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We introduce a new class of asymptotically nonexpansive mappings and study approxi-
mating methods for finding their fixed points. We deal with the Krasnosel’skii-Mann-type
iterative process. The strong and weak convergence results for self-mappings in normed
spaces are presented. We also consider the asymptotically weakly contractive mappings.
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1. Introduction

Let K be a nonempty subset of a real linear normed space E. Let T be a self-mapping of
K . Then T : K → K is said to be nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖, ∀x, y ∈ K. (1.1)

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
kn→ 1 as n→∞ such that for all x, y ∈ K the following inequality holds:

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖, ∀n≥ 1. (1.2)

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk
[18] as a generalization of the class of nonexpansive maps. They proved that if K is a
nonempty closed convex bounded subset of a real uniformly convex Banach space and T
is an asymptotically nonexpansive self-mapping of K , then T has a fixed point.

Alber and Guerre-Delabriere have studied in [3–5] weakly contractive mappings of the
class Cψ .

Definition 1.1. An operator T is called weakly contractive of the class Cψ on a closed
convex set K of the normed space E if there exists a continuous and increasing function
ψ(t) defined on R+ such that ψ is positive on R+ \ {0}, ψ(0) = 0, limt→+∞ψ(t) =∞ and
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2 Total asymptotically nonexpansive mappings

for all x, y ∈ K ,

‖Tx−Ty‖ ≤ ‖x− y‖−ψ(‖x− y‖). (1.3)

The classCψ of weakly contractive maps contains the class of strongly contractive maps
and it is contained in the class of nonexpansive maps. In [3–5], in fact, there is also the
concept of the asymptotically weakly contractive mappings of the class Cψ .

Definition 1.2. The operator T is called asymptotically weakly contractive of the class
Cψ if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ and strictly increasing
function ψ : R+ → R+ with ψ(0) = 0 such that for all x, y ∈ K , the following inequality
holds:

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖−ψ(‖x− y‖), ∀n≥ 1. (1.4)

Bruck et al. have introduced in [11] asymptotically nonexpansive in the intermediate
sense mappings.

Definition 1.3. An operator T is said to be asymptotically nonexpansive in the intermediate
sense if it is continuous and the following inequality holds:

limsup
n→∞

sup
x,y∈K

(∥
∥Tnx−Tny

∥
∥−‖x− y‖)≤ 0. (1.5)

Observe that if

an := sup
x,y∈K

(∥
∥Tnx−Tny

∥
∥−‖x− y‖), (1.6)

then (1.5) reduces to the relation

∥
∥Tnx−Tny

∥
∥≤ ‖x− y‖+ an, ∀x, y ∈ K. (1.7)

It is known [23] that if K is a nonempty closed convex bounded subset of a uniformly
convex Banach space E and T is a self-mapping of K which is asymptotically nonexpan-
sive in the intermediate sense, then T has a fixed point. It is worth mentioning that the
class of mappings which are asymptotically nonexpansive in the intermediate sense con-
tains properly the class of asymptotically nonexpansive maps (see, e.g., [22]).

Iterative techniques are the main tool for approximating fixed points of nonexpansive
mappings and asymptotically nonexpansive mappings, and it has been studied by various
authors using Krasnosel’skii-Mann and Ishikawa schemes (see, e.g., [12, 13, 15, 20, 21, 25,
27–37]).

Bose in [10] proved that if K is a nonempty closed convex bounded subset of a uni-
formly convex Banach space E satisfying Opial’s condition [26] and T : K → K is an
asymptotically nonexpansive mapping, then the sequence {Tnx} converges weakly to a
fixed point of T provided T is asymptotically regular at x ∈ K , that is, the limit equality

lim
n→∞

∥
∥Tnx−Tn+1x

∥
∥= 0 (1.8)
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holds. Passty [28] and also Xu [38] showed that the requirement of the Opial’s condition
can be replaced by the Fréchet differentiability of the space norm. Furthermore, Tan and
Xu established in [34, 35] that the asymptotic regularity of T at a point x can be weakened
to the so-called weakly asymptotic regularity of T at x, defined as follows:

ω− lim
n→∞

(

Tnx−Tn+1x
)= 0. (1.9)

In [31, 32], Schu introduced a modified Krasnosel’skii-Mann process to approximate
fixed points of asymptotically nonexpansive self-maps defined on nonempty closed con-
vex and bounded subsets of a uniformly convex Banach space E. In particular, he proved
that the iterative sequence {xn} generated by the algorithm

xn+1 =
(

1−αn
)

xn +αnTnxn, n≥ 1, (1.10)

converges weakly to some fixed point of T if the Opial’s condition holds, {kn}n≥1 ⊂ [1,∞)
for all n ≥ 1, limkn = 1,

∑∞
n=1(k2

n − 1) <∞, {αn}n≥1 is a real sequence satisfying the in-
equalities 0 < ᾱ≤ αn ≤ α̃ < 1, n≥ 1, for some positive constants ᾱ and α̃. However, Schu’s
result does not apply, for instance, to Lp spaces with p 
= 2 because none of these spaces
satisfy the Opial’s condition.

In [30], Rhoades obtained strong convergence theorem for asymptotically nonexpan-
sive mappings in uniformly convex Banach spaces using a modified Ishikawa iteration
method. Osilike and Aniagbosor proved in [27] that the results of [30–32] still remain
true without the boundedness requirement imposed on K , provided that �(T) = {x ∈
K : Tx = x} 
=∅. In [37], Tan and Xu extended Schu’s theorem [32] to uniformly convex
spaces with a Fréchet differentiable norm. Therefore, their result covers Lp spaces with
1 < p <∞.

Chang et al. [12] established convergence theorems for asymptotically nonexpansive
mappings and nonexpansive mappings in Banach spaces without assuming any of the
following properties: (i) E satisfies the Opial’s condition; (ii) T is asymptotically regular
or weakly asymptotically regular; (iii) K is bounded. Their results improve and generalize
the corresponding results of [10, 19, 28, 29, 32, 34, 35, 37, 38] and others.

Recently, Kim and Kim [22] studied the strong convergence of the Krasnosel’skii-
Mann and Ishikawa iterations with errors for asymptotically nonexpansive in the inter-
mediate sense operators in Banach spaces.

In all the above papers, the operator T remains a self-mapping of nonempty closed
convex subset K in a uniformly convex Banach space. If, however, domain D(T) of T is
a proper subset of E (and this is indeed the case for several applications), and T maps
D(T) into E, then the Krasnosel’skii-Mann and Ishikawa iterative processes and Schu’s
modifications of type (1.10) may fail to be well-defined.

More recently, Chidume et al. [14] proved the convergence theorems for asymptot-
ically nonexpansive nonself-mappings in Banach spaces by having extended the corre-
sponding results of [12, 27, 30].

The purpose of this paper is to introduce more general classes of asymptotically non-
expansive mappings and to study approximating methods for finding their fixed points.
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We deal with self- and nonself-mappings and the Krasnosel’skii-Mann-type iterative pro-
cess (1.10). The Ishikawa iteration scheme is beyond the scope of this paper.

Definition 1.4. A mapping T : E→ E is called total asymptotically nonexpansive if there

exist nonnegative real sequences {k(1)
n } and {k(2)

n }, n≥ 1, with k(1)
n ,k(2)

n → 0 as n→∞, and
strictly increasing and continuous functions φ : R+ → R+ with φ(0)= 0 such that

∥
∥Tnx−Tny

∥
∥≤ ‖x− y‖+ k(1)

n φ
(‖x− y‖)+ k(2)

n . (1.11)

Remark 1.5. If φ(λ)= λ, then (1.11) takes the form

∥
∥Tnx−Tny

∥
∥≤ (1 + k(1)

n

)‖x− y‖+ k(2)
n . (1.12)

In addition, if k(2)
n = 0 for all n ≥ 1, then total asymptotically nonexpansive mappings

coincide with asymptotically nonexpansive mappings. If k(1)
n = 0 and k(2)

n = 0 for all n≥ 1,
then we obtain from (1.11) the class of nonexpansive mappings.

Definition 1.6. A mapping T is called total asymptotically weakly contractive if there exist

nonnegative real sequences {k(1)
n } and {k(2)

n }, n ≥ 1, with k(1)
n ,k(2)

n → 0 as n→∞, and
strictly increasing and continuous functions φ,ψ : R+ → R+ with φ(0) = ψ(0) = 0 such
that

∥
∥Tnx−Tny

∥
∥≤ ‖x− y‖+ k(1)

n φ
(‖x− y‖)−ψ(‖x− y‖)+ k(2)

n . (1.13)

Remark 1.7. If φ(λ)= λ, then (1.13) accepts the form

∥
∥Tnx−Tny

∥
∥≤ (1 + k(1)

n

)‖x− y‖−ψ(‖x− y‖)+ k(2)
n . (1.14)

In addition, if k(2)
n = 0 for all n≥ 1, then total asymptotically weakly contractive mapping

coincides with the earlier known asymptotically weakly contractive mapping. If k(2)
n = 0

and k(1)
n = 0, then we obtain from (1.13) the class of weakly contractive mappings. If

k(1)
n ≡ 0 and k(2)

n ≡ an, where an := supx,y∈K (‖Tnx−Tny‖−‖x− y‖) for all n ≥ 0, then
(1.13) reduces to (1.7) which has been studied as asymptotically nonexpansive mappings
in the intermediate sense.

The paper is organized in the following manner. In Section 2, we present characteris-
tic inequalities from the standpoint of their being an important component of common
theory of Banach space geometry. Section 3 is dedicated to numerical recurrent inequal-
ities that are a crucial tool in the investigation of convergence and stability of iterative
methods. In Section 4, we study the convergence of the iterative process (1.10) with to-
tal asymptotically weakly contractive mappings. The next two sections deal with total
asymptotically nonexpansive mappings.

2. Banach space geometry and characteristic inequalities

Let E be a real uniformly convex and uniformly smooth Banach space (it is a reflexive
space), and let E∗ be a dual space with the bilinear functional of duality 〈φ,x〉 between
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φ ∈ E∗ and x ∈ E. We denote the norms of elements in E and E∗ by ‖ · ‖ and ‖ · ‖∗,
respectively.

A uniform convexity of the Banach space E means that for any given ε > 0 there exists
δ > 0 such that for all x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ = ε the inequality

‖x+ y‖ ≤ 2(1− δ) (2.1)

is satisfied. The function

δE(ε)= inf
{

1− 2−1‖x+ y‖, ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ = ε} (2.2)

is called to be modulus of convexity of E.
A uniform smoothness of the Banach space E means that for any given ε > 0 there

exists δ > 0 such that for all x, y ∈ E, ‖x‖ = 1, ‖y‖ ≤ δ the inequality

2−1(‖x+ y‖+‖x− y‖)− 1≤ ε‖y‖ (2.3)

holds. The function

ρE(τ)= sup
{

2−1(‖x+ y‖+‖x− y‖)− 1, ‖x‖ = 1, ‖y‖ = τ} (2.4)

is called to be modulus of smoothness of E.
The moduli of convexity and smoothness are the basic quantitative characteristics of

a Banach space that describe its geometric properties [2, 16, 17, 24]. Let us observe that
the space E is uniformly convex if and only if δE(ε) > 0 for all ε > 0 and it is uniformly
smooth if and only if limτ→0 τ−1ρE(τ)= 0.

The following properties of the functions δE(ε) and ρE(τ) are important to keep in
mind throughout of this paper:

(i) δE(ε) is defined on the interval [0,2], continuous and increasing on this interval,
δE(0)= 0,

(ii) 0 < δE(ε) < 1 if 0 < ε < 2,
(iii) ρE(τ) is defined on the interval [0,∞), convex, continuous and increasing on this

interval, ρE(0)= 0,
(iv) the function gE(ε) = ε−1δE(ε) is continuous and non-decreasing on the interval

[0,2], gE(0)= 0,
(v) the function hE(τ)= τ−1ρE(τ) is continuous and non-decreasing on the interval

[0,∞), hE(0)= 0,
(vi) ε2δE(η) ≥ (4L)−1η2δE(ε) if η ≥ ε > 0 and τ2ρE(σ) ≤ Lσ2ρE(τ) if σ ≥ τ > 0. Here

1 < L < 1.7 is the Figiel constant.
We recall that nonlinear in general operator J : E → E∗ is called normalized duality

mapping if

‖Jx‖∗ = ‖x‖, 〈Jx,x〉 = ‖x‖2. (2.5)

It is obvious that this operator is coercive because of

〈Jx,x〉
‖x‖ −→∞ as ‖x‖ −→∞ (2.6)
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and monotone due to

〈Jx− J y,x− y〉 ≥ (‖x‖−‖y‖)2
. (2.7)

In addition,

〈Jx− J y,x− y〉 ≤ (‖x‖+‖y‖)2
. (2.8)

A normalized duality mapping J∗ : E∗ → E can be introduced by analogy. The properties
of the operators J and J∗ have been given in detail in [2].

Let us present the estimates of the normalized duality mappings used in the sequel (see
[2]). Let x, y ∈ E. We denote

R1 = R1
(‖x‖,‖y‖)=

√

2−1
(‖x‖2 +‖y‖2

)

. (2.9)

Lemma 2.1. In a uniformly convex Banach space E

〈Jx− J y,x− y〉 ≥ 2R2
1δE
(‖x− y‖/2R1

)

. (2.10)

If ‖x‖ ≤ R and ‖y‖ ≤ R, then

〈Jx− J y,x− y〉 ≥ (2L)−1R2δE
(‖x− y‖/2R). (2.11)

Lemma 2.2. In a uniformly smooth Banach space E

〈Jx− J y,x− y〉 ≤ 2R2
1ρE
(

4‖x− y‖/R1
)

. (2.12)

If ‖x‖ ≤ R and ‖y‖ ≤ R, then

〈Jx− J y,x− y〉 ≤ 2LR2ρE
(

4‖x− y‖/R). (2.13)

Next we present the upper and lower characteristic inequalities in E (see [2]).

Lemma 2.3. Let E be uniformly convex Banach space. Then for all x, y ∈ E and for all 0≤
λ≤ 1

∥
∥λx+ (1− λ)y

∥
∥

2 ≤ λ‖x‖2 + (1− λ)‖y‖2− 2λ(1− λ)R2
1δE
(‖x− y‖/2R1

)

. (2.14)

If ‖x‖ ≤ R and ‖y‖ ≤ R, then

∥
∥λx+ (1− λ)y

∥
∥

2 ≤ λ‖x‖2 + (1− λ)‖y‖2−L−1λ(1− λ)R2δE
(‖x− y‖/2R). (2.15)

Lemma 2.4. Let E be uniformly smooth Banach space. Then for all x, y ∈ E and for all
0≤ λ≤ 1

∥
∥λx+ (1− λ)y

∥
∥

2 ≥ λ‖x‖2 + (1− λ)‖y‖2− 8λ(1− λ)R2
1ρE
(

4‖x− y‖/R1
)

. (2.16)
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If ‖x‖ ≤ R and ‖y‖ ≤ R, then

∥
∥λx+ (1− λ)y

∥
∥

2 ≥ λ‖x‖2 + (1− λ)‖y‖2− 16Lλ(1− λ)R2ρE
(

4‖x− y‖/R). (2.17)

3. Recurrent numerical inequalities

Lemma 3.1 (see, e.g., [7]). Let {λn}n≥1, {κn}n≥1 and {γn}n≥1 be sequences of nonnegative
real numbers such that for all n≥ 1

λn+1 ≤ (1 + κn)λn + γn. (3.1)

Let
∑∞

1 κn <∞ and
∑∞

1 γn <∞. Then limn→∞ λn exists.

Lemma 3.2 [1, 8]. Let {λk} and {γk} be sequences of nonnegative numbers and {αk} be a
sequence of positive numbers satisfying the conditions

∞
∑

1

αn =∞, lim
n→∞

γn
αn
−→ 0. (3.2)

Let the recursive inequality

λn+1 ≤ λn−αnψ
(

λn
)

+ γn, n= 1,2, . . . , (3.3)

be given, where ψ(λ) is a continuous and nondecreasing function from R+ to R+ such that it
is positive on R+ \ {0}, φ(0)= 0, limt→∞ψ(t) > 0. Then λn→ 0 as n→∞.

We present more general statement.

Lemma 3.3. Let {λk}, {κn}n≥1 and {γk} be sequences of nonnegative numbers and {αk} be
a sequence of positive numbers satisfying the conditions

∞
∑

1

αn =∞,
∞
∑

1

κn <∞,
γn
αn
−→ 0 as n−→∞. (3.4)

Let the recursive inequality

λn+1 ≤
(

1 + κn
)

λn−αnψ
(

λn
)

+ γn, n= 1,2, . . . , (3.5)

be given, where ψ(λ) is the same as in Lemma 3.2. Then λn→ 0 as n→∞.

Proof. We produce in (3.5) the following replacement:

λn = μnΠn−1
j=1

(

1 + κn
)

. (3.6)

Then

μn+1 ≤ μn−αn
(

Πn−1
j=1

(

1 + κn
))−1

ψ
(

μnΠ
n−1
j=1

(

1 + κn
))

+
(

Πn−1
j=1

(

1 + κn
))−1

γn. (3.7)

Since
∑∞

1 κn <∞, we conclude that there exists a constant C > 0 such that

1≤Πn−1
j=1

(

1 + κn
)≤ C. (3.8)
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Therefore, taking into account nondecreasing property of ψ, we have

μn+1 ≤ μn−αnC−1ψ
(

μn
)

+ γn. (3.9)

Consequently, by Lemma 3.2, μn→ 0 as n→∞ and this implies limn→∞ λn = 0. �

Lemma 3.4. Let {λn}n≥1, {κn}n≥1 and {γn}n≥1 be nonnegative, {αn}n≥1 be positive real
numbers such that

λn+1 ≤ λn + κnφ
(

λn
)−αnψ

(

λn
)

+ γn, ∀n≥ 1, (3.10)

where φ,ψ : R+ → R+ are strictly increasing and continuous functions such that φ(0)= ψ(0)
= 0. Let for all n > 1

γn
αn
≤ c1,

κn
αn
≤ c2, αn ≤ α <∞, (3.11)

where 0 ≤ c1, c2 <∞. Assume that the equation ψ(λ) = c1 + c2φ(λ) has the unique root λ∗
on the interval (0,∞) and

lim
λ→∞

ψ(λ)
φ(λ)

> c2. (3.12)

Then λn ≤max{λ1,K∗}, where K∗ = λ∗ +α(c1 + c2φ(λ∗)). In addition, if

∞
∑

1

αn =∞,
γn + κn
αn

−→ 0, (3.13)

then λn→ 0 as n→∞.
Proof. For each n∈ I = {1,2, . . .}, just one alternative can happen: either

H1 : κnφ
(

λn
)−αnψ

(

λn
)

+ γn > 0, (3.14)

or

H2 : κnφ
(

λn
)−αnψ

(

λn
)

+ γn ≤ 0. (3.15)

Denote I1 = {n∈ I |H1 is true} and I2 = {n∈ I |H2 is true}. It is clear that I1∪ I2 = I .
(i) Let c1 > 0. Since ψ(0)= 0, we see that hypothesis H1 is valid on the interval (0,λ∗)

and H2 is valid on [λ∗,∞). Therefore, the following result is obtained:

λn ≤ λ∗, ∀n∈ I1 = {1,2, . . . ,N},

λN+1 ≤ λN + γN + κNφ
(

λN
)≤ λ∗ + γN + κNφ(λ∗)≤ K∗,

λn ≤ λN+1 ≤ K∗, ∀n≥N + 2.

(3.16)

Thus, λn ≤ K∗ for all n≥ 1.
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(ii) Let c1 = 0. This takes place if γn = 0 for all n > 1. In this case, along with situ-
ation described above it is possible I2 = I and then λn < λ1 for all n ≥ 1. Hence, λn ≤
max{λ1,K∗} = C̄. The second assertion follows from Lemma 3.2 because

λn+1 ≤ λn−αnψ
(

λn
)

+ κnφ(C̄) + γn, n= 1,2, . . . . (3.17)
�

Lemma 3.5. Suppose that the conditions of the previous lemma are fulfilled with positive κn
for n≥ 1, 0 < c1 <∞, and the equation ψ(λ)= c1 + c2φ(λ) has a finite number of solutions

λ(1)
∗ ,λ(2)

∗ , . . . ,λ(l)
∗ , l ≥ 1. Then there exists a constant C̄ > 0 such that all the conclusions of

Lemma 3.4 hold.

Proof. It is sufficiently to consider the following two cases.

(i) If there is no points of contact among λ(l)
∗ , i= 1,2, . . . , l, then

I = I(1)
1 ∪ I(1)

2 ∪ I(2)
1 ∪ I(2)

2 ∪ I(3)
1 ∪ I(3)

2 ∪···∪ I(l)
1 ∪ I(l)

2 , (3.18)

where I(k)
1 ⊂ I1 and I(k)

2 ⊂ I2, k = 1,2, . . . ,l. It is not difficult to see that λn ≤ λ∗ on the
interval I(1)

1 . Denote N (1)
1 =max{n | n∈ I(1)

1 }. Then N (1)
1 + 1=min{n | n∈ I(1)

2 } and this
yields the inequality

λN (1)
1 +1 ≤ λN (1)

1
+ γN (1)

1
+ κN (1)

1
φ
(

λN (1)
1

)≤ λ∗ + γN (1)
1

+ κN (1)
1
φ(λ∗)≤ K∗. (3.19)

By the hypothesis H2, for the rest n∈ I(1)
2 , we have λn ≤ λN (1)

1 +1 ≤ K∗. The same situation

arrises on the intervals I(2)
1 ∪ I(2)

2 , I(3)
1 ∪ I(3)

1 , and so forth. Thus, λn ≤ K∗ for all n∈ I .
(ii) If some λ(i)

∗ is a point of contact, then either Ii ⊂ I2 and Ii+1 ⊂ I2 or Ii ⊂ I1 and
Ii+1 ⊂ I1. We presume, respectively, Ii∪ Ii+1 ⊂ I2 and Ii∪ Ii+1 ⊂ I1 and after this number
intervals again. It is easy to verify that the proof coincides with the case (i). �

Remark 3.6. Lemma 3.4 remains still valid if the equation ψ(λ)= c1 + c2φ(λ) has a mani-
fold of solutions on the interval (0,∞).

Lemma 3.7 (see [6]). Let {μn}, {αn}, {βn} and {γn} be sequences of non-negative real
numbers satisfying the recurrence inequality

μn+1 ≤ μn−αnβn + γn. (3.20)

Assume that

∞
∑

n=1

αn =∞,
∞
∑

n=1

γn <∞. (3.21)

Then
(i) there exists an infinite subsequence {β�n} ⊂ {βn} such that

β�n ≤
1

∑�n
j=1αj

, (3.22)

and, consequently, limn→∞β�n = 0;
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(ii) if limn→∞αn = 0 and there exists a constant κ > 0 such that

∣
∣βn+1−βn

∣
∣≤ καn (3.23)

for all n≥ 1, then limn→∞βn = 0.

4. Convergence analysis of the iterations (1.10) with total asymptotically
weakly contractive mappings

In this section, we are going to prove the strong convergence of approximations generated
by the iterative process (1.10) to fixed points of the total asymptotically weakly contractive
mappings T : K → K , where K ⊆ E is a nonempty closed convex subset. In the sequal, we
denote a fixed point set of T by �(T), that is, �(T) := {x ∈ K : Tx = x}.
Theorem 4.1. Let E be a real linear normed space and K a nonempty closed convex subset
of E. Let T : K → K be a mapping which is total asymptotically weakly contractive. Suppose
that �(T) 
= ∅ and x∗ ∈�(T). Starting from arbitrary x1 ∈ K define the sequence {xn} by
the iterative scheme (1.10), where {αn}n≥1 ⊂ (0,1) such that

∑

αn =∞. Suppose that there

exist constants m1,m2 > 0 such that k(1)
n ≤m1, k(2)

n ≤m2,

lim
λ→∞

ψ(λ)
φ(λ)

>m1 (4.1)

and the equation ψ(λ)=m1φ(λ) +m2 has the unique root λ∗. Then {xn} converges strongly
to x∗.

Proof. Since K is closed convex subset of E, T : K → K and {αn}n≥1 ⊂ (0,1), we conclude
that {xn} ⊂ K . We first show that the sequence {xn} is bounded. From (1.10) and (1.13)
one gets

∥
∥xn+1− x∗

∥
∥≤ ∥∥(1−αn

)

xn +αnTnxn− x∗
∥
∥

≤ (1−αn
)∥
∥xn− x∗

∥
∥+αn

∥
∥Tnxn−Tnx∗

∥
∥

≤ ∥∥xn− x∗
∥
∥+αnk(1)

n φ
(∥
∥xn− x∗

∥
∥
)−αnψ

(∥
∥xn− x∗

∥
∥
)

+αnk(2)
n .

(4.2)

By Lemma 3.4, we obtain that {xn− x∗} is bounded, namely, ‖xn− x∗‖ ≤ C̄, where

C̄ =max
{∥
∥x1− x∗

∥
∥, λ∗ +m1φ

(

λ∗
)

+m2
}

. (4.3)

Next the convergence xn→ x∗ is shown by the relation

∥
∥xn+1− x∗

∥
∥≤ ∥∥xn− x∗

∥
∥−αnψ

(∥
∥xn− x∗

∥
∥
)

+αnk(1)
n φ(C̄) +αnk(2)

n , (4.4)

applying Lemma 3.2 to the recurrent inequality (3.5) with λn = ‖xn− x∗‖. �
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In particular, if ψ(t) is convex, continuous and non-decreasing, φ(t) = t, k(2)
n = 0 for

all n≥ 1,
∑∞

n=1αnk
(1)
n <∞, then there holds the estimate

∥
∥xn− x∗

∥
∥≤ R̄Φ−1

(

Φ
(∥
∥x1− x∗

∥
∥
)− (1 + a)−1

n−1
∑

i=1

αi

)

, (4.5)

where αk(1)
n ≤a andΠ∞i=1(1+αnk

(1)
n )≤ R̄<∞,Φ is defined by the formulaΦ(t)=∫ (dt/ψ(t))

and Φ−1 is the inverse function to Φ. Observe that a and R̄ exists because the series
∑∞

n=1αnk
(1)
n is convergent.

Theorem 4.2. Let E be a real linear normed space and K a nonempty closed convex subset
of E. Let T : K → K be a mapping which is total asymptotically weakly contractive. Suppose
that �(T) 
= ∅ and x∗ ∈�(T). Starting from arbitrary x1 ∈ K define the sequence {xn} by

(1.10), where {αn}n≥1 ⊂ (0,c] with some c > 0 such that
∑

αn =∞. Suppose that k(1)
n ≤ 1,

and there exists M > 0 such that φ(λ)≤ ψ(λ) for all λ≥M. Then {xn} converges strongly to
x∗.

Proof. Since φ and ψ are increasing functions, we have

φ(λ)≤ φ(M) +ψ(λ). (4.6)

Then

∥
∥xn+1− x∗

∥
∥≤ ∥∥xn− x∗

∥
∥−αn

(

1− k(1)
n

)

ψ
(∥
∥xn− x∗

∥
∥
)

+αnk(1)
n φ(M) +αnk(2)

n , (4.7)

and the result follows from Lemma 3.2 again. �

The following theorem gives the sufficient convergence condition of the scheme (1.10)
which includes φ(λ)= λp, 0 < p ≤ 1, regardless of what ψ is.

Theorem 4.3. Let E be a real linear normed space and K a nonempty closed convex subset
of E. Let T : K → K be a mapping which is total asymptotically weakly contractive. Suppose
that �(T) 
= ∅ and there exist positive constantsM0 andM > 0 such that φ(λ)≤M0λ for all
λ≥M. Starting from arbitrary x1 ∈ K define the sequence {xn} as (1.10), where {αn}n≥1 ⊂
(0,1) such that

∑∞
1 αn =∞. Suppose that

∑∞
1 αnk

(1) <∞. Then {xn} converges strongly to
x∗.

Proof. We follow the proof scheme of Theorem 4.1 to show that {xn} is bounded. Since
φ(λ)≤M0λ for all λ≥M, one can deduce from (4.2) the inequality

∥
∥xn+1− x∗

∥
∥≤ (1 +M0αnk

(1)
n

)∥
∥xn− x∗

∥
∥−αnψ

(∥
∥xn− x∗

∥
∥
)

+MM0αnk
(1)
n +αnk(2)

n . (4.8)

Then Lemma 3.3 implies the assertion. �

We now combine Theorems 4.2 and 4.3 and establish the following theorem.

Theorem 4.4. Let E be a real linear normed space andK a nonempty closed convex subset of
E. Let T : K → K be a mapping which is total asymptotically weakly contractive. Suppose that
�(T) 
= ∅ and x∗ ∈�(T). Starting from arbitrary x1 ∈ K define the sequence {xn} by the
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formula (1.10), where {αn}n≥1 ⊂ (0,1) such that
∑∞

1 αn =∞. Suppose that
∑∞

1 αnk
(1)
n <∞,

∑∞
1 αnk

(2)
n <∞, and there exists M > 0 such that φ(λ) ≤ m−1ψ(λ) +M0λ for all λ ≥M,

where m :=max{k(1)
n }n≥1. Then {xn} converges strongly to x∗.

Proof. Since φ(λ)≤m−1ψ(λ) +M0λ for all λ≥M, we have

k(1)
n φ(λ)−ψ(λ)≤ k(1)

n φ(M) +M0k
(1)
n λ. (4.9)

Then from (4.2) one gets

∥
∥xn+1− x∗

∥
∥≤ (1 +M0αnk

(1)
n

)∥
∥xn− x∗

∥
∥+αnk(1)

n φ(M) +αnk(2)
n . (4.10)

Due to Lemma 3.1, the sequence {xn} is bounded because
∑∞

1 αnk
(1)
n <∞ and

∑∞
1 αnk

(2)
n <

∞. Therefore, using (4.2) again, we derive the inequality

∥
∥xn+1− x∗

∥
∥≤ ∥∥xn− x∗

∥
∥−αnψ

(∥
∥xn− x∗

∥
∥
)

+αnk(1)
n φ(C) +αnk(2)

n . (4.11)

By Lemma 3.2, ‖xn− x∗‖→ 0 as n→∞, and the theorem follows. �

If in Theorems 4.1–4.4, the sequence {xn} is assumed to be bounded, in particular, if
K is bounded, then the following corollary appears.

Corollary 4.5. Let E be a real linear normed space and K a nonempty closed convex subset
of E. Let T : K → K be a mapping which is total asymptotically weakly contractive. Suppose
�(T) 
= ∅ and x∗ ∈ �(T). Let {αn}n≥1 ⊂ (0,1) be such that

∑∞
1 αn = ∞. Starting from

arbitrary x1 ∈ K define the sequence {xn} by (1.10). Suppose that {xn} is bounded. Then
{xn} converges strongly to x∗.

Remark 4.6. The estimates of convergence rate are calculated as in [4].

5. Auxiliary assertions for total asymptotically nonexpansive mappings

Lemma 5.1. Let E be a real linear normed space and K a nonempty closed convex subset
of E. Let T : K → K be a mapping which is total asymptotically nonexpansive and there ex-
ist constants M0,M > 0 such that φ(λ) ≤M0λ for all λ ≥M. Let x∗ ∈ �(T) := {x ∈ K :
Tx = x} and {αn}n≥1 ⊂ (0,1) for all n ≥ 1. Starting from arbitrary x1 ∈ K define the se-

quence {xn} generated by (1.10). Suppose that
∑∞

1 αnk
(1)
n <∞ and

∑∞
1 αnk

(2)
n <∞. Then

limn→∞‖xn− x∗‖ exists.

Proof. We first show that the sequence {xn} is bounded. From (4.2) one has

∥
∥xn+1− x∗

∥
∥≤ ∥∥(1−αn

)

xn +αnTnxn− x∗
∥
∥

≤ (1−αn
)∥
∥xn− x∗

∥
∥+αn

∥
∥Tnxn−Tnx∗

∥
∥

≤ ∥∥xn− x∗
∥
∥+αnk(1)

n φ
(∥
∥xn− x∗

∥
∥
)

+αnk(2)
n .

(5.1)
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Since φ is increasing function, it results that φ(λ) ≤ φ(M) if λ ≤M and φ(λ) ≤M0λ if
λ≥M. In either case we obtain

φ
(∥
∥xn− x∗

∥
∥
)≤ φ(M) +M0

∥
∥xn− x∗

∥
∥ ∀n≥ 1. (5.2)

Thus, (5.1) yields the following inequality:

∥
∥xn+1− x∗

∥
∥≤ (1 +M0αnk

(1)
n

)∥
∥xn− x∗

∥
∥+αnk(1)

n ψ(M) +αnk(2)
n . (5.3)

However,
∑∞

k=1αnk
(1)
n < ∞ and

∑∞
n=1αnk

(2)
n < ∞, therefore, due to Lemma 3.1, the se-

quence {‖xn− x∗‖} is bounded and it has a limit. This completes the proof. �

Lemma 5.2. Let E be a real uniformly convex Banach space and K a nonempty closed convex
subset of E. Let T : K → K be a uniformly continuous mapping which is total asymptotically
nonexpansive. From arbitrary x1 ∈ K , define the sequence {xn} by the algorithm (1.10),
where {αn}n≥1 ∈ (0,1]. Then the condition ‖Tnxn− xn‖→ 0 as n→∞ implies that

lim
n→∞

∥
∥xn+1− xn

∥
∥= 0, (5.4)

lim
n→∞

∥
∥Txn− xn

∥
∥= 0. (5.5)

Proof. We have from (1.10) that

∥
∥xn+1− xn

∥
∥= ∥∥(1−αn

)

xn +αnTnxn− xn
∥
∥= αn

∥
∥Tnxn− xn

∥
∥. (5.6)

Therefore, (5.4) holds. Also
∥
∥xn−Txn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1−Tn+1xn+1

∥
∥

+
∥
∥Tn+1xn+1−Tn+1xn

∥
∥+

∥
∥Tn+1xn−Txn

∥
∥

≤ 2
∥
∥xn− xn+1

∥
∥+ k(1)

n φ
(∥
∥xn− xn+1

∥
∥
)

+ k(2)
n

+
∥
∥xn+1−Tn+1xn+1

∥
∥+

∥
∥Tn+1xn−Txn

∥
∥.

(5.7)

Since T is uniformly continuous, there exists a continuous increasing function ω : R→ R
with ω(0)= 0 satisfying the inequality

∥
∥Tn+1xn−Txn

∥
∥= ∥∥T(Tnxn

)−Txn
∥
∥≤ ω(∥∥Tnxn− xn

∥
∥
)

. (5.8)

The hypotheses ‖Tnxn− xn‖→ 0 as n→∞ implies that

∥
∥Tn+1xn−Txn

∥
∥−→ 0,

∥
∥xn+1−Tn+1xn+1

∥
∥−→ 0. (5.9)

The result (5.4) and conditions on k(1)
n and k(2)

n allow us to conclude from (5.7) that (5.5)
follows. �

Next we assume that E is a Banach space.
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Lemma 5.3. Let E be a real uniformly convex Banach space and K a nonempty closed con-
vex subset of E. Let T : K → K be a uniformly continuous mapping which is total asymptot-
ically nonexpansive and there exist M0,M > 0 such that φ(λ)≤M0λ for all λ≥M. Suppose
�(T) 
= ∅. From arbitrary x1 ∈ K , define the sequence {xn} by the algorithm (1.10), where

{αn}n≥1 is such that η1 ≤ αn ≤ 1− η2 with some η1,η2 > 0. Suppose that
∑∞

1 k
(1)
n <∞ and

∑∞
1 k

(2)
n <∞. Then ‖Txn− xn‖→ 0 and ‖xn+1− xn‖→ 0 as n→∞.

Proof. Let x∗ ∈ �(T). By making use of Lemma 5.1, limn→∞‖xn − x∗‖ exists. If
limn→∞‖xn − x∗‖ = 0, by continuity of T , we are done. Let limn→∞‖xn − x∗‖ = r > 0.
Observe that {xn} is bounded. Therefore, there exists R > 0 such that ‖xn‖ ≤ R for all
n≥ 1.

We claim that

lim
n→∞

∥
∥Tnxn− xn

∥
∥= 0. (5.10)

Indeed, due to Lemma 2.3, one gets

∥
∥xn+1− x∗

∥
∥

2 = ∥∥(1−αn
)

xn +αnTnxn− x∗
∥
∥

2

= ∥∥(1−αn
)(

xn− x∗
)

+αn
(

Tnxn− x∗
)∥
∥

2

≤ (1−αn
)∥
∥xn− x∗

∥
∥

2
+αn

(∥
∥xn− x∗

∥
∥+M′k(1)

n + k(2)
n

)2

− (2L)−1R2αn
(

1−αn
)

δE
(∥
∥Tnxn− xn

∥
∥/2R

)

,

(5.11)

where M′ = φ(R+ ‖x∗‖). We deduce from this that there exists a constant M′′ > 0 such
that

(2L)−1R2ε1ε2δE
(∥
∥Tnxn− xn

∥
∥/2R

)

≤ ∥∥xn− x∗
∥
∥

2−∥∥xn+1− x∗
∥
∥

2
+M′′(1− ε2

)(

M′k(1)
n + k(2)

n

)

.
(5.12)

Since
∑∞

1 k
(1)
n <∞,

∑∞
1 k

(2)
n <∞ and

∞
∑

1

(∥
∥xn− x∗

∥
∥

2−∥∥xn+1− x∗
∥
∥

2
)

= ∥∥x1− x∗
∥
∥

2− r2, (5.13)

we have

∞
∑

1

δE
(∥
∥Tnxn− xn

∥
∥/2R

)

<∞. (5.14)

This implies

lim
n→∞δE

(∥
∥Tnxn− xn

∥
∥/2R

)= 0. (5.15)
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Hence, (5.10) holds because of the properties of δE(ε). Lemma 5.2 yields now the con-
clusions of the lemma. �

Remark 5.4. If in the inequality (1.11) k(2)
n = 0, then the operator T : K → K is uniformly

continuous.

6. Convergence analysis of the iterations (1.10) with total asymptotically
nonexpansive mappings

In this section, we study the weak and strong convergence of approximations generated
by the iterative process (1.10) to fixed points of the total asymptotically nonexpansive
mappings T : K → K . As before, we denote �(T)= {x ∈ K : Tx = x}.
Theorem 6.1. Let E be a real uniformly convex Banach space and K a nonempty closed
convex subset of E. Let T : K → K be a uniformly continuous and compact mapping which
is total asymptotically nonexpansive and there exist constants M0,M > 0 such that φ(λ) ≤
M0λ for all λ≥M. Suppose that �(T) 
= ∅. Let {αn}n≥1 be such that η1 ≤ αn ≤ 1− η2 for
all n ≥ 1 with some η1,η2 > 0. From arbitrary x1 ∈ K , define the sequence {xn} by (1.10).

Suppose that
∑∞

1 k
(1)
n <∞,

∑∞
1 k

(2)
n <∞. Then {xn} converges strongly to a fixed point of T .

Proof. Since T is continuous and compact on K , it is completely continuous. Moreover,
by Lemma 5.1, {xn} is bounded, say, ‖xn‖ ≤ C. Consequently, if x∗ ∈ �(T), then the
sequence {Tnxn} is also bounded, in view of the relations

∥
∥Tnxn− x∗

∥
∥= ∥∥Tnxn−Tnx∗

∥
∥≤ ∥∥xn− x∗

∥
∥+Mk(1)

n + k(2)
n , (6.1)

where M = φ(C + ‖x∗‖). Then we conclude that there exists a subsequence {Tnj xnj} of
{Tnxn} such that Tnj xnj → y∗ as j →∞. Furthermore, by (5.10), one gets

∥
∥Tnj xnj − xnj

∥
∥−→ 0 (6.2)

which implies that xnj → y∗ as j →∞. By Lemma 5.3, we also conclude that

∥
∥Txnj − xnj

∥
∥−→ 0. (6.3)

Therefore, the continuity ofT yields the equalityTy∗ = y∗. Finally, the limit of ‖xn− y∗‖
exists as n→∞ because of Lemma 5.1. Therefore, the strong convergence of {xn} to some
point of �(T) holds. This accomplishes the proof. �

Theorem 6.2. Let E be a real uniformly convex and uniformly smooth Banach space andK a
nonempty closed convex subset of E. Let T : K → K be a uniformly continuous and compact
mapping which is total asymptotically nonexpansive and there exist constants M0,M > 0
such that φ(λ)≤M0λ for all λ≥M. Suppose that �(T) 
= ∅ and x∗ ∈�(T). Let {αn}n≥1 ⊂
(0,1) be such that

∑∞
1 αn = ∞. Taking an arbitrary x1 ∈ K define the sequence {xn} by

(1.10). Suppose that
∑∞

1 αnk
(1)
n <∞,

∑∞
1 αnk

(2)
n <∞,

∑∞
1 ρB(αn) <∞ and k(1)

n ≤ D1αn and

k(2)
n ≤ D2αn. Assume that there exists a positive differentiable function δ̃(ε) : [0,2]→ [0,1]

and positive constants c > 0 and D0 > 0, such that δE(ε) ≥ cδ̃(ε), and |δ̃′(ε)| ≤ D0 for all
0≤ ε ≤ 2. Then {xn} converges strongly to a fixed point of T .
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Proof. We denote Fn = I −Tn. Since T is total asymptotically nonexpansive, one can con-

sider without loss of generality that k(1)
n ≤ c1 and k(2)

n ≤ c2. Consequently, by Lemma 2.3,
if ‖x‖ ≤ R̄ and ‖y‖ ≤ R̄, then

∥
∥Tnx−Tny

∥
∥

2 = ∥∥(x− y)− (Fnx−Fny)∥∥2

≥ ‖x− y‖2− 2
〈

J(x− y),Fnx−Fny〉

+ (2L)−1R2δE
(∥
∥Fnx−Fny∥∥/2R),

(6.4)

where R= 5R̄+ c1φ(2R̄) + c2, because ‖x− y‖ ≤ 2R̄ and
∥
∥(x− y)− (Fnx−Fny)∥∥≤ 5R̄+ c1φ(2R̄) + c2. (6.5)

This means that
〈

J
(

xn− x∗
)

,Fnxn
〉≥ (4L)−1R2δE

(∥
∥Fnxn

∥
∥/2R

)− 2−1
(∥
∥Tnxn−Tnx∗

∥
∥

2−∥∥xn− x∗
∥
∥

2
)

,
(6.6)

where x∗ ∈�(T). Let us evaluate the difference
∥
∥Tnxn−Tnx∗

∥
∥

2−∥∥xn− x∗
∥
∥

2
. (6.7)

By Lemma 5.1, the sequence {xn} is bounded, say, ‖xn‖ ≤ C. Therefore, ‖xn− x∗‖ ≤ C+
‖x∗‖ = R1. Now it is not difficult to verify that

∥
∥Fnxn

∥
∥= ∥∥Fnxn−Fnx∗

∥
∥≤ 2

∥
∥xn− x∗

∥
∥+ k(1)

n φ
(∥
∥xn− x∗

∥
∥
)

+ k(2)
n

≤ 2R1 + c1φ
(

R1
)

+ c2 = R2.
(6.8)

Then
∥
∥xn+1− xn

∥
∥= αn

∥
∥Fnxn

∥
∥≤ R2αn −→ 0. (6.9)

In addition, since φ(λ)≤MM0 +M0λ, we have

∥
∥Tnxn−Tnx∗

∥
∥

2 ≤ (1 +M0k
(1)
n

)2∥
∥xn− x∗

∥
∥

2

+
(

1 +M0k
(1)
n

)(

MM0k
(1)
n + k(2)

n

)∥
∥xn− x∗

∥
∥+

(

MM0k
(1)
n + k(2)

n

)2
.

(6.10)

This implies the estimate

∥
∥Tnxn−Tnx∗

∥
∥

2−∥∥xn− x∗
∥
∥

2 ≤ γn, (6.11)

where

γn = 2R2
1M0k

(1)
n +R2

1M
2
0

(

k(1)
n

)2
+R1

(

1 +M0k
(1)
n

)(

MM0k
(1)
n + k(2)

n

)

+
(

MM0k
(1)
n + k(2)

n

)2
.

(6.12)
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It follows from (6.4) that the inequality

〈

J
(

xn− x∗
)

,Fnxn
〉≥ (4L)−1R2

3δE
(∥
∥Fnxn

∥
∥/2R3

)− 2−1γn (6.13)

holds, where R3 = 3R1 + c1φ(R1) + c2. Further,

∥
∥xn+1− x∗

∥
∥

2−∥∥xn− x∗
∥
∥

2

≤ 2
〈

J
(

xn− x∗
)

,xn+1− xn
〉

+ 2
〈

J
(

xn+1− x∗
)− J(xn− x∗

)

,xn+1− xn
〉

≤−2αn
〈

J
(

xn− x∗
)

,Fnxn
〉

+ 2R2
1ρE
(

4R−1
1 αn

∥
∥Fnxn

∥
∥
)

≤−(2L)−1cR2
3αnδ̃

(∥
∥Fnxn

∥
∥/2R3

)

+ 2R2
1ρE
(

4R−1
1 R2αn

)

+αnγn.

(6.14)

Let μn = ‖xn− x∗‖ and βn = δ̃(‖Fnxn‖/2R). Then the previous inequality gives

μn+1 ≤ μn− (2L)−1cR2
3αnβn + 2R2

1ρE
(

4R−1
1 R2αn

)

+αnγn. (6.15)

Since δ̃(ε) is differentiable, we derive for some 0≤ η ≤ 2 the following estimate:

∣
∣βn+1−βn

∣
∣≤ c(2R3

)−1∣
∣δ̃′(η)

∣
∣
∣
∣
∥
∥Fnxn+1

∥
∥−∥∥Fnxn

∥
∥
∣
∣

≤ cD0
(

2R3
)−1(∥

∥Fnxn+1−Fnxn
∥
∥
)

≤ cD0
(

2R3
)−1
(

2
∥
∥xn+1− xn

∥
∥+ k(1)

n φ
(∥
∥xn+1− xn

∥
∥
)

+ k(2)
n

)

≤ cD0
(

2R3
)−1(

2R2 +D1φ
(

R2αn
)

+D2
)

αn ≤ C̄αn,

(6.16)

where

C̄ = cD0
(

2R3
)−1(

2R2 +D1φ
(

R2
)

+D2
)

> 0. (6.17)

Due to Lemma 3.7,

lim
n→∞ δ̃

(∥
∥Fnxn

∥
∥/2R3

)= 0 (6.18)

because of
∑∞

1 ρB(αn) <∞,
∑∞

1 αnk
(1)
n <∞ and

∑∞
1 αnk

(2)
n <∞. By the properties of δ̃(ε),

lim
n→∞

∥
∥xn−Tnxn

∥
∥= 0. (6.19)

Since
∑∞

1 ρE(αn) <∞, we obtain that αn→ 0 and then, by (6.9),

lim
n→∞

∥
∥xn+1− xn

∥
∥= 0. (6.20)

As it was shown by Lemma 5.2, the relations (6.19) and (6.20) yield (5.5). The rest of the
proof follows the pattern of Theorem 6.1. �



18 Total asymptotically nonexpansive mappings

Remark 6.3. It is known that δE(ε) ≥ εs, s≥ 2, in spaces lp, Lp and W
p
m, 1 < p <∞, that

is, δ̃E(ε)= εs.
Remark 6.4. If δE(ε) is differentiable, then there is no need to introduce δ̃(ε). Moreover,
in this case, δ′(ε) is positive and bounded on [0,2].

IfK is bounded, then Theorems 6.1 and 6.2 do not need constantsM0 andM satisfying
the inequality φ(λ)≤M0λ for all λ≥M. In particular, we have the following corollary.

Corollary 6.5. Let E be a real uniformly convex Banach space and K a nonempty closed
convex and bounded subset of E. Let T : K → K be a uniformly continuous and compact
mapping which is total asymptotically nonexpansive. Suppose �(T) 
= ∅. Let {αn}n≥1 be

such that η1 ≤ αn ≤ 1−η2 for all n≥ 1 and with some η1,η2 > 0. Suppose that
∑∞

1 k
(1)
n <∞

and
∑∞

1 k
(2)
n <∞. Taken an arbitrary x1 ∈ K , we define the sequence {xn} by (1.10). Then

{xn} converges strongly to a fixed point of T .

Further we omit the compactness property of T and study weak convergence of the
iterations (1.10).

Theorem 6.6. Let E be a real uniformly convex and uniformly smooth Banach space and
K a nonempty closed convex subset of E. Let T : K → K be a uniformly continuous mapping
which is total asymptotically nonexpansive and there exist constants M0,M > 0 such that
φ(λ) ≤M0λ for all λ ≥M. Let �(T) 
= ∅ and {αn}n≥1 ⊂ (0,1) be such that

∑∞
1 αn =∞.

Taking an arbitrary x1 ∈ K define the sequence {xn} by (1.10). Assume that

∞
∑

1

αnk
(1)
n <∞,

∞
∑

1

αnk
(2)
n <∞,

∞
∑

1

ρB(αn) <∞, (6.21)

and there exist a positive differentiable function δ̃(ε) : [0,2]→ [0,1] and positive constants

c, D, D1 and D2 such that δE(ε) ≥ cδ̃(ε), |δ′E(ε)| ≤ D for all 0 ≤ ε ≤ 2, k(1)
n ≤ D1αn and

k(2)
n ≤D2αn. If the operator F = I −T is demi-closed, then {xn} weakly converges to a fixed

point of T .

Proof. In Theorem 6.2, we have established that ‖xn‖ ≤ C and limn→∞Fxn = 0. Every
bounded set in a reflexive Banach space is relatively weakly compact. This means that
there exists some subsequence {xnk} ⊆ {xn} that weakly converges to a limit point x̃. Since
K is closed and convex, it is also weakly closed. Therefore x̃ ∈ K . Since F = I −T is demi-
closed, x̃ ∈�(T). Thus, all weak accumulation points of {xn} belong to �(T). If �(T)
is a singleton, then the whole sequence {xn} converges weakly to x̃. Otherwise, we will
prove the claim by contradiction (see [9]). �
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