffalo in the war of 1812. At the end of the
Napoleonic era, the village began to grow but the
dominant characteristic of the region from 1820 to

1840 and beyond, was the intensification of agri-
cultural settlement. By 1850, Buffalo had clearly
become a small but significant regional locus and as

a Great Lakes port, the town then grew rapidly over
the next 70 years until the end of World War 1. In
the 1920s and 1930s, the city suffered economically
as did most cities in north east America, but the
economy was buoyant in the 1940s and 1950s with

rapid suburbanization. However, deindustrializa-
tion began in the 1960s, and the core city fell into

long term decline. This was exacerbated in the 1970s
and 1980s with massive losses of population from
the city and its inner suburbs, coupled with exten-
sive suburbanization to the very edge of the county.
These trends are clearly visible in the animation
implied by Fig. 1.
From Figs. and 2, we have constructed an

abstract picture of this growth around the central
core of the region downtown Buffalo. Figure 3(a)

represents the sparsely populated frontier until
about 1820, while Fig. 3(b) implies an intensifica-
tion of agricultural settlement until 1840 but with
Buffalo still remaining a small village. After 1840,
the focus of regional settlement is clearly Buffalo
(Fig. 3(c)) which continues to accelerate in growth
into the. early 20th century (Fig. 3(d)). During
the middle years of this century, the decline of the
central city begins, accompanied by rapid suburb-
anization (Fig. 3(e)), both trends intensifying
dramatically over the last 20 years (Fig. 3(f)). In
the subsequent analysis, it is important to note that
until about 1840 or so, the region lacked a major
focus. Thus the core shown in Fig. 3(a) and (b) is
before the city existed and thus any spatial mea-

surements made about this point are arbitrary. Up
to about 1850, the mean distance to this point
increases rapidly reaching a peak. As the city begins
to grow, this compacts the settlement of the region
and the mean distance then falls. It only begins to
rise again with the onset of urban decentralization
from the 1920s reaching 70 percent of its mid-19th

century value by 1989. In effect, this mean distance
is really a measure of compactness of the urban
region, not a measure of the average distance
traveled. It shows how the agricultural settlement
first diffuses, how the city counters this, and then
how the city itself is blown apart by urban decline
and suburban growth.
We must treat this data set very carefully. It is a

record of what (’still") existed in 1989, not what
existed at 1790, 1800 and so on. In a region with
a severe winter climate, much of what has existed
over the last 200 years has been demolished and/or
rebuilt, and thus our space-time series is just one

perspective on Buffalo’s historical development. In
fact, Fig. 3 is culled not only from this data set but
from what we know more generally about settle-
ment in this region (see Goldman, 1983). To put this

space-time series in a wider context, note that the
actual Census population of Erie County at the
years 1830, 1860, 1890, 1920, 1950, 1980, and 1989--
1990 was 36, 142, 323, 634, 899, 1015, and 968 (in
thousands) in contrast to the numbers of developed
properties in the 1989 data set of 1, 4, 15, 70, 137,
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(a) (b) (c)

(d) (e) (f)

FIGURE 3 The abstracted pattern of urban growth. (a) Up to 1820: the sparsely settled frontier. (b) 1820-1850: intensifying
agricultural settlement. (c) 1850 1880: the emergent industrial city. (d) 1880 1920: the maturing industrial city. (e) 1920 1960:
the early suburban city. (f) 1960- 1990: urban decline and suburban growth.

238, and 250 (also in thousands) at the same years.
If we take the ratio of developed sites to Census
population as in 1989, then these ratios form the
series 0.15, 0.11, 0.18, 0.43, 0.59, 0.91, and which
indicates that there is progressive loss of actual
development in our 1989 series as we go back
through time. This does not take account of
changing population density and as densities were

higher in the past, then the series probably over-
estimates the loss of past data.

The population of development sites is counted
in rings of width x/ at increasing distances r from
downtown Buffalo for every year from 1800. The
number of rings rises very rapidly from 25 in 1800,
to 1008 in 1835, 1183 in 1900, and 1208 in 1989 at

which point the entire region is effectively covered.
The population associated with each ring at

distance ri at time is counted as hi(t), and the
cumulative population up to distance Re and time T
is computed as Ni(T)=,ini(t) where the
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summations are from t- to Tand i- to Ri. Note
that we also define the discrete temporal equiva-
lents of the densities p(r) and P(r) as pi(t) and Pi(t)
respectively. Total population up to each time T,
called either N(T) or N(t), is computed taking the
summation over the entire range. The spatial

referent for each time period is the mean distance
from all sites to downtown Buffalo defined as

R(t)- -ini(t)ri/U(t), and in the sequel, we will
define all growth paths with respect to the space
variable R(t) and the time variable t. In short, R(t)
and define the basic axes of the phase space
through which our urban growth paths will flow.
The simplest and perhaps most basic growth path

involves the change in total population which we
plot in terms of space/(t) and time in Fig. 4(a).
What this path shows is that the city establishes
itself once the original effects of the agricultural
frontier settlement have washed themselves out.
This is clearer in Fig. 4(b) when we project the path
onto the two-dimensional plane for each of two
from the three variables. Comparing N(t) against
reveals the classic growth in the system with no

surprises but when N(t) is compared against R(t),
the arbitrary nature of this mean, prior to Buffalo
existing, is clearly seen. As N(t) increases, the mean
increases very quickly, reaching a peak around
1860, then quickly falling as the city develops. The
classic profile is only established from the 1920s
when the population of the region begins to grow
dramatically. This effect is seen even more clearly

30C

0:700

0 1800

(a) (b)

FIGURE 4 The population N(t) growth path.

when the mean R(t) is traced against time t. In
Fig. 4(b), this is the projection on the horizontal
plane which shows that the mean rises to a peak in
the 1820s, remains at this level until the 1880s and
then begins a steep decline in value as the region
compacts around the growing city. From the 1930s
on, however, the city begins to spread into its wider
region and this mean then begins to rise. In a sense,
it is only in the last 70 years, that we can interpret
this variable as measuring the spreading of the city
due to the automobile. This projection of R(t) and
is common to all the growth paths we chart in the
next section as it is the basis of the phase space
within which various portraits of growth are

displayed. Finally, note that in Fig. 4 and the
following graphs, the R(t) axis varies from 0 to
700 units of distance, from 1800 to the year 2000,
and the population (of sites) N(t) from 0 to 300,000.

URBAN GROWTH PATHS BASED ON
FRACTAL DIMENSION

Several ways of defining and estimating the fractal
dimensions associated with the scaling relations in
Eqs. (1)-(4) are presented in the Appendix. These
methods fall into two groups: estimates based on

exact and statistical methods. The dimension D
measures two aspects of spatial growth: first, the
conventional definition of dimension relates to
the amount of space filled, and in two-dimensional
systems, this should lie between and 2 as we

argued earlier. Second, the rate at which space is
filled with respect to the distance from the origin
is also picked up by D, and for systems which
perfectly accord to the scaling relations, rate and
degree of space-filling are consistent with one
another. However, for real systems where there is
spatial variation which has to be treated as random,
the exact estimates remove variation from the data
and thus produce a clear measure of space-filling
while the statistical estimates pick up the rate of
filling which is confused by random variations.

In the Appendix, we show that the simplest
measure of dimension is based on an exact estimate
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which we call the fractal signature (Eq. (A10)). This
relates the average distance traveled (or the degree
of compactness of the region) measured by R to the
cumulative density ofpopulation at the mean P(R).
This is repeated here with a time index as

logP(R(t))
DR(t)-2+ log/(t) (5)

We will call this the baseline dimension whichwe will
use as a comparator. We show the path of this
variable for the space-time coordinates R(t) and in
Fig. 5 where the vertical axis dimension DR(t
ranges from 0 to 2 (as in all subsequent graphs of
dimensional paths). This trajectory is highly corre-
lated with the population N(t) in Fig. 4, because
DR(t is a space-filling dimension. With a fixed
regional space and a relatively fixed number ofloca-
tional rings for most of the 200 year series, Eq. (5)
measures the increasing density of the region.
What is of profound interest is that the fractal

dimension DR(t clearly begins to stabilize once the
automobile city takes off in the 1920s. The projec-
tion ofDR(t) on tin Fig. 5 shows how DR(t flattens;
its value is 0.668 in 1800, rising to 1.661 by 1920
and 1.711 in 1930. However, over the next 60 years
the dimension only increases to 1.752. This is a
remarkable result given that there has been enor-
mous change during this latter period. The data
show N(1930)-96,606 and N(1989)-250,455, a
net increase of 159 percent in contrast to a mere
shift of 2.5 percent in the value of the dimension

over this period. This is suggestive evidence that the
city reached its critical threshold around the 1920s
since which time its space-filling has simply read-
justed, hardly changing at all with respect to the
mechanisms of urban growth and movement. In
terms of the physics of fractals, the system under-
went a second-order phase transition of the kind

suggested by the theory of self-organized criticality.
We now need to see if this stability is repeated for
the other estimates of dimension.
We make a direct comparison between the

population N(t) and the baseline dimension DR(t)
(Figs. 4 and 5) in Fig. 6 which also compares these
trajectories with the number of rings at each time

k(t); these range from 0 to 1300 on the vertical axis
which is scaled for each range independently. The
similarity of these profiles is obvious. The plots in
the N(T)-OR(t)-k(t)versus R(t) dimension show
the same sorts of reversal as noted earlier due to the
build-up and subsequent decentralization of the
city. But in terms of the time dimension, it is clear
that the fractal dimension stabilizes long after the
number of rings defining the region becomes fixed
while population continues to rise. This suggests
that the stability of DR(t is not influenced by the
trend in N(T) or k(t).
We are now in a position to chart the differential

estimates of dimension based on the order we have
introduced them in this paper as summarized in
Table I. We will begin with the exact and then
move to the statistical, drawing out similarities and
differences in their growth paths. The major

2

,D,k N,D,k

D

0

(a) (b)
(a) (b)

FIGURE 6 Similarities between the population, ring and
FIGURE 5 The baseline dimension D(t). baseline dimension growth paths.
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TABLE Estimates of dimension

Method of Class of estimator Equation type Related
estimate equation number

Exact Discrete square grid

Statistical

Discrete circular grid

Unconstrained regression

Constrained regression

Cumulative count (A5)
Cumulative density (A6)
Incremental count (A7)
Incremental density (AS)
Cumulative count (A9)
Cumulative density (A10) the baseline
Incremental count (A11)
Incremental density (A 12)
Incremental density (A13)
Incremental count (A14)
Cumulative count (A15)
Cumulative density (A16)
Incremental density (A13) (a= and 2r,-)
Incremental count (A14) (b and 2ri)
Cumulative count (A15) (c and 2Ri)
Cumulative density (A16) (d= and 2R;)

distinction we will find is between the cumulative
and the incremental statistical estimates in terms of
their magnitude and shape, and these are consistent
with previous applications of these functions which
we have researched (Batty and Xie, 1996; Mesev
et al., 1995).
We will first present the entire array of exact

estimates which includes the baseline, and which
best describes the space-filling characteristics of
urban growth. In Fig. 7, we show the cumulative
dimensions for the grid and the circle models
separately from the incremental in both two- and
three-dimensional form. It is immediately clear that
small but significant differences exist between the
grid and circle models, with the grid giving slightly
higher dimension values in both cumulative and
incremental forms. The incremental forms also give
rise to much more jagged paths through the phase
space due to the fact that incremental data are less
smooth anyway, also revealing errors in the year of
construction attribute in the dataset (Batty and
Howes, 1996). Yet these do follow the cumulative
paths quite closely. The correlations between all
the paths the three-dimensional projections in
Fig. 7(a) and (c) and the two-dimensional projec-
tions in Fig 7(b) and (d) are very high. Note
however that the incremental values do not stabilize
to quite so narrow a range as the cumulative during

(a) (b)

(c) (d)

FIGURE 7 Dimensions of the grid and circle functions.

the last 60 years of the series; the evidence for self-
organized criticality thus becomes a little less
convincing.
We now consider the statistical estimates where

we have separated the unconstrained regressions
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from the constrained. The unconstrained results
show large differences between the cumulative and
incremental model forms while these differences
virtually disappear once these models are con-

strained. For the unconstrained models, the dimen-
sion paths ofthe cumulative forms are close to those
of the exact space-filling estimates in Fig. 7 but
the incremental have quite a different form being
closer to the variations in the mean value /(t).
These results are shown in Fig. 8(a) and (b), and it is
clear that the order of magnitude of the cumulative
dimensions increases to the expected range while
the incremental are much lower. When these
regressions are constrained, the cumulative and
incremental generate paths which are quite similar
as shown in Fig. 8(c) and (d). In one sense, these
are the most appropriate estimates for they mix
a degree of spatial variation without distorting the
role of dimension in capturing the properties of
space-filling. The shape of their growth paths and
their values are as expected.

It is worth commenting on the entire range of
dimension values generated and in the case of the
statistical estimates, the performance of the models.
In Table II, we present these values for all 16
estimates for the last year 1989. All the cumulative
and the constrained regressions generate values in
the range < D < 2 with an average value of 1.68,

very close to the DLA value of 1.71. The incre-
mental models estimated statistically give a lower
performance (r2 0.2) than the cumulative count

(r2 0.8) but these are clearly picking up random

D D

D D

(c) (d)

FIGURE 8 Dimensions based on regression.

TABLE II Dimensions and correlations for the end year 1989

Method Equation type Equation Dimension Correlation
number D

Discrete square grid

Discrete circular grid

Unconstrained regression

Constrained regression

Cumulative count (A5) 1.742 na
Cumulative density (A6) 1.777 na
Incremental count (A7) 1.753 na
Incremental density (A8) 1.752 na

Cumulative count (A9) 1.868 na
Cumulative density (A10) 1.751 na
Incremental count (A11) 1.779 na
Incremental density (A12) 1.723 na

Incremental density (A13) 0.441 0.122
Incremental count (A14) 0.382 0.519
Cumulative count (A15) 1.601 0.858
Cumulative density (A16) 1.589 0.287

Incremental density (A13) 1.589 0.121
Incremental count (A14) 1.385 0.198
Cumulative count (A15) 1.631 0.882
Cumulative density (A16) 1.664 0.236

na Not applicable.
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variation in the observations which, in essence,
reflect the lack of fit of the scaling relations to data.
We have commented on the difficulties of working
with incremental scaling relations elsewhere (Batty
and Xie, 1996; Mesev et al., 1995).
To summarize, the various growth paths in

Figs. 4-8 confirm the existence of a series of
distinct transitions: first between 1820 and 1830
when the region was transformed from the frontier,
then again around 1870-1880 when the city began
to dominate the region, continuing until the 1920s
when the most recent transition to the decentralized
city began. However, the most important transition
is the passage to a stable fractal dimension paths
during the last 70 years. This increases the likeli-
hood of a further transition based, perhaps, on the
phenomena of the ’edge city’ which is occurring in
many other North American cities (Garreau, 1991).
There are already signs in the last 5 years that such
a phenomenon is occurring in the Buffalo metro-
politan area but whether this will change the value
of the space-filling dimension which has persisted
for the last 70 years is unclear.

THE NEXT TRANSITION

The transitions we have noted are clear enough
both from our casual knowledge of the history of
cities and from the data. An unwelcome comment
on our work might suggest that what we have
shown is self-evident and therefore hardly surpris-
ing. In one sense, of course it is but in another, we
are able to point to the long-standing stability of
the automobile city. This suggests that it is this
particular urban form which is the one that
represents the logical outcome of industrialism,
rather than the city forms of the late 19th and early
20th centuries which are often taken as exemplars.
The automobile city is thus the form that is
consistent with the age of energy. In the transition
to the information age, it is difficult to know
whether the space-filling characteristic of cities like
Buffalo will continue, whether cities will dramati-
cally spread out, or grow into much more dense

structures making greater use of vertical space. All
these scenarios appear in the fiction of the near
future.
An even more arresting view suggests that the

transition that is really important is not from the
industrial to the postindustrial but from the non-
urban to the urban. What we are seeing is a change
from sparsely populated agricultural and central
place settlement systems to more densely populated
regions, entirely urbanized but in the most decen-
tralized ways possible and lacking any single focus.
The fact that the fractal dimension of Buffalo has
been stable for 70 years might simply be evidence
that this is the way all societies and their cities will
be, forever. Our speculations are made somewhat
more tangible by setting them within the formal
framework of self-organized criticality, but there
are many technical improvements that might be
made to increase the robustness of the analysis.
Data on the chain effects of movement in time and
space would be extremely valuable in providing
additional hypotheses to test for criticality, but
there are also ways of improving the analysis
through examining missing data, scale and size
effects relating to the resolution and size of the
region, as well as error and bias in the data. We have
begun to tackle these for this data elsewhere (Batty
and Howes, 1996; and http://www, geog. ucl. ac.

uk/casa/ur, html) but we need to explore how our

temporal data might be improved and compared
against real time series from past to present. Work
towards these more modest goals will also help
support the more dramatic speculations which have
served to guide the project so far.

References

Alstrom, P. (1990) Self-organized criticality and fractal growth,
Physical Review A, 41, 7049-7052.

Alstrom, P. and Leao, J. (1994) Self-organized criticality in the
"Game of Life", Physical Review E, 49, R2507-R2508.

Alstrom, P., Trunfio, P.A. and Stanley, H.E. (1990) Spatiotem-
poral fluctuations in growth phenomena: dynamical phases
and I/fnoise, Physical Review A, 41, 3403-3406.

Barabasi, A.L. and Stanley, H.E. (1995) Fractal Concepts in

Surface Growth, Cambridge University Press, Cambridge, UK.
Bak, P. and Chen, K. (1991) Self-organized criticality, Scientific

American, 264, 46-53.



SELF-ORGANIZED CRITICALITY 123

Bak, P., Chen, K. and Creutz, M. (1989) Self-organized
criticality in the "Game of Life", Nature, 342, 780-782.

Bak, P., Chen, K. and Wiesenfeld, K. (1988) Self-organized
criticality, Physical Review A, 38, 364-374.

Bak, P. and Paczuski, M. (1993) Why nature is complex, Physics
World, 6(12), 39-43.

Bak, P. and Sneppen, K. (1993) Punctuated equilibrium and
criticality in a simple model of evolution, Physical Review
Letters, 71, 4083-4086.

Batty, M. (1991) Cities as fractals: simulating growth and form,
in T. Crilly, R.A. Earnshaw and H. Jones (Eds.) Fractals and
Chaos, Springer-Verlag, New York, pp. 41-69.

Batty, M. and Howes, D. (1996) Exploring urban development
dynamics through visualization and animation, in D. Parker
(Ed.) Innovations in GIS 3, Taylor and Francis, London,
pp. 143-155.

Batty, M. and Longley, P.A. (1994) Fractal Cities: A Geom-
etry of Form and Function, Academic Press, London and
San Diego, CA.

Batty, M. and Xie, Y. (1996) Preliminary evidence for a theory
of the fractal city, Environment and Planning A, 28, 1745-
1762.

Benguigui, L. (1992) Some speculations on fractals and railway
networks, Physica A, 191, 75-78.

Frankhauser, P. (1994) La Fractalite des Structures Urbaines,
Collection Villes, Anthropos, Paris, France.

Garreau, J. (1991) Edge City: Life on the New Frontier,
Doubleday, New York.

Goldman, M. (1983) High Hopes: The Rise andDecline ofBuffalo,
New York, State University ofNew York Press, Albany, NY.

Kennedy, P. (1993) Preparing for the Twentyfirst Century,
Vintage Books, New York.

Krugman, P. (1994) Complex Landscapes in Economic Geo-
graphy, American Economic Association, Papers and Proceed-
ings, 84, 412-416.

Mesey, T.V., Longley, P.A., Batty, M. and Xie, Y. (1995)
Morphology from imagery: detecting and measuring the
density of urban land use, Environment and Planning A, 27,
759-780.

Reps, J.W. (1965) The Making of Urban America: A History of
City Planning in the United States, Princeton University Press,
Princeton, NJ.

Rinaldo, A., Dietrich, W.E., Rigon, R., Vogel, G.K. and
Rodriguez-Iturbe, I. (1993) Geomorphological signatures of
varying climate, Nature, 374, 632-635.

Schelling, T. (1978) Micromotives and Macrobehavior,
W.W. Norton and Co., New York.

Stauffer, D. and Aharony, A. (1992) Introduction to Percolation
Theory, Taylor and Francis, London.

Turcotte, D.L. (1992) Fractals, chaos, self-organized criticality,
and tectonics, Terra Nova, 4, 4-12.

White, H. (1970) Chains of Opportunity, Harvard University
Press Cambridge, MA.

APPENDIX

Defining and Estimating Fractal Dimensions

Two methods are used to estimate the fractal
dimension D associated with each of the four
scaling relations in Eqs. (1)-(4) in the main paper.

These are called exact estimates and statistical
estimates. Exact estimates are based on computing
a single statistic from the relevant distribution, and
then manipulating this to give an exact value of the
fractal dimension. Statistical estimates are based
on using all observations in the distribution and
computing a value of the dimension which ’best fits’
the distribution, for example by least squares in the
case of estimation using linear regression.

Exact estimation is based on assuming a simple
discrete form for N(R). Density is measured and
population counted on a square grid, in incremental
or cumulative square bands up to distance R with
the first band set as r 1. The grid is of sufficiently
fine resolution to detect no more than a single unit
of development in each square. The cumulative
count (of population) is given as

N(R) (2R)z), (A1)

with the total possible area occupied as A(R)=
(2R)2. The cumulative density P(R), the incremen-
tal count n(r), and the incremental density p(r) are

given respectively as

P(R) N(R)_ (2R)Z)_2 (A2)

and

dN(R)n(r)- d----= D(2r)/)-l’ (A3)

dN(R) D (2r)Z)_2 (A4)p(r)
dA(R) 2

Equations (A1)-(A4) absorb the constant of
proportionality into the measure of distance, and
for any value of r, an exact estimate of D can be
calculated. For Eqs. (A1) and (A2) using the mean
R (which is known from data) gives

log N(R) (A5)D(R)- log(2/))
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and

log P(R) (A6)D(R) 2 + log(2/"

Calculating D from Eqs. (A3) and (A4) is less simple
as these must be solved by iteration. If we assume
the DL value of 1.7 for D(R), then Eqs. (A3) and
(A4) yield

log n(R) log(1.7)
(A7)D(/)- + log(2/)

and

log p(/) log()
(A8)D(/) 2 + log(2/)

It is possible to compute other exact estimates if dif-
ferent assumptions governing the underlying space
are used. For example for a circular system with

A(R) TrR2, Eqs. (A1)-(A4) become N(R) rRz,
P(R) Rz-2, n(r) Drrz-, and p(r) (D/2) rD-z,
and the equivalents to (A5)-(AS) become

D(/)
log N(/) log r

log(/) (A9)

log P(/)
(A10)D(R) 2 + log(R’

log n(R) log(1.7r)
(A11)+  og(a)

and

log p(/) log 1.7(--) (A12)D(R) 2 + log(/)

Equation (A10) is the so-called ’fractal signature’
relation used extensively in Batty and Longley
(1994); we argue that this relation represents the
’purest’ of our exact estimates which we use in the
main paper as our baseline dimension.
For statistical estimation, we will define the

incremental and cumulative count and density

relations in (1)-(4) as pi, hi, Ni and P. respectively,
where is an index associatedwith the distance ri or

R. from the origin (CBD). The basic data are ni
which are counted in incremental rings of area Axe.
associated with r;. The density is thus defined as

Pi--li//Xi, the cumulative count as Ni ini and
the cumulative density as P. Ni/_i Axi ,where the
summations are from i= to i=Ri. We can

linearize the discrete relations based on applying
these definitions to Eqs. (1)-(4) by taking loga-
rithms and this gives

log pi log a c log ri,

log ni log b (1 c) log ri,

log Ni log c (2 c) log Ri,

(A13)

(A14)

(A15)

and

log Pi log d c log Ri. (A16)

a, b, c, and d are intercepts of the original scaling
functions with c, hence D, related to the slopes of
the appropriate regression lines. In contrast to the
exact estimates based on the grid and circle models,
these values will be heavily affected by the shape of
the underlying density distribution and any depar-
tures from the hypothesized power laws will be
reflected in the values of a, b, c and d as well as in c.

In the main text, we argue that statistical esti-
mates are more likely to reflect the rate of space-
filling or the attenuation of the density function
than the exact estimates which are more likely to

reflect the amount of space filled. It is possible
however to develop a statistical estimation which
reflects the degree of space-filling by constraining
the regression to predetermined constant values for
a, b, c, and d. Using the grid model which absorbs
these constants in the distance variable, we can set
their values in Eqs. (A13)-(A16) to unity and use

2r. and 2R. as the independent variables. From this

type of constrained regression, we can show the
extent to which the values of the constants distort
the interpretation of c and D as measures of space-
filling. Table I in the main paper summarizes all the
estimates used.


