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In a recent paper we gave a notion of degree for a class of perturbations of nonlinear
Fredholm maps of index zero between real infinite dimensional Banach spaces. Our pur-
pose here is to extend that notion in order to include the degree introduced by Nussbaum
for local α-condensing perturbations of the identity, as well as the degree for locally com-
pact perturbations of Fredholm maps of index zero recently defined by the first and third
authors.
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1. Introduction

In a recent paper [1] we defined a concept of degree for a special class of noncompact
perturbations of nonlinear Fredholm maps of index zero between (infinite dimensional
real) Banach spaces, called α-Fredholm maps. The definition of these maps is based on
the following two numbers (see, e.g., [12]) associated with a map f : Ω→ F from an
open subset of a Banach space E to a Banach space F:

α( f )= sup
{
α
(
f (A)

)
α(A)

: A⊆Ω bounded, α(A) > 0
}

,

ω( f )= inf
{
α
(
f (A)

)
α(A)

: A⊆Ω bounded, α(A) > 0
}

,

(1.1)

where α is the Kuratowski measure of noncompactness (in [12] ω( f ) is denoted by β( f ),
however, we prefer here the more recent notation ω( f ) as in [9]).

Roughly speaking, an α-Fredholm map is of the type f = g − k, with the inequality

α(k) < ω(g) (1.2)

satisfied locally. These maps include locally compact perturbations of Fredholm maps
(quasi-Fredholm maps for short) since, when g is Fredholm and k is locally compact,
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one has α(k) = 0 and ω(g) > 0, locally. Moreover, they also contain local α-contractive
perturbations of the identity, where, following Darbo [6], a map k is α-contractive if
α(k) < 1.

The purpose of this paper is to give an extension of the notion of the degree for α-
Fredholm maps to a more general class of noncompact perturbations of Fredholm maps,
still defined in terms of the numbers α and ω. This class of maps, that we call weakly
α-Fredholm, includes local α-condensing perturbations of the identity, where a map k is
α-condensing if α(k(A)) < α(A), for every A such that 0 < α(A) < +∞. We show that, for
local α-condensing perturbations of the identity, our degree coincides with the degree
defined by Nussbaum in [14, 15].

For an interesting, although partial, extension of the Leray-Schauder degree to a large
class of maps (called quasi-ruled Fredholm maps) we mention the work of Efendiev (see
[10, 11] and references therein). This class of maps has nonempty intersection with our
class of weakly α-Fredholm maps. However, our degree is integer valued and, as said
before, extends completely the Nussbaum degree (and, consequently, the Leray-Schauder
degree). This is not the case of the degree by Efendiev, since it takes values in the non-
negative integers.

2. Orientability for Fredholm maps

In this section we summarize the notion of orientability for nonlinear Fredholm maps of
index zero between Banach spaces introduced in [2, 3].

The starting point is a concept of orientation for linear Fredholm operators of index
zero between real Banach spaces. From now on and in the rest of the paper, E and F will
denote two real Banach spaces. Recall that a bounded linear operator L : E→ F is said to
be Fredholm if dimKerL and dimcoKerL are finite. The index of L is

indL= dimKerL−dimcoKerL. (2.1)

Given a Fredholm operator of index zero L : E→ F, a bounded linear operator A : E→
F with finite dimensional image is called a corrector of L if L+A is an isomorphism. On
the (nonempty) set �(L) of correctors of L we define an equivalence relation as follows.
Let A,B ∈�(L) be given and consider the following automorphism of E:

T = (L+B)−1(L+A)= I − (L+B)−1(B−A). (2.2)

The operator K = (L+B)−1(B−A) clearly has finite dimensional image. Hence, given
any nontrivial finite dimensional subspace E0 of E containing the image of K , the re-
striction of T to E0 is an automorphism. Therefore, its determinant is well defined and
nonzero. It is easy to check that this does not depend on the choice of E0 (see [2]). Thus,
the determinant of T is well defined as the determinant of the restriction of T to any
nontrivial finite dimensional subspace of E containing the image of K . We say that A is
equivalent to B or, more precisely, A is L-equivalent to B if

det
(
(L+B)−1(L+A)

)
> 0. (2.3)
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As shown in [2], this is actually an equivalence relation on �(L) with two equivalence
classes.

Definition 2.1. Let L be a linear Fredholm operator of index zero between two real Banach
spaces. An orientation of L is the choice of one of the two equivalence classes of �(L), and
L is oriented when an orientation is chosen.

Given an oriented operator L, the elements of its orientation are called positive correc-
tors of L.

Definition 2.2. An oriented isomorphism L is said to be naturally oriented if the trivial
operator is a positive corrector, and this orientation is called the natural orientation of L.

An orientation of a Fredholm operator of index zero induces an orientation to any
sufficiently close operator. Precisely, consider a Fredholm operator of index zero L and a
corrector A of L. Since the set of the isomorphisms from E into F is open in the space
L(E,F) of bounded linear operators, A turns out to be a corrector of every T in a suitable
neighborhood U of L in L(E,F). Therefore, if L is oriented and A is a positive corrector
of L, any T ∈U can be oriented taking A as a positive corrector of T . This fact allows us
to give a notion of orientation for a continuous map with values in the set Φ0(E,F) of
Fredholm operators of index zero from E into F.

Definition 2.3. Let X be a topological space and h : X →Φ0(E,F) a continuous map. An
orientation of h is a continuous choice of an orientation α(x) of h(x) for each x ∈ X ,
where “continuous” means that for any x ∈ X there exists A ∈ α(x) which is a positive
corrector of h(x′) for any x′ in a neighborhood of x. A map is orientable when it admits
an orientation and oriented when an orientation is chosen.

Remark 2.4. It is possible to prove (see [3, Proposition 3.4]) that two equivalent correctors
A and B of a given L∈Φ0(E,F) remain T-equivalent for any T in a neighborhood of L.
This implies that the notion of “continuous choice of an orientation” in Definition 2.3 is
equivalent to the following one:

(i) for any x ∈ X and any A ∈ α(x), there exists a neighborhood U of x such that
A∈ α(x′) for all x′ ∈U .

As a straightforward consequence of Definition 2.3, if h : X → Φ0(E,F) is orientable
and g : Y → X is any continuous map, then the composition hg is orientable as well.
In particular, if h is oriented, then hg inherits in a natural way an orientation from the
orientation of h. This holds, for example, for the restriction of h to any subset A of X ,
since h|A is the composition of h with the inclusion A↩X . Moreover, if H : X × [0,1]→
Φ0(E,F) is an oriented homotopy and λ∈ [0,1] is given, the partial map Hλ =Hiλ, where
iλ(x)= (x,λ), inherits an orientation from H .

The following proposition shows an important property of the notion of orientabil-
ity for continuous maps in Φ0(E,F), which is, roughly speaking, a sort of continuous
transport of an orientation along a homotopy (see [3, Theorem 3.14]).

Proposition 2.5. Consider a homotopy H : X × [0,1]→Φ0(E,F). Assume that, for some
λ∈ [0,1], the partial map Hλ =H(·,λ) is oriented. Then there exists a unique orientation
of H such that the orientation of Hλ is inherited from that of H .
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Let us now give a notion of orientability for Fredholm maps of index zero between
Banach spaces. Recall that, given an open subset Ω of E, a map g : Ω→ F is a Fredholm
map if it is C1 and its Fréchet derivative, g′(x), is a Fredholm operator for all x ∈Ω. The
index of g at x is the index of g′(x) and g is said to be of index n if it is of index n at any
point of its domain.

Definition 2.6. An orientation of a Fredholm map of index zero g : Ω→ F is an orientation
of the continuous map g′ : x �→ g′(x), and g is orientable, or oriented, if so is g′ according
to Definition 2.3.

The notion of orientability of Fredholm maps of index zero is discussed in depth in
[2, 3], where the reader can find examples of orientable and nonorientable maps. Here
we recall a property (Theorem 2.8 below) which is the analogue for Fredholm maps of
the continuous transport of an orientation along a homotopy, as seen in Proposition 2.5.
We need first the following definition.

Definition 2.7. Let H : Ω× [0,1]→ F be a C1 homotopy. Assume that any partial map Hλ

is Fredholm of index zero. An orientation of H is an orientation of the map

∂1H : Ω× [0,1]−→Φ0(E,F), (x,λ) �−→ (Hλ
)′

(x), (2.4)

and H is orientable, or oriented, if so is ∂1H according to Definition 2.3.

From the above definition it follows immediately that if H oriented, an orientation of
any partial map Hλ is inherited from H .

Theorem 2.8 below is a straightforward consequence of Proposition 2.5.

Theorem 2.8. Let H : Ω× [0,1]→ F be C1 and assume that any Hλ is a Fredholm map of
index zero. If a given Hλ is orientable, then H is orientable. If, in addition, Hλ is oriented,
there exists a unique orientation of H such that the orientation of Hλ is inherited from that
of H .

We conclude this section by showing that the orientation of a Fredholm map g is re-
lated to the orientations of domain and codomain of suitable restrictions of g. This argu-
ment will be crucial in the definition of the degree for quasi-Fredholm maps.

Let g : Ω→ F be an oriented map and Z a finite dimensional subspace of F, transverse
to g. By classical transversality results, M = g−1(Z) is a differentiable manifold of the same
dimension as Z. In addition, M is orientable (see [2, Remark 2.5 and Lemma 3.1]). In
particular, let us show how, given any x ∈M, the orientation of g and a chosen orientation
of Z induce an orientation on the tangent space TxM of M at x.

Let Z be oriented. Consider x ∈M and a positive corrector A of g′(x) with image
contained in Z (the existence of such a corrector is ensured by the transversality of Z to
g). Then, orient TxM in such a way that the isomorphism

(
g′(x) +A

)|TxM : TxM −→ Z (2.5)

is orientation preserving. As proved in [4], the orientation of TxM does not depend on
the choice of the positive corrector A, but only on the orientations of Z and g′(x). With
this orientation, we call M the oriented g-preimage of Z.
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3. Orientability and degree for quasi-Fredholm maps

In this section we recall the concept of degree for quasi-Fredholm maps. This degree was
defined for the first time in [16] by means of the Elworthy-Tromba notion of Fredholm
structure on a differentiable manifold. Here we summarize the simple approach given in
[4] which is based on the concept of orientation for nonlinear Fredholm maps and avoids
the Elworthy-Tromba theory.

The starting point is the definition of orientability for quasi-Fredholm maps.

Definition 3.1. Let Ω be an open subset of E, g : Ω→ F a Fredholm map of index zero
and k : Ω→ F a locally compact map. The map f : Ω→ F, defined by f = g − k, is called
a quasi-Fredholm map and g is a smoothing map of f .

The following definition provides an extension to quasi-Fredholm maps of the concept
of orientability.

Definition 3.2. A quasi-Fredholm map f : Ω → F is orientable if it has an orientable
smoothing map.

If f is an orientable quasi-Fredholm map, any smoothing map of f is orientable. In-
deed, given two smoothing maps g0 and g1 of f , consider the homotopy H : Ω× [0,1]→
F, defined by

H(x,λ)= (1− λ)g0(x) + λg1(x). (3.1)

Notice that any Hλ is Fredholm of index zero, since it differs from g0 by a C1 locally
compact map. By Theorem 2.8, if g0 is orientable, then g1 is orientable as well.

Let f : Ω→ F be an orientable quasi-Fredholm map. To define a notion of orientation
of f , consider the set �( f ) of the oriented smoothing maps of f . We introduce in �( f )
the following equivalence relation. Given g0, g1 in �( f ), consider, as in formula (3.1),
the straight-line homotopy H joining g0 and g1. We say that g0 is equivalent to g1 if their
orientations are inherited from the same orientation of H , whose existence is ensured by
Theorem 2.8. It is immediate to verify that this is an equivalence relation. If the domain
of f is connected, any smoothing map has two orientations and, hence, �( f ) has exactly
two equivalence classes.

Definition 3.3. Let f : Ω→ F be an orientable quasi-Fredholm map. An orientation of f
is the choice of an equivalence class in �( f ).

By the above construction, given an orientable quasi-Fredholm map f , an orientation
of a smoothing map g determines uniquely an orientation of f . Therefore, in the sequel,
if f is oriented, we will refer to a positively oriented smoothing map of f as an element in
the chosen class of �( f ).

As for Fredholm maps of index zero, the orientation of quasi-Fredholm maps verifies
a homotopy invariance property, as shown in Theorem 3.6 below. We need first some
definitions.
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Definition 3.4. Let H : Ω× [0,1]→ F be a map of the form

H(x,λ)=G(x,λ)−K(x,λ), (3.2)

where G is C1, any Gλ is Fredholm of index zero and K is locally compact. We call H a
homotopy of quasi-Fredholm maps and G a smoothing homotopy of H .

We need a concept of orientability for homotopies of quasi-Fredholm maps. The def-
inition is analogous to that given for quasi-Fredholm maps. Let H : Ω× [0,1]→ F be a
homotopy of quasi-Fredholm maps. Let �(H) be the set of oriented smoothing homo-
topies of H . Assume that �(H) is nonempty and define on this set an equivalence relation
as follows. Given G0 and G1 in �(H), consider the map

� : Ω× [0,1]× [0,1]−→ F, (3.3)

defined as

�(x,λ,s)= (1− s)G0(x,λ) + sG1(x,λ). (3.4)

We say that G0 is equivalent to G1 if their orientations are inherited from an orientation
of the map

(x,λ,s) �−→ ∂1�(x,λ,s). (3.5)

The reader can easily verify that this is actually an equivalence relation on �(H).

Definition 3.5. A homotopy of quasi-Fredholm maps H : Ω× [0,1]→ F is said to be ori-
entable if �(H) is nonempty. An orientation of H is the choice of an equivalence class of
�(H).

The following homotopy invariance property of the orientation of quasi-Fredholm
maps is the analogue of Theorem 2.8. The proof is a straightforward consequence of
Proposition 2.5.

Theorem 3.6. Let H : Ω× [0,1] → F be a homotopy of quasi-Fredholm maps. If a par-
tial map Hλ is oriented, then there exists and is unique an orientation of H such that the
orientation of Hλ is inherited from that of H .

Let us now summarize the construction of the degree.

Definition 3.7. Let f : Ω→ F be an oriented quasi-Fredholm map and U an open subset
of Ω. The triple ( f ,U ,0) is said to be qF-admissible provided that f −1(0)∩U is compact.

The construction of the degree for qF-admissible triples is in two steps. In the first
one we consider triples ( f ,U ,0) such that f has a smoothing map g with ( f − g)(U)
contained in a finite dimensional subspace of F. In the second step we remove this as-
sumption, defining the degree for all qF-admissible triples.

Step 3.8. Let ( f ,U ,0) be a qF-admissible triple and let g be a positively oriented smooth-
ing map of f such that ( f − g)(U) is contained in a finite dimensional subspace of F.
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As f −1(0)∩U is compact, there exist a finite dimensional subspace Z of F and an open
neighborhood W of f −1(0) in U , such that g is transverse to Z in W . We may assume
that Z contains ( f − g)(U). Let M = g−1(Z)∩W . As seen at the end of Section 2, let Z be
oriented and orient M in such a way that it is the oriented g|W -preimage of Z. One can
easily verify that ( f |M)−1(0)= f −1(0)∩U . Thus ( f |M)−1(0) is compact, and the Brouwer
degree of the triple ( f |M ,M,0) turns out to be well defined.

Definition 3.9. Let ( f ,U ,0) be a qF-admissible triple and let g be a positively oriented
smoothing map of f such that ( f − g)(U) is contained in a finite dimensional subspace
of F. Let Z be a finite dimensional subspace of F and W an open neighborhood of f −1(0)
in U such that

(1) Z contains ( f − g)(U),
(2) g is transverse to Z in W .

Assume Z oriented and let M be the oriented g|W -preimage of Z. Then, the degree of
( f ,U ,0) is defined as

degqF( f ,U ,0)= degB
(
f |M ,M,0

)
, (3.6)

where the right-hand side of the above formula is the Brouwer degree of the triple ( f |M ,
M,0).

In [4] it is proved that the above definition is well posed in the sense that the right-
hand side of (3.6) is independent of the choice of the smoothing map g, the open set W
and the subspace Z.

Step 3.10. Let us now extend the definition of degree to general qF-admissible triples.

Definition 3.11. Let ( f ,U ,0) be a qF-admissible triple. Consider
(1) a positively oriented smoothing map g of f ;
(2) an open neighborhood V of f −1(0)∩U such that V ⊆ U , g is proper on V and

( f − g)|V is compact;
(3) a continuous map ξ : V → F having bounded finite dimensional image and such

that

∥∥g(x)− f (x)− ξ(x)
∥∥ < ρ, ∀x ∈ ∂V , (3.7)

where ρ is the distance in F between 0 and f (∂V).
Then,

degqF( f ,U ,0)= degqF(g − ξ,V ,0). (3.8)

Observe that the right-hand side of (3.8) is well defined since the triple (g − ξ,V ,0) is
qF-admissible. Indeed, g − ξ is proper on V and thus (g − ξ)−1(0) is a compact subset of
V which is actually contained in V by assumption (3).

In [4] it is proved that Definition 3.11 is well posed since formula (3.8) does not de-
pend on g, ξ and V .

We conclude the section by listing some properties of the degree. The proof of this
result is in [4].
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Theorem 3.12. The following properties of the degree hold.
(1) (Normalization) Let U be an open neighborhood of 0 in E and let the identity I of E

be naturally oriented. Then,

degqF(I ,U ,0)= 1. (3.9)

(2) (Additivity) Given a qF-admissible triple ( f ,U ,0) and two disjoint open subsets U1,
U2 of U such that f −1(0)∩U ⊆U1∪U2, then

degqF( f ,U ,0)= degqF
(
f ,U1,0

)
+ degqF

(
f ,U2,0

)
. (3.10)

(3) (Excision) Given a qF-admissible triple ( f ,U ,0) and an open subset U1 of U such
that f −1(0)∩U ⊆U1, then

degqF( f ,U ,0)= degqF
(
f ,U1,0

)
. (3.11)

(4) (Existence) Given a qF-admissible triple ( f ,U ,0), if

degqF( f ,U ,0) �= 0, (3.12)

then the equation f (x)= 0 has a solution in U .
(5) (Homotopy invariance) Let H : U × [0,1] → F be an oriented homotopy of quasi-

Fredholm maps. If H−1(0) is compact, then degqF(Hλ,U ,0) is well defined and does
not depend on λ∈ [0,1].

4. Measures of noncompactness

In this section we recall the definition and properties of the Kuratowski measure of non-
compactness [13], together with some related concepts. For general reference, see, for
example, Deimling [7].

From now on the spaces E and F are assumed to be infinite dimensional. As in the
above section, Ω will stand for an open subset of E.

The Kuratowski measure of noncompactness α(A) of a bounded subset A of E is defined
as the infimum of the real numbers d > 0 such that A admits a finite covering by sets of
diameter less than d. If A is unbounded, we set α(A)= +∞.

We summarize the following properties of the measure of noncompactness. Given a
subset A of E, we denote by coA the closed convex hull of A, and by [0,1]A the set

{
λx : λ∈ [0,1], x ∈ A

}
. (4.1)

Proposition 4.1. Let A and B be subsets of E. Then
(1) α(A)= 0 if and only if A is compact;
(2) α(λA)= |λ|α(A) for any λ∈R;
(3) α(A+B)≤ α(A) +α(B);
(4) if A⊆ B, then α(A)≤ α(B);
(5) α(A∪B)=max{α(A),α(B)};
(6) α([0,1]A)= α(A);
(7) α(coA)= α(A).
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Properties (1)–(6) are straightforward consequences of the definition, while the last
one is due to Darbo [6].

Given a continuous map f : Ω→ F, let α( f ) and ω( f ) be as in the introduction. It
is important to observe that α( f )= 0 if and only if f is completely continuous (i.e., the
restriction of f to any bounded subset of Ω is a compact map) and ω( f ) > 0 only if f
is proper on bounded closed sets. For a complete list of properties of α( f ) and ω( f ) we
refer to [12]. We need the following one concerning linear operators.

Proposition 4.2. Let L : E→ F be a bounded linear operator. Then ω(L) > 0 if and only if
ImL is closed and dimKerL < +∞.

As a consequence of Proposition 4.2 one gets that a bounded linear operator L is Fred-
holm if and only if ω(L) > 0 and ω(L∗) > 0, where L∗ is the adjoint of L.

Let f be as above and fix p ∈Ω. We recall the definitions of αp( f ) and ωp( f ) given
in [5]. Let B(p,s) denote the open ball in E centered at p with radius s. Suppose that
B(p,s)⊆Ω and consider

α
(
f |B(p,s)

)= sup
{
α
(
f (A)

)
α(A)

: A⊆ B(p,s), α(A) > 0
}
. (4.2)

This is nondecreasing as a function of s. Hence, we can define

αp( f )= lim
s→0

α
(
f |B(p,s)

)
. (4.3)

Clearly αp( f )≤ α( f ) for any p ∈Ω. In an analogous way, we define

ωp( f )= lim
s→0

ω
(
f |B(p,s)

)
, (4.4)

and we have ωp( f )≥ ω( f ) for any p. It is easy to show that the main properties of α and
ω hold, with minor changes, as well for αp and ωp (see [5]).

Proposition 4.3. Let f : Ω→ F be continuous and p ∈Ω. Then
(1) αp(λ f )= |λ|αp( f ) and ωp(λ f )= |λ|ωp( f ), for any λ∈R;
(2) ωp( f )≤ αp( f );
(3) |αp( f )−αp(g)| ≤ αp( f + g)≤ αp( f ) +αp(g);
(4) ωp( f )−αp(g)≤ ωp( f + g)≤ ωp( f ) +αp(g);
(5) if f is locally compact, αp( f )= 0;
(6) if ωp( f ) > 0, f is locally proper at p.

Clearly, for a bounded linear operator L : E→ F, the numbers αp(L) and ωp(L) do not
depend on the point p and coincide, respectively, with α(L) and ω(L). Furthermore, for
the C1 case we get the following result.

Proposition 4.4 ([5]). Let f : Ω→ F be of class C1. Then, for any p ∈Ω we have αp( f )=
α( f ′(p)) and ωp( f )= ω( f ′(p)).

Observe that if f : Ω→ F is a Fredholm map, as a straightforward consequence of
Propositions 4.2 and 4.4, we obtain ωp( f ) > 0 for any p ∈Ω.
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The following proposition extends to the continuous case an analogous result shown
in [5] for C1 maps.

Proposition 4.5. Let g : Ω→ F and σ : Ω→ R be continuous. Consider the product map
f : Ω→ F defined by f (x)= σ(x)g(x). Then, for any p ∈Ω we have αp( f )= |σ(p)|αp(g)
and ωp( f )= |σ(p)|ωp(g).

Proof. Let p ∈Ω be fixed, and assume first that σ(p) = 0. Fix ε > 0. As σ is continuous,
there exists s such that for any s ≤ s and any x ∈ B(p,s) one has |σ(x)| ≤ ε and, conse-
quently, f (x)∈ [−ε,ε]g(x). It follows that f (A)⊆ [−ε,ε]g(A) for any A⊆ B(p,s). Hence,
α( f (A)) ≤ εα(g(A)) for any A ⊆ B(p,s), and this implies α( f |B(p,s)) ≤ εα(g|B(p,s)). Tak-
ing the limit for s→ 0 we have αp( f ) ≤ εαp(g). Since ε is arbitrary, we conclude that
αp( f )= 0.

In the general case, write

f (x)= σ(p)g(x) + f̃ (x), (4.5)

where f̃ (x)= σ̃(x)g(x)= (σ(x)− σ(p))g(x). As σ̃(p)= 0, we have αp( f̃ )= 0. Therefore,
by properties (1) and (3) in Proposition 4.3, we get αp( f )= αp(σ(p)g)= |σ(p)|αp(g), as
claimed. The case of ωp( f ) is analogous. �

With an argument analogous to that used in [5], by means of Proposition 4.5 one can
easily find examples of continuous maps f such that α( f )=∞ and αp( f ) <∞ for any p,
and examples of continuous maps f with ω( f ) = 0 and ωp( f ) > 0 for any p. Moreover,
in [5] there is an example of a map f such that α( f ) > 0 and αp( f )= 0 for any p.

In the sequel we will consider also maps G defined on the product space E×R. In
order to define α(p,λ)(G), we consider the norm

∥∥(p,λ)
∥∥=max

{‖p‖,|λ|}. (4.6)

The natural projection of E×R onto the first factor will be denoted by π1.

Remark 4.6. With the above norm, π1 is nonexpansive. Therefore α(π1(X)) ≤ α(X) for
any subset X of E ×R. More precisely, since R is finite dimensional, if X ⊆ E ×R is
bounded, we have α(π1(X))= α(X).

We conclude the section with the following technical result, which is a straightforward
consequence of Proposition 4.5 and which will be useful in the construction of the degree
for weakly α-Fredholm maps (see Section 6 below).

Corollary 4.7. Given a continuous map ϕ : Ω→ F, consider the map

Φ : Ω× [0,1]−→ F, Φ(x,λ)= λϕ(x). (4.7)

Then, for any fixed pair (p,λ)∈Ω× [0,1] we have

α(p,λ)(Φ)= λαp(ϕ). (4.8)

Proof. Apply Proposition 4.5 and observe that, given p ∈ Ω and λ ∈ [0,1], one has
α(p,λ)(ϕ)= αp(ϕ). �
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5. Degree for α-Fredholm maps

In this section we sketch the construction of the degree for α-Fredholm maps introduced
in [1]. These maps are special noncompact perturbations of Fredholm maps, defined
in terms of the numbers αp and ωp. Precisely, an α-Fredholm map f : Ω→ F is of the
form f = g − k, where g is a Fredholm map of index zero, k is a continuous map and
αp(k) < ωp(g) for every p.

The degree is given as an integer valued map defined on a class of triples that we will
call admissible α-Fredholm triples. This class is recalled in the following two definitions.

Definition 5.1. Let g : Ω→ F be a Fredholm map of index zero, k : Ω→ F a continuous
map, and U an open subset of Ω. The triple (g,U ,k) is said to be α-Fredholm if for any
p ∈U we have

αp(k) < ωp(g). (5.1)

Definition 5.2. An α-Fredholm triple (g,U ,k) is said to be admissible if
(i) g is oriented;

(ii) the solution set S= {x ∈U : g(x)= k(x)} is compact.

Definition 5.3. Let (g,U ,k) be an admissible α-Fredholm triple and

�= {V1, . . . ,VN
}

(5.2)

a finite covering of open balls of its solution set S. We say that � is an α-covering of S
(relative to (g,U ,k)) if for any i∈ {1, . . . ,N} the following properties hold:

(i) the ball Ṽi of double radius and same center as Vi is contained in U ;
(ii) α(k|Ṽi

) < ω(g|Ṽi
).

Let (g,U ,k) be an admissible α-Fredholm triple and � = {V1, . . . ,VN} an α-covering
of the solution set S. We define the following sequence {Cn} of convex closed subsets of
E:

C1 = co

( N⋃
i=1

{
x ∈Vi : g(x)∈ k

(
Ṽi
)})

(5.3)

and, inductively,

Cn = co

( N⋃
i=1

{
x ∈Vi : g(x)∈ k

(
Ṽi∩Cn−1

)})
, n≥ 2. (5.4)

Observe that, by induction, Cn+1 ⊆ Cn and S⊆ Cn for any n≥ 1. Then the set

C∞ =
⋂
n≥1

Cn (5.5)

turns out to be closed, convex, and containing S. Consequently, if S is nonempty, so is
C∞. To emphasize the fact that the set C∞ is uniquely determined by the covering �,
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sometimes it will be denoted by C�∞. In addition C∞ verifies the following two properties
(see [1] for the proof):

(1) {x ∈Vi : g(x)∈ k(Ṽi∩C∞)} ⊆ C∞, for any i= 1, . . . ,N ;
(2) C∞ is compact.

Definition 5.4. Let (g,U ,k) be an admissible α-Fredholm triple, � = {V1, . . . ,VN} an α-
covering of the solution set S, and C a compact convex set. We say that (�,C) is an α-pair
(relative to (g,U ,k)) if the following properties hold:

(1) U ∩C �= ∅;
(2) C∞ ⊆ C;
(3) {x ∈Vi : g(x)∈ k(Ṽi∩C)} ⊆ C for any i= 1, . . . ,N .

Remark 5.5. Given any admissible α-Fredholm triple (g,U ,k), it is always possible to find
an α-pair (�,C). Indeed, assume that the solution set S is nonempty. Then, given any α-
covering � of S, the corresponding compact set C�∞ is nonempty as well and, clearly, the
pair (�,C�∞) verifies properties (1)–(3) in Definition 5.4. If, on the other hand, S =∅,
one can check that ({∅},{p}) is an α-pair for any p ∈U .

Let (g,U ,k) be an admissible α-Fredholm triple and let (�,C) be an α-pair. Consider
a retraction r : E→ C, whose existence is ensured by Dugundji’s Extension theorem [8].
Denote V =⋃N

i=1Vi, where {V1, . . . ,VN} =�, and let W be a (possibly empty) open sub-
set of V containing S such that, for any i, x ∈W ∩Vi implies r(x)∈ Ṽi. For example, if ρ
denotes the minimum of the radii of the balls Vi, one may take as W the set

{
x ∈V :

∥∥x− r(x)
∥∥ < ρ

}
. (5.6)

Observe that property (3) above implies that the two equations g(x)= k(x) and g(x)=
k(r(x)) have the same solution set in W (notice that the composition kr is defined in the
open set r−1(U) containing W). The map kr is locally compact (even if not necessar-
ily compact), hence the triple (g − kr,W ,0) is qF-admissible (recall Definition 3.7). We
define the degree of the triple (g,U ,k), deg∗(g,U ,k) in symbols, as follows:

deg∗(g,U ,k)= degqF(g − kr,W ,0), (5.7)

where the right-hand side is the degree defined in Section 3.
The following definition summarizes the above construction.

Definition 5.6. Let (g,U ,k) be an admissible α-Fredholm triple and (�,C) an α-pair.
Consider a retraction r : E→ C. Denote V =⋃N

i=1Vi, where {V1, . . . ,VN} =�. Let W be
an open subset of V containing S such that, for any i, x ∈W ∩Vi implies r(x)∈ Ṽi. We
set

deg∗(g,U ,k)= degqF(g − kr,W ,0). (5.8)

As proved in [1], the above definition is well posed since the right-hand side of formula
(5.8) is independent of the choice of the α-pair (�,C), of the retraction r and of the open
set W .
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We conclude this section by stating the most important properties of the degree. Actu-
ally, in [1] only the fundamental properties (i.e., normalization, additivity and homotopy
invariance) were stated and proved. The excision and existence properties are easy conse-
quences of the additivity.

Theorem 5.7. The following properties hold.
(1) (Normalization) Let the identity I of E be naturally oriented. Then

deg∗(I ,E,0)= 1. (5.9)

(2) (Additivity) Given an admissible α-Fredholm triple (g,U ,k) and two disjoint open
subsets U1, U2 of U , assume that S= {x ∈U : g(x)= k(x)} is contained in U1∪U2.
Then

deg∗(g,U ,k)= deg∗
(
g,U1,k

)
+ deg∗

(
g,U2,k

)
. (5.10)

(3) (Excision) Given an admissible α-Fredholm triple (g,U ,k) and an open subset U1 of
U , assume that S is contained in U1. Then

deg∗(g,U ,k)= deg∗
(
g,U1,k

)
. (5.11)

(4) (Existence) Given an admissible α-Fredholm triple (g,U ,k), if

deg∗(g,U ,k) �= 0, (5.12)

then the equation g(x)= k(x) has a solution in U .
(5) (Homotopy invariance) Let H : U × [0,1]→ F be a homotopy of the form H(x,λ)=

G(x,λ)−K(x,λ), where G is of class C1, any Gλ = G(·,λ) is Fredholm of index zero,
K is continuous, and α(p,λ)(K) < ω(p,λ)(G) for any pair (p,λ) ∈ U × [0,1]. Assume
that G is oriented and that H−1(0) is compact. Then deg∗(Gλ,U ,Kλ) is well defined
and independent of λ∈ [0,1].

6. Degree for weakly α-Fredholm maps

We present here an extension of the degree for α-Fredholm maps to a more general class
of maps, called weakly α-Fredholm. These are of the form f = g − k : Ω→ F, where g is
Fredholm of index zero, k is continuous and the following condition is verified: for any
p ∈ Ω there exists s > 0 such that for any A ⊆ B(p,s) with α(A) > 0 we have α(k(A)) <
ωp(g)α(A).

The reader can verify that α-Fredholm maps are also weakly α-Fredholm.
As in the previous section, this degree is an integer valued map defined on a special

class of triples, called admissible weakly α-Fredholm.

Definition 6.1. Let g : Ω→ F be a Fredholm map of index zero, k : Ω→ F a continuous
map and U an open subset of Ω. The triple (g,U ,k) is said to be weakly α-Fredholm if for
any p ∈U there exists s > 0 such that for any A⊆ B(p,s) with α(A) > 0 we have

α
(
k(A)

)
< ωp(g)α(A). (6.1)
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Let (g,U ,k) be a weakly α-Fredholm triple. As a consequence of Definition 6.1, given
p ∈U there exists s > 0 such that

α
(
k(A)

)
< α
(
g(A)

)
, for any A⊆ B(p,s) with α(A) > 0. (6.2)

Thus, any compact subset of U admits a neighborhood as in the following definition.

Definition 6.2. Let (g,U ,k) be a weakly α-Fredholm triple, and Q a compact subset of U .
An open neighborhood V of Q is said to be an α-neighborhood of Q (relative to (g,U ,k))
if the following properties hold:

(i) V ⊆U and k(V) is bounded;
(ii) α(k(A)) < α(g(A)), for any A⊆V with α(A) > 0.

Lemma 6.3. Let (g,U ,k) be a weakly α-Fredholm triple, Q a compact subset of U , and V an
α-neighborhood of Q (relative to (g,U ,k)). Then, the homotopy

Ψ : V × [0,1]−→ F, Ψ(x,λ)= g(x)− λk(x) (6.3)

is proper.

Proof. Let C ⊆ F be compact. We need to show that the set D =Ψ−1(C) is compact. As in
Section 4, let π1 denote the natural projection of E×R onto the first factor. Notice that,
given x ∈ π1(D), we have g(x)∈ C+ [0,1]k(x). Thus,

g
(
π1(D)

)⊆ C+ [0,1]k
(
π1(D)

)
. (6.4)

Consequently, by the properties of the measure of noncompactness,

α
(
g
(
π1(D)

))≤ α(C) +α
(
k
(
π1(D)

))= α
(
k
(
π1(D)

))
. (6.5)

As V is an α-neighborhood of Q, property (ii) in Definition 6.2 implies α(π1(D)) = 0.
Moreover, by Remark 4.6, since D ⊆ π1(D)× [0,1] we have

α(D)≤ α
(
π1(D)× [0,1]

)= α
(
π1(D)

)= 0. (6.6)

Hence, α(D) = 0. Therefore D is compact, being closed in E× [0,1] (recall Proposition
4.1). �

As a consequence of this result we deduce the following property.

Corollary 6.4. Let Ψ be as in Lemma 6.3. Then, any partial map Ψ(·,λ) is proper on V .

We introduce now the concept of admissible weakly α-Fredholm triple.

Definition 6.5. A weakly α-Fredholm triple (g,U ,k) is said to be admissible if
(i) g is oriented;

(ii) the solution set S= {x ∈U : g(x)= k(x)} is compact.

Given an admissible weakly α-Fredholm triple (g,U ,k) and an α-neighborhood V of
S, let us show that, for ε > 0 sufficiently small, (g,V , (1− ε)k) is an admissible α-Fredholm
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triple. To see this observe first that, by Definition 6.1, αp(k)≤ ωp(g) for any p ∈U . There-
fore, for any p ∈U and any positive ε < 1 we have

αp
(
(1− ε)k

)= (1− ε)αp(k) < ωp(g) (6.7)

and, consequently, (g,U , (1− ε)k) is an α-Fredholm triple. We claim that, for ε > 0 small,
this triple is admissible (i.e., Sε = {x ∈V : g(x)= (1− ε)k(x)} is compact). Observe that,
by Corollary 6.4, the map g − k is proper on V . Thus, the number

δ = inf
{∥∥g(x)− k(x)

∥∥ : x ∈ ∂V
}

(6.8)

is positive. Moreover, set

γ = sup
{∥∥k(x)

∥∥ : x ∈ ∂V
}
. (6.9)

As k(V) is bounded, it follows that γ is finite. Now, given x ∈ ∂V and ε < min{1,δ/γ} (we
put δ/γ = +∞ if γ = 0), we have

∥∥g(x)− (1− ε)k(x)
∥∥≥ ∥∥g(x)− k(x)

∥∥− ε
∥∥k(x)

∥∥≥ δ− εγ > 0 (6.10)

and, consequently, the equation g(x) = (1− ε)k(x) has no solutions on ∂V . Since, by
Corollary 6.4, the map g − (1− ε)k is proper on V , it follows that Sε is compact. Hence,
(g,V , (1− ε)k) is an admissible α-Fredholm triple. This argument suggests the following
definition.

Definition 6.6. Let (g,U ,k) be an admissible weakly α-Fredholm triple, and V an α-
neighborhood of the solution set S. Put δ and γ as in (6.8) and (6.9). If 0 < ε < min{1,δ/γ},
we set

deg(g,U ,k)= deg∗
(
g,V , (1− ε)k

)
. (6.11)

The next proposition shows that the above definition is well posed.

Proposition 6.7. Let (g,U ,k) be an admissible weakly α-Fredholm triple, and let V1 and
V2 be two α-neighborhoods of the solution set S. Put

δi = inf
{∥∥g(x)− k(x)

∥∥ : x ∈ ∂Vi
}

, γi = sup
{∥∥k(x)

∥∥ : x ∈ ∂Vi
}

, i= 1,2. (6.12)

If 0 < εi < min{1,δi/γi}, for i= 1,2, then

deg∗
(
g,V1,

(
1− ε1

)
k
)= deg∗

(
g,V2,

(
1− ε2

)
k
)
. (6.13)

Proof. Since the intersection of two α-neighborhoods of S is still an α-neighborhood,
without loss of generality we can assume that V1 ⊇V2. Set

δ3 = inf
{∥∥g(x)− k(x)

∥∥ : x ∈V 1 \V2
}

, γ3 = sup
{∥∥k(x)

∥∥ : x ∈V 1 \V2
}

, (6.14)

and fix a positive ε3 < min{ε1,ε2,δ3/γ3}. We claim that

deg∗
(
g,Vi,

(
1− εi

)
k
)= deg∗

(
g,Vi,

(
1− ε3

)
k
)
, i= 1,2. (6.15)
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To see this, consider the homotopy

H : V 1× [0,1]−→ F,

H(x,λ)= g(x)− (1− (1− λ)ε1− λε3
)
k(x).

(6.16)

We have H(x,λ)=G(x,λ)−K(x,λ), where

G(x,λ)= g(x), K(x,λ)= (1− (1− λ)ε1− λε3
)
k(x). (6.17)

Hence, by Corollary 4.7, for any fixed (p,λ)∈V 1× [0,1] we have

α(p,λ)(K)= (1− (1− λ)ε1− λε3
)
αp(k) < ωp(g)= ω(p,λ)(G). (6.18)

Moreover, given x ∈ ∂V1 and λ∈ [0,1], we have

∥∥G(x,λ)−K(x,λ)
∥∥≥ ∥∥g(x)− k(x)

∥∥− ((1− λ)ε1 + λε3
)∥∥k(x)

∥∥≥ δ1− ε1γ1 > 0. (6.19)

Since, by Lemma 6.3, the map H is proper, from the latter inequality it follows that the
solution set {(x,λ) ∈ V1 × [0,1] : H(x,λ) = 0} is compact. Hence, we can apply the ho-
motopy invariance property of the degree for α-Fredholm triples, and we have

deg∗
(
g,V1,

(
1− ε1

)
k
)= deg∗

(
g,V1,

(
1− ε3

)
k
)
. (6.20)

In an analogous way, we have

deg∗
(
g,V2,

(
1− ε2

)
k
)= deg∗

(
g,V2,

(
1− ε3

)
k
)
, (6.21)

as claimed.
Now, given x ∈V 1 \V2, we have

∥∥g(x)− (1− ε3
)
k(x)

∥∥≥ ∥∥g(x)− k(x)
∥∥− ε3

∥∥k(x)
∥∥≥ δ3− ε3γ3 > 0. (6.22)

Therefore, we can apply the excision property of the degree for α-Fredholm triples, ob-
taining

deg∗
(
g,V1,

(
1− ε3

)
k
)= deg∗

(
g,V2,

(
1− ε3

)
k
)
, (6.23)

and the assertion follows. �

7. Properties of the degree

We start this section by introducing the concept of weakly α-Fredholm homotopy. Given
λ∈ [0,1] and σ > 0, we denote Iσ = (λ− σ ,λ+ σ)∩ [0,1].

Definition 7.1. Let Ω⊆ E be open, and H : Ω× [0,1]→ F a continuous map of the form

H(x,λ)=G(x,λ)−K(x,λ). (7.1)
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We say that H a weakly α-Fredholm homotopy if G is C1, any Gλ is Fredholm of index zero,
and for any pair (p,λ) ∈Ω× [0,1] there exist s,σ > 0 such that for any D ⊆ B(p,s)× Iσ
with α(D) > 0 we have

α
(
K(D)

)
< ω(p,λ)(G)α(D). (7.2)

Theorem 7.2. The following properties of the degree hold.
(1) (Normalization) Let the identity I of E be naturally oriented. Then

deg(I ,E,0)= 1. (7.3)

(2) (Additivity) Given an admissible weakly α-Fredholm triple (g,U ,k) and two disjoint
open subsets U1, U2 of U , assume that S = {x ∈ U : g(x) = k(x)} is contained in
U1∪U2. Then

deg(g,U ,k)= deg
(
g,U1,k

)
+ deg

(
g,U2,k

)
. (7.4)

(3) (Homotopy invariance) Let H : U × [0,1]→ F be a weakly α-Fredholm homotopy of
the form H(x,λ) = G(x,λ)−K(x,λ). Assume that G is oriented and that H−1(0) is
compact. Then deg(Gλ,U ,Kλ) is well defined and does not depend on λ∈ [0,1].

Proof. (1) (Normalization) It coincides with the normalization property of the degree for
admissible α-Fredholm triples (and of course for qF-admissible triples).

(2) (Additivity) Let S1 = S∩U1 and S2 = S∩U2, so that S= S1∪ S2. Clearly S1 and S2

are compact and, consequently, the triples (g,U1,k) and (g,U2,k) are admissible.
Let V be an α-neighborhood of S relative to (g,U ,k), and let V1 = V ∩U1 and V2 =

V ∩U2. Clearly, V1 and V2 are two disjoint α-neighborhoods of S1 and S2 relative to
(g,U1,k) and (g,U2,k), respectively. By Definition 6.6, choosing ε > 0 sufficiently small
we have

deg(g,U ,k)= deg∗
(
g,V , (1− ε)k

)
,

deg
(
g,Ui,k

)= deg∗
(
g,Vi, (1− ε)k

)
, i= 1,2.

(7.5)

On the other hand, the additivity property of the degree for α-Fredholm triples implies

deg∗
(
g,V , (1− ε)k

)= deg∗
(
g,V1, (1− ε)k

)
+ deg∗

(
g,V2, (1− ε)k

)
, (7.6)

and the assertion follows.
(3) (Homotopy invariance) For λ∈ [0,1], letΣλ denote the set {x ∈U : Gλ(x)= Kλ(x)}.

Given any λ, the fact that (Gλ,U ,Kλ) is an admissible weakly α-Fredholm triple follows
easily from the compactness of Σλ and observing that ωp(Gλ)≥ ω(p,λ)(G) for any p ∈U .

To verify that the property holds, it is sufficient to show that the integer valued func-
tion

λ �−→ deg
(
Gλ,U ,Kλ

)
(7.7)
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is locally constant. To this purpose, fix τ ∈ [0,1] and, given ρ > 0, denote Jρ = [τ − ρ,τ +
ρ]∩ [0,1]. It is possible to find ρ > 0 and an open subset V of U with the following
properties:

(i) V contains Σλ for any λ∈ Jρ;
(ii) V ⊆U and K(V × Jρ) is bounded;

(iii) α(K(D)) < α(G(D)), for any D ⊆V × Jρ with α(D) > 0.
In particular, V is an α-neighborhood of Σλ relative to (Gλ,U ,Kλ) for any λ∈ Jρ.

Consider the map

Ψ̂ : V × Jρ× [0,1]−→ F, Ψ̂(x,λ,μ)=G(x,λ)−μK(x,λ). (7.8)

Using an argument analogous to the proof of Lemma 6.3, one can show that Ψ̂ is proper.
Now, let λ∈ Jρ be fixed. Set

δλ = inf
{∥∥Gλ(x)−Kλ(x)

∥∥ : x ∈ ∂V
}

, γλ = sup
{∥∥Kλ(x)

∥∥ : x ∈ ∂V
}

(7.9)

and, analogously,

δ = inf
{∥∥G(x,λ)−K(x,λ)

∥∥ : x ∈ ∂V × Jρ
}

,

γ = sup
{∥∥K(x,λ)

∥∥ : x ∈ ∂V × Jρ
}
.

(7.10)

Fix a positive ε < min{1,δ/γ}. As δ ≤ δλ and γ ≥ γλ, it follows that ε < δλ/γλ. Conse-
quently, by Definition 6.6, we have

deg
(
Gλ,U ,Kλ

)= deg∗
(
Gλ,V , (1− ε)Kλ

)
. (7.11)

Now, consider the following homotopy:

Ĥ : V × Jρ −→ F, Ĥ(x,λ)=G(x,λ)− (1− ε)K(x,λ). (7.12)

Notice that for any fixed pair (p,λ)∈V × Jρ we have

α(p,λ)
(
(1− ε)K

)
< ω(p,λ)(G). (7.13)

Moreover, Ĥ is proper since it coincides with the partial map Ψ̂(·,·,1− ε). As the equa-
tion Ĥ(x,λ)= 0 has no solutions on ∂V × Jρ, it follows that Ĥ−1(0) is a compact subset of
V × Jρ. Therefore, the homotopy invariance property of the degree for α-Fredholm triples
implies that deg∗(Gλ,V , (1− ε)Kλ) does not depend on λ ∈ Jρ. Hence, deg(Gλ,U ,Kλ) is
independent of λ∈ Jρ, and this completes the proof. �

8. Comparison with the Nussbaum degree for local α-condensing vector fields

The purpose of this section is to show that, in a sense to be specified, our concept of degree
extends the degree for local α-condensing perturbations of the identity, introduced by
Nussbaum in [14, 15].

Let f : Ω→ F be a continuous map. We recall the following definitions. The map f is
said to be α-contractive if α( f (A)) ≤ μα(A) for some μ < 1 and any A ⊆Ω. The map f
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is said to be α-condensing if α( f (A)) < α(A) for any A ⊆Ω such that 0 < α(A) < +∞. If
for any p ∈Ω there exists a neighborhood Vp of p such that f |Vp is α-contractive (resp.,
α-condensing), f is said to be local α-contractive (resp., local α-condensing).

In [14, 15], Nussbaum developed a degree theory for triples of the form (I − k,U ,0),
where k is local α-condensing. Precisely, let U be an open subset of Ω and k : Ω→ E a local
α-condensing map. Assume that the set S= {x ∈U : (I − k)(x)= 0} is compact. Then, the
triple (I − k,U ,0) is admissible for the Nussbaum degree (N-admissible, for short). We
will denote by degN (I − k,U ,0) the Nussbaum degree of an N-admissible triple.

Let (I − k,U ,0) be an N-admissible triple. According to Definition 6.5, (I ,U ,k) is an
admissible weakly α-Fredholm triple provided that I is oriented. We claim that, if we
assign the natural orientation to I , it follows that

deg(I ,U ,k)= degN (I − k,U ,0). (8.1)

Indeed, let V be an α-neighborhood of S relative to (I ,U ,k). By the excision property of
the Nussbaum degree we have

degN (I − k,U ,0)= degN (I − k,V ,0). (8.2)

Now, if ε > 0 is sufficiently small we have

degN (I − k,V ,0)= degN
(
I − (1− ε)k,V ,0

)
(8.3)

by the definition of the Nussbaum degree, and

deg(I ,U ,k)= deg∗
(
I ,V , (1− ε)k

)
(8.4)

by Definition 6.6. The claim now follows from the fact that the degree for α-Fredholm
triples and the Nussbaum degree coincide on the class of local α-contractive vector fields,
provided that the identity is naturally oriented (see [1]).
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