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The view of the urban environment as an extended nonlinear system introduces new concepts,
motivates new questions, and suggests new methodologies in the study of urban dynamics.
A review of recent results on interlace dynamics in nonequilibrium physical systems is
presented, and possible implications on the urban environment are discussed. It is suggested
that the growth modes of specific urban zones (e.g. residential, commercial, or industrial) and
the factors affecting them can be studied using mathematical models that capture two generic
interface instabilities.
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1 INTRODUCTION

The urban environment resembles in many respects
a dissipative physical system maintained out of
equilibrium by influx and outflux of energy and
matter [1,2]. A living system is perhaps the first
example to come to mind but more instructive for
our purposes is the example of a chemical reaction
continuously refreshed with new chemicals. Despite
the enormous number of matter constituents, the
atoms and molecules, the overall behavior of such
a system can be surprisingly coherent; the system
may sell-organize into spatiotemporal patterns of
chemical concentrations. Figure shows the devel-
opment of a labyrinthine pattern in a chemical
reaction studied by Swinney and coworkers [3,4].

125

Oh lh 1.5h

FIGURE The development of a labyrinthine pattern in a
chemical reaction due to an interface instability (from Lee
et al. [3], reproduced with permission).
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The dark region, pertaining to high acidity, in-
vades into the light region (low acidity) by growing
fingers, leaving a mixed dark-light pattern. The
driving force that maintains this pattern is the
continuous supply of chemicals which replace
those consumed. The latter turn into products that
leave the reaction scene.

Similarly, the urban environment can be viewed
as a far from equilibrium system driven by a con-
tinuous inflow of information, raw materials or

residents, and sustaining patterns of commercial
zones, industrial zones, socioeconomic residential
areas, and so on. Adopting this view Portugali
et al. have recently used discrete mathematical
models to study spatiotemporal patterns of socio-
cultural segregation. Their City model [5] consists
of a two-dimensional square lattice of cells, each of
which is conceived as a house or a place in the urban
environment. Any given place is assigned a state, it

may be vacant or occupied by individuals of dif-
ferent sociocultural backgrounds, denoted "blue"
and "green". An instantaneous state of the city is
given by the state matrix of all cells. The temporal
evolution of the city is dictated by a set of rules
defining the state of any given place at the next
time step as a function of the current states of
the cell itself and its nearest neighbors. Computer
simulations ofthe model yield patterns consisting of
green and blue domains. Changing the rules affects
the patterns and allows assessing the effects of
various factors on the sociocultural structure of
the City.

Discrete models of this nature fall in the class of
Cellular Automaton (CA) models [6], which have
been used in a variety ofphysical contexts including
hydrodynamics and chemical reactions [7,8]. CA
models have successfully reproduced various non-
linear behaviors of these systems, and from a

computational point of view, provide economical
substitutes for the pertinent nonlinear partial dif-
ferential equations, the Navier Stokes equations for
fluids, and reaction-diffusion equations for chem-
ical systems. In the context of urban development
CA models are natural choices [5], for partial
differential equations are difficult to motivate

(see however [9]) and the consideration of urban
factors is most readily done at the discrete cellular
level.
The temporal evolution ofdomain patterns, such

as the chemical patterns shown in Fig. or the
segregation patterns exhibited by the City model, is
strongly affected by the dynamics of the interface
between the different domains, low and high acid-
ity or blue and green residential areas. The main

purpose of this paper is to expose urban researchers
to recent developments in nonequilibrium interface
dynamics, and to address possible implications
on the urban environment. We will focus on two

generic interface instabilities, an instability to
transverse perturbations and a parity breaking
bifurcation, and discuss the different growth modes
associated with them.
We begin in Section 2 with a review of basic

concepts of nonlinear dynamics which we will need
in the rest ofthe paper, and discuss their significance
in the urban context. In Section 3 we analyze two

interface instabilities using a two-variable reaction-
diffusion model describe possible interface instabil-
ities in nonequilibrium systems and study the effects
they have on interface dynamics. Possible implica-
tions on the urban environment, and prospects for
further developments in this new interdisciplinary
area are discussed in Section 4.

2 DISSIPATIVE NONLINEAR DYNAMICS

Dynamical systems in nature can be divided into
conservative and dissipative systems. The former
conserve energy and obey dynamical equations of a
very special (Hamiltonian) form. The latter are not

restricted in this sense, and include physical sys-
tems that are open to energy exchanges with their

environment, or systems for which the concept of
energy is not well defined. Most dynamical systems
in nature are also nonlinear. The nonlinear nature of
a system may show up as a saturation of a growth
process, as a driving force of a decaying process, or

as a qualitative change in the system’s behavior as a
control parameter is varied (see bifurcation below).
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The urban environment justifiably falls in the class
of dissipative nonlinear systems.
We illustrate basic properties of dissipative

nonlinear systems [10] using the following nonlinear
dynamical system for a single degree of freedom

du U3
dt

au- / b, (1)

where t, the independent variable, represents
time, u(t) is a real dependent variable, and a, b are
real constants. Consider first the case where b 0.
The left hand side of(1) represents the rate ofchange
of u. Let us look first at stationary solutions for
which the rate of change is zero. Setting du/dt 0
leads (for b 0) to the equation u(a- u2) 0. For
a < 0 this equation has the single solution, u--0.
For a > 0 two additional solutions exist, u +x/-d.
These stationary solutions demonstrate an impor-
tant property of nonlinear systems. By varying a

from negative to positive values a critical value is
reached, a 0, where two new solutions, u

appear. We say that a bifurcation has occurred at
a=0. This is an example of a parity breaking
bifurcation; a parity symmetry, u---+- u, of (1) (for
b 0) is broken by the solutions that exist for a > 0.
The symmetry takes one solution into the other. It
is instructive to plot the solutions of (1) as func-
tions of the bifurcation parameter a. The result-
ing bifurcation diagram is shown in Fig. 2(a).

The bifurcation, as the figure suggests, is called
a pitchfork bifurcation.

In order to understand the dynamical significance
of the bifurcation at a--0 we need to study
the stability of the various stationary solutions.
Roughly speaking, we say that a given state is stable
if small perturbations of this state decay to zero as
time evolves. To study the stability of a stationary
solution u u0 of (1) we write u(t) Uo +p(t), where
p(t) is an infinitesimal perturbation, and insert this
form for u in (1). Neglecting nonlinear terms in p
(p2 and p3) which are infinitesimally small in
comparison with p, we find the linear equation

dp (a- 3u)p, (2)
dt

whose solution is p(t) -p(0)e(a-3ug)t, where p(0) is
the initial (at time 0) value of the perturbation.
For the stationary solution u0=0, p(t)=p(O)eat.
Thus, for a < 0 the perturbationp decays to zero and
the stationary solution u0 =0 is stable. For a > 0,
p grows in time and u0 =0 is unstable. A similar
consideration leads to the conclusion that the
stationary states u0 x/- which exist for a > 0
are stable. The stable (unstable) stationary solutions
are indicated in the bifurcation diagram by solid

(dashed) lines. Equation (1) for a > 0 is an example
of a bistable system where two stable solutions
coexist for given parameter values.
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FIGURE 2 A pitchfork bifurcation diagram showing stationary solutions of Eq. (1) as functions of the control parameter a.
(a) The symmetric case, b--0. (b) The asymmetric or imperfect case, b 0.05.
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The stability analysis presented above refers to

infinitesimally small perturbations, but the same
conclusions hold for finite perturbations as well.
Each of the stationary states has a basin of
attraction, that is, a finite neighborhood within
which all initial conditions converge to u0 as

oc. The basin of attraction of u0 0 for a < 0 is
the whole u axis, -oc<u<oc. For a>0, u0 is
unstable and has no basin of attraction. The other
two stationary states, u0 -v/-d and u0 xfh, have
the basins of attraction oc < u < 0 and 0 < u <
respectively. Stable (unstable) solutions are often
referred to as attractors (repellors) of the dynamics.
The knowledge of all attractors and their basins of
attraction allows, in principle, the determination
of the attractor at which the system will eventually
reside, given an initial condition. For example, for
a > 0, any initial condition u(0) < 0 will lead to the
attractor u -v/-d at
When b-C0, the bifurcation diagram becomes

asymmetric or imperfect as shown in Fig. 2(b). We
may also plot the stationary solutions as functions
of b for a given a. The outcome is shown in Fig. 3.
Notice that for a positive a multivalued relation
results. When a is small the upper and lower
branches, pertaining to the two stable stationary
states, terminate at small absolute values of b. This

simple observation has far reaching consequences
as we will see in the next section.
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FIGURE 3 Stationary solutions of Eq. (1) with a 0.1 as
functions of the control parameter b.

Dynamical systems involving more than one

degree of freedom may have additional types of
stable solutions (besides stationary), and con-

sequently different attractors of the dynamics.
Systems containing two and more degrees of
freedom may have stable periodic solutions in
time, and systems having at least three degrees of
freedom may exhibit strange attractors on which
the dynamics are chaotic [10]. Spatially extended
systems (described by partial differential equations
rather than ordinary ones as (1)) exhibit attractors
and repellors in the forms of spatial or spatio-
temporal structures. We mention a few examples:
(i) Stationary periodic patterns, i.e. solutions which
are stationary in time and periodic in space.
(ii) Periodic traveling waves, i.e. solutions which
are periodic both in time and in space. (iii) Various
localized structures such as fronts and vortices

(see below and the next section).
The notion of attractors of the dynamics fits

quite well our experience of urban dynamics. Con-
sider for examples two sociocultural groups resid-
ing in the same neighborhood. Ignoring for the
moment the boundaries between the two groups,
where cultural diffusion takes place, any indivi-
dual in this neighborhood is likely to belong to one
of the two cultures. Intermediate individuals, like
newborn children or spouses from other cultures,
will adopt in the course of time one culture or
another depending on initial biases. In the terminol-
ogy of nonlinear dynamics we may say that the two
cultures form attractors of the dynamics and that
initial conditions placed within the basin of attrac-
tion of a given culture will evolve to that culture
as time goes to infinity. An individual may persist
in an intermediate or mixed-culture state in the
interface between the different sociocultural groups
where diffusion of cultural influences takes place.
Such an interface may also be an attractor of
the dynamics in the sense that initial interface
structures evolve toward a single stable interface
with a characteristic width. This property is readily
captured by adding a diffusion term to Eq. (1). We
will discuss this modified equation in the next
section.
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We conclude this brief introduction emphasizing
a property ofnonlinear dissipative systems which we
find significant in the context of urban studies.
Bifurcation and instability phenomena and, con-
sequently, the attractors associated with them,
are universal. This explains why different physical
processes, having very little in common like a

chemical reaction and a fluid flow, may exhibit the
same types of patterns, stripes, traveling waves,
spiral waves and so on. The significance in the urban
context is twofold. (i) The same attractors are

expected to be found in urban dynamics, although
complex urban dynamics may exhibit additional
attractors not seen in relatively simple physical
systems. (ii) In constructing models of urban
development we need not take into account all
possible factors; models with fewer factors may
reproduce the same universal bifurcations, and
therefore the same qualitative behaviors.

INTERFACE DYNAMICS IN
CONTINUOUS SYSTEMS

An interface, in the context considered here, is a
localized spatial structure forming a transition zone
between two different stable uniform states of the
system. The interface represents a stable balance
between two competing processes, the tendency
of the system to converge locally to one of the
two states because of their stability, and diffusion.
Without diffusion an infinitely sharp interface
would form. The effect of diffusion is to smooth
out the interface and give it a characteristic finite
width. This can be readily seen by modifying Eq. (1)
to include a diffusion term,

OU U3 OZu
Ot

au + b + O Ox, (3)

where D is a diffusion constant. The left hand side
of (3) still represents the rate of change of u, but
now at a given spatial location x. The last term
on the right hand side represents the change of u

at a given location due to diffusion into (OZu/
0x2>0) or out of (oZu/Ox2<O) that location.

Equation (3) has a stable interface or front solution,
which for b =0 takes the simple stationary (non-
propagating) form

u tanh V/- X, (4)

As shown in Fig. 4 this solution connects the
"down" state, u =-x/d, at x oc to the "up"
state, u---d, at x oc. The width of the front
(or interface) is proportional to v//a. Thus, the
interface becomes infinitely thin when diffusion
vanishes (D --+ 0).

Interfaces in systems near equilibrium are either
stationary or propagating in a unique direction
determined by the system’s parameters (we ignore
at this stage the effect of interface curvature). In
Eq. (3) the relevant parameter is b. The interface
is stationary (propagating) for b=0 (b-0). The
direction of propagation is determined by the sign
of b. The stationarity of the interface for b =0 is
related to the parity symmetry u + u of (3) which
takes the up state u x/a to the down state
u =-x/d, and vice versa. Systems maintained
far from equilibrium may behave differently.
Even when the up and down states are related by
a symmetry, the interface connecting these states
may propagate as discussed below.
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FIGURE 4 The stationary front solution (4) for a= and
D-0.125.
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3.1 A Pitchfork Front Bifurcation

Recent studies of various models representing
nonequilibrium bistable systems [11-14] (see also
the Appendix) have discovered a pitchfork j?ont
bifurcation as depicted in Fig. 5 (left). A stationary
interface or front is stable only in a given range of
parameter values, r/> rlc. At rl-rl, the stationary
front becomes unstable and a pair of propagating
fronts appear, pertaining to an up state invading
a down state (positive velocity) and a down state
invading an up state (negative velocity). The
counterpropagating fronts are stable and thus
attractors of the dynamics. Breaking the parity
symmetry between the up and down states yields
the imperfect bifurcation diagram shown in Fig. 5
(right). Note that the direction of propagation
for r! < tic is not unique and determined by initial
conditions rather than the sign of an asymmetry
parameter like b in (1). In the Appendix we give a

detailed derivation of a pitchfork front bifurcation
for a particular reaction diffusion model. We just
note that in order to have this front bifurcation a

second dynamical variable (in addition to u) should
be included in the model.
The coexistence of two interfaces moving in

opposite directions beyond the bifurcation (i.e. for

’r! < rl allows for the formation of spiral waves in

two space dimensions. An interface between the

up and down states may be constructed so that one
half of it corresponds to an up state invading a

down state and the other half to a down state invad-
ing an up state. The twist action about the mid

point induces rotational motion which evolves into
a rotating spiral wave (or vortex) as shown in Fig. 6.

FIGURE 6 A rotating spiral wave obtained by numerical
integration of (5) for rl<rlc. The white and grey domains
represent the up and down states, respectively. The thick line
is the u--0 contour which represents the interface location.
The thin line is the v--0 contour which contains information
about the direction of propagation; it always lags behind the
u---0 contour. The crossing point of the two lines is the center
of rotation.

-1_ -1

FIGURE 5 Pitchfork front bifurcations showing front solutions of Eq. (5) that propagate at constant velocities, c, as functions
of the control parameter / ((b) /. The symmetric bifurcation for a0--0 on the left, and the imperfect bifurcation for a0 --0.1
on the right.
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Another interesting consequence of the front
bifurcation is that small perturbations may induce
transitions between the counterpropagating inter-
faces. Such perturbations play the role of the
parameter b in Eq. (1), whose effect is displayed
in Fig. 3. That is, the relation between the front
velocity and the perturbation may become multi-
valued (or hysteretic). Consider for example an

interface propagating in two space dimensions.
Very often the interface has a curvature which
varies in time; we may think of an interface bound-
ing a growing circular domain, whose curvature
decreases in time. The curvature is an intrinsic

perturbation (of a straight interface) and close to
the front bifurcation affects the interface velocity as

in Fig. 7 (see the Appendix). Imagine the growing
domain is in the up state, and so the interface
bounding it pertains to the upper branch of Fig. 8

(an up state invading a down state). As the domain
grows the interface moves on the upper branch
toward the end point (because curvature is decreas-
ing). At a certain size this end point will be reached
and an interface state corresponding to an up state

invading a down state will no longer exist. The only
interface state to be left is a down state invading an

up state, represented by the lower branch. Since this

C

-1

o K o.1

K
FIGURE 7 A multivalued relation between the front velocity
and its curvature for the parameters used in the domain split-
ting simulation shown in Fig. 8.

interface state is an attractor of the dynamics the
circular up state domain will cease expanding and
begin shrinking. This is an example of a sponta-
neous transition between the counterpropagating
interface states, induced by curvature.

Spontaneous interface transitions provide the
mechanism of a new growth mode in which a non-

circular growing domain splits into two parts which
grow and split again in a process reminiscent of cell
division. A numerical demonstration of this growth
mode is shown in Fig. 8. The initial up state domain
in this simulation is not perfectly circular, but has
some oval shape. As the domain grows the flatter
parts of its boundary reach the end point of the
upper branch in Fig. 7 sooner and are the first
to undergo interface transitions. Along with these
transitions spiral-wave pairs nucleate, a pair at
the two edges of any interface segment that under-
went a transition (see discussion above). The
spontaneous nucleation of spiral waves deforms

a b

C

FIGURE 8 Domain splitting induced by curvature varia-
tions in time. Local front transitions occur at the flatter
portions of the expanding front. They are accompanied by
the nucleation of pairs of spiral waves (the crossing points of
the thick and thin lines), and followed by domain split-
ting. The pictures were obtained by numerical integration of
Eq. (5)close to the front bifurcation. Parameters: a0= -0.15,
al 2.0, 0.014, h 3.5.
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the up state domain and leads to its splitting. Similar
domain splitting phenomena have recently been
observed in chemical reactions [15]. More details
about this phenomenon can be found in [116,17]. A
necessary condition for this growth mode is mar-

ginal stability, or instability to transverse pertur-
bations (see below) to prevent a rapid convergence
of the domain to a circular form.

3.2 A Transverse Instability

Interfaces in two-dimensional systems may become
unstable also to transverse perturbations, that is,
perturbations leading to a curved interface. Imagine
a straight interface perturbed locally so as to have
a bulge. In the course of time this bulge may smooth
out and disappear if the interface is stable, or grow
into a finger if it is sufficiently unstable. This in-
stability is analyzed in the Appendix and demon-
strated numerically in Fig. 9. Shown in this figure
is a simulation of Eq. (5), starting from an almost
flat interface. The interface initially develops bulges
which then grow into fingers and tip split. The split

b

C

FIGURE 9 Numerical simulations of Eq. (5) deep in the
single front regime and beyond the transverse instability of
that front. Like in the chemical experiment (Fig. 1), the trans-
verse instability leads eventually to a stationary labyrinth.

tips grow into pairs of fingers and the process con-

tinues until a stationary labyrinth fills the whole
system. The simulation was carried out far from the
front bifurcation, in the single front regime (r! > tic).
Approaching the bifurcation would result in do-
main splitting and possibly domain merging as well.
The final labyrinthine pattern is an attractor of

the dynamics, one out of many other attractors, all
having the same qualitative appearance but differ-

ing in quantitative details. The labyrinthine pattern
shown in Fig. suggests the existence ofa transverse
instability of the interface separating high and
low acidity domains. Transverse instabilities often
develop when the interface motion triggers a process
that acts to slow down the speed of propagation. If
this process is diffusing fast enough to the two sides
ofan initial bulge it may slow down the propagation
ofthose parts of the interface and let the bulge grow.
A similar scenario holds for almost circular

domains and provides another possible growth
mode. We can distinguish now among three dif-
t’erent growth modes. (i) Even growth, where the
boundary of the growing domain retains a circular
shape. This mode is realized away from the front
bifurcation (on either side) and below the trans-
verse instability. (ii) Domain splitting, where the
growth is accompanied by splitting into disjoint
domains. The conditions for this growth mode are

proximity to the front bifurcation and marginal
stability or instability to transverse perturbations.
(iii) Fingering and tip splitting, where the domain

grows fingers which split into pairs of fingers and so

on. Fingering occurs far above the transverse
instability and far away from the front bifurcation,
in the single front regime.

4 DISCUSSION

The question of predicting and controlling the
urban environment has repeatedly been addressed
by modern geographers (see the recent review by
Portugali [19]). During the post World War II years
a positivistic approach prevailed. It was widely
believed that the exact and the engineering sciences
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can advance our understanding ofthe built environ-
ment and provide quantitative means to plan and
control it. This approach did not last for too long.
The disillusionment came by the end of the 60s
and early 70s when it was realized that the urban
environment is far more complex to be handled
globally and quantitatively with scientific methods.
Geographers turned toward social theories attempt-
ing to apply abstract concepts to practical environ-
mental issues. Gradually it became evident that this
approach too is remote from reality, and a renewed
interest in positivism has begun [19]. Concepts taken
from the realm of exact sciences, like chaos, frac-
tals, self-organization, synergetics and so on, have
started pervading into the language and conceptual
approach ofgeographers. In light ofthe huge impact
these concepts have had on a variety of scientific
disciplines dealing with complex natural phenom-
ena, it was not surprising to find these concepts
diffusing to studies of complex systems outside the
strict realm of exact sciences.
The global, quantitative scientific approach

has rightfully been abandoned, but a qualitative
approach [1] based on the concepts and tools of
nonlinear dynamics may still prove successful. In
addressing the question of sociocultural segrega-
tion, for example, we need not take into account
all aspects of the urban environment. It might be
sufficient to include only those considerations
needed to capture the essential bifurcations and
instabilities, in this case, the front bifurcation and
the transverse instability. A qualitative approach
also resolves the problem of quantifying human
variables such as tolerance to individuals belonging
to different sociocultural groups. Since the ultimate
interest is in qualitative features, assigning numbers
to human variables is merely a mean to take full
advantage of the advanced mathematical theory of
nonlinear dissipative systems.
Can we predict or control urban behaviors?

Evidently not in any quantitative sense. But we

might be able to identify factors that affect the
qualitative behavior of the system and in this sense

predict or control urban behaviors. Mathematical
modeling, that focuses on restricted aspects of

the urban environment and captures the essential
instabilities and bifurcations, may help achieving
this goal. Returning to the issue of sociocultural
segregation, a CA model in the spirit of the City can
be used to predict which of the three growth modes,
even, domain splitting orfingering, is likely to occur
in the modeled environment. The model, which
should capture the two interface instabilities, can
also suggest ways to control the growth rate by
identifying the urban factors that move the system
toward or across these instabilities.
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APPENDIX

To study the front bifurcation and the transverse
instability for continuous systems we consider a
reaction-diffusion model for two scalar variables
u and v:

Ut U-- U V-- 272U,
v, e(u al v ao) + (272l,

where the subscript denotes the partial derivative
with respect to and 272 is the two dimensional
Laplacian operator. This type of model has been
studied in the context of nerve conduction (with
5=0) and chemical reactions [20-22], semicon-
ductor resonators [23], chains of coupled oscil-
lators [24] and many other systems [25]. It is an
extension of (3) in the sense that the constant
parameter b is now a second dynamical variable
(v). Equations (5) contains four parameters: e, the
ratio of the time scales associated with the two
variables, 5, the ratio of the diffusion constants, and
two parameters, al > 0 and a0, that determine the
number and type of homogeneous steady states.
These states are found by the intersections of the
nullclines v u b/3 and v (u ao)/al. For this
study we always choose al and a0 so that there are
three intersections, each on a different branch of
the cubic nullcline. The intersections on the outer
branches represent stable solutions which we will
call (u +, v +) for the positive branch "up" state, and

(u_, v_) for the negative branch "down" state.
When a0=0, Eq. (5) has an odd symmetry and

(u_,
We focus here on the regime e/6 << where a

singular perturbation analysis of (5) can be per-
formed. For large e/ a different approach can be
used [14]. In addition to the two stable homoge-
neous solutions, Eq. (5) also admits front solutions

connecting regions of (u +, v +) and (u_, v_). The
stability and type of these fronts depend upon the
size of both e and 5. Decreasing from large e, a
bifurcation from a single front solution to three
front solutions occurs. For sufficiently small, the
single front solution below the front bifurcation
and two of the three solutions beyond the bifurca-
tion are stable. Any of these front solutions under-
goes a transverse instability as is increased past a
critical value.

The Front Bifurcation

To study the front bifurcation we consider one-
dimensional (along the x axis) front solutions

propagating at constant speeds and connecting
the up state at -ec to the down state at +ec. The
solutions satisfy

#u / c@u / u- u v O,

v + cv + u- al v- ao O,
(6)

where we rescaled space and time according to

z=x/x, 7-=et, #=e/5<< 1, (7)

and introduced the traveling frame coordinate
z- c7-. Front solutions of (6) can be separated

into two parts pertaining to distinct regions: outer
regions, away from the front, where both u and v

vary on a scale of (.9(1), and an inner region,
including the front, where u varies much faster than
v. In the outer regions the derivative terms in the first
equation of (6) can be neglected leading to the
solutions u=u+(v) of the remaining cubic rela-
tion u- u3 v 0. Using these forms in the second
equation of (6), and setting the front position, u 0,
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at the origin, 0, we obtain closed equations for v,

+ + .+() a.- a0 0. ()

with u u + (v) when 4 < 0 and u u_ (v) when 4 > 0.
To simplify, we choose a large enough so that
v<< and the branches u+(v) can be approxi-
mated by the linear forms u+(v)= +1- v/2. We
then obtain the following linear boundary value
problems for the two outer regions:

< 0: v / cv qZv-+- qZv+ O,

(o) . (-) +.
(9)

> 0: v - cv q2v q- qZv_ O,

(o) . ()= v_.

where ]2= . Setting #--0 in the second equation
of (1 4) gives the equation vx 0, and we choose the
solution v= constant. Fixing the constant, v= vf,

in the equation for u gives a nonlinear eigenvalue
problem for c,

uxx + rlcu +f(u, vf) O,

withf(u, vf) u u vf. The cubic function, f, can
be rewritten as

f(u, vf) -[u- u_(vf)][u- uo(vf)]{u- u+(vf)],
(16)

where

+ a0 q2v+ a + 1/2 (10)
al -+- 1/2

and vf is the level of v at the front position. The
solutions are

V(’)-- (Vf- v+)el + v+,

v() (vf- v_)e + v_,

<0,
(11)

>0,

with

where u_ (vO vf/2, Uo vf, and u + (vO
vf/2, are the linearized forms ofthe cubic isocline

near the three solutions u-- -1,0, respectively.
The speed of the front solution of (1 5) is

Combining the two equations, (1 3) and (1 7), we find
an implicit relation for the front speed, c, in terms of
the equation parameters r/,a, and a0,

cr1,2 -c/2 -+- (c2/4 + q2)1/2. (12)

By construction, the two outer solutions for v are
continuous at 0. Matching the derivatives of v at

--0 gives a relation between c, the speed of the
front, and vf, the value of the v field at the front
position,

x/ c a0
3 - (is)

2q2V/c2/4 + q2 q2

This equation was derived using the coordinate
scaling (7). The relation for the original variables
x and is found by replacing c c/rl in (18):

c a0 (13)
2q2(c2/4 / q2)1/2 q2"

3c
c= +c, (19)

X/-q2 V/c2 + 4r/2q2

A second relation between vf and c is obtained by
solving the inner problem. In the front region u varies
on a scale of (.9(x/) but variations of v are still on a
scale of 69(1). Stretching the traveling-frame coordi-
nate according to X /v/-fi we obtain from (5)

UXX @ T]CUx - u- U V O,

vxx -t- V/-ficvx nt- # u a v ao O,
(14)

where c 3a0/x/q2.
For the symmetric case, a0 0 and consequently

co =0. Equation (19) then has the solution c 0
representing a stationary front. This solution exists
for all r/values. When r/< c-xq two addi-
tional solutions c--+2qv/r/c2 -rfl appear, repre-
senting counterpropagating fronts. Figure 5 (left)
displays the corresponding pitchfork bifurcation.
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For the nonsymmetric case we solved (19)
numerically. A plot of the solutions, c c(r/), in
the (c,r/) plane yields the imperfect pitchfork
bifurcation diagram shown in Fig. 5 (right). The
bifurcation point, r/= r/c, occurs for smaller critical

r value than the symmetric case and the front that
exists for r/> r/c is not stationary.

The Effect of Curvature and
the Transverse Instability

For sufficiently large, planar front solutions may
become unstable to transverse or curvature per-
turbations [26-28]. To study the transverse instabil-
ities of the various front solutions we change from
the fixed coordinate system to a coordinate system
moving with the front. Let X=(X, Y) be the
position vector of the front represented by the
u 0 contour line. The moving coordinate frame
(r, s) is defined by the relation

(20)

with g A and d 6A. This system is exactly of
the same form as Eq. (5) for a planar ( 0) front
propagating at constant speed, cr + , in the normal
direction, i, except the original parameters and 5
are replaced by effective parameters g and d. The
front bifurcation formula (19) can now be applied to

show the effects of curvature on the front velocity.
Using this formula with c replaced by cr / ec and r/

by r/A we obtain an implicit relation for the
normal front velocity in terms of its curvature,

3(c + &)
c,, + t

fq2[(c, +) + 4r/2q21/2 + c. (23)

A plot of cr versus ec in the vicinity of the
front bifurcation yields a multivalued relation as

depicted in Fig. 8.
Equation (23) can be used to study the stability

of the planar fronts to transverse perturbations.
We look for a linear velocity curvature relation,

Cr CO dl / O(2), (24)

with the coordinate s parameterizing the direction
along the front and i (Y,2 X,j3)/V/X,,2 + y.,,2,
the unit vector normal to the front (the subscript s

denotes partial derivatives with respect to s). We
assume the front radius of curvature is much larger
than lv v/-/e, the scale of v variations across the
front. We also assume the curvature varies slowly
both along the front direction and in time. With
these assumptions Eq. (5) assumes the form

ur,. + (cr + )ur + u- u v 0,

+ + + a, ao) o. (21)

where ec(s, t)= X. Y,.,- YX,, is the front curvature,
and c(s, t) X is the front normal velocity.

Multiplying the second equation of (21) by the
factor A(s, t) (cr + )/(c + &c) gives

u,. + (c,. + ec)u + u- u v 0,

+ + + g(. 0,
(22)

valid for small curvature. Here c0(r/) is the speed of
a planar front satisfying (19). A positive (negative)
sign of the coefficient d implies stability (instability)
to transverse perturbations. Inserting (24) into the
expression for the front speed, keeping only linear
terms, we find,

(25)

For each planar solution branch, c0=co(r/), the
condition d 0 defines a line in the e plane where
the corresponding planar front branch undergoes
a transverse instability. Setting d=O for the
symmetric case (a0 0), the stationary and counter-
propagating fronts become unstable to transverse
modulations when 5 > 98-q6e and 5 > 3/(2x/q3x/7),
respectively.


