
A BASE-POINT-FREE DEFINITION OF
THE LEFSCHETZ INVARIANT

VESTA COUFAL

Received 30 November 2004; Accepted 21 July 2005

In classical Lefschetz-Nielsen theory, one defines the Lefschetz invariant L( f ) of an endo-
morphism f of a manifold M. The definition depends on the fundamental group of M,
and hence on choosing a base point∗∈M and a base path from∗ to f (∗). At times, it is
inconvenient or impossible to make these choices. In this paper, we use the fundamental
groupoid to define a base-point-free version of the Lefschetz invariant.
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1. Introduction

In classical Lefschetz fixed point theory [3], one considers an endomorphism f :M→M
of a compact, connected polyhedron M. Lefschetz used an elementary trace construc-
tion to define the Lefschetz invariant L( f )∈ Z. The Hopf-Lefschetz theorem states that if
L( f ) �= 0, then every map homotopic to f has a fixed point. The converse is false. How-
ever, a converse can be achieved by strengthening the invariant. To begin, one chooses
a base point ∗ of M and a base path τ from ∗ to f (∗). Then, using the fundamen-
tal group and an advanced trace construction one defines a Lefschetz-Nielsen invariant
L( f ,∗,τ), which is an element of a zero-dimensional Hochschild homology group [4].
Wecken proved that when M is a compact manifold of dimension n > 2, L( f ,∗,τ)= 0 if
and only if f is homotopic to a map with no fixed points.

We wish to extend Lefschetz-Nielsen theory to a family of manifolds and endomor-
phisms, that is, a smooth fiber bundle p : E→ B together with a map f : E→ E such that
p = p ◦ f . One problem with extending the definitions comes from choosing base points
in the fibers, that is, a section s of p, and the fact that f is not necessarily fiber homotopic
to a map which fixes the base points (as is the case for a single path connected space and a
single endomorphism.) To avoid this difficulty, we reformulate the classical definitions of
the Lefschetz-Nielsen invariant by employing a trace construction over the fundamental
groupoid, rather than the fundamental group.
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2 A base-point-free definition of the Lefschetz invariant

In Section 2, we describe the classical (strengthened) Lefschetz-Nielsen invariant fol-
lowing the treatment given by Geoghegan [4] (see also Jiang [6], Brown [3] and Lück
[8]). We also introduce the Hattori-Stallings trace, which will replace the usual trace in
the construction of the algebraic invariant.

In Section 3, we develop the background necessary to explain our base-point-free def-
initions. This includes the general theory of groupoids and modules over ringoids, as well
as our version of the Hattori-Stallings trace.

In Section 4, we present our base-point-free definitions of the Lefschetz-Nielsen in-
variant, and show that they are equivalent to the classical definitions.

2. The classical theory

2.1. The geometric invariant. In this section, Mn is a compact, connected manifold of
dimension n, and f :M→M is a continuous endomorphism.

The concatenation of two paths α : I → X and β : I → X such that α(1)= β(0) is defined
by

α ·β(t)=

⎧
⎪⎪⎨

⎪⎪⎩

α(2t) if 0≤ t ≤ 1
2

,

β(2t− 1) if
1
2
≤ t ≤ 1.

(2.1)

The fixed point set of f is

Fix( f )= {x ∈M | f (x)= x}. (2.2)

Note that Fix( f ) is compact. Define an equivalence relation ∼ on Fix( f ) by letting x ∼ y
if there is a path ν in M from x to y such that ν · ( f ◦ ν)−1 is homotopic to a constant
path.

Choose a base point∗∈M and a base path τ from∗ to f (∗). Let π = π1(M,∗). Given
these choices, f induces a homomorphism

φ : π −→ π (2.3)

defined by

φ
(
[w]

)= [τ · ( f ◦w) · τ−1], (2.4)

where [w] is the homotopy class of a path w rel endpoints. Define an equivalence relation
on π by saying g,h ∈ π are equivalent if there is some w ∈ π such that h = wgφ(w)−1.
The equivalence classes are called semiconjugacy classes; denote the set of semiconjugacy
classes by πφ.

Define a map

Φ : Fix( f )−→ πφ (2.5)

by

x 	−→ [
μ · ( f ◦μ)−1 · τ−1], (2.6)
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where x ∈ Fix( f ) and μ is a path in M from ∗ to x. This map is well-defined and induces
an injection

Φ : Fix( f )/ ∼−→ πφ. (2.7)

It follows that Fix( f )/ ∼ is compact and discrete, and hence finite. Denote the fixed point
classes by F1, . . . ,Fs.

Next, assume that the fixed point set of f is finite. Let x be a fixed point. Let U be an
open neighborhood of x in M and h :U →Rn a chart. Let V be an open n-ball neighbor-
hood of x in U such that f (V) ⊂ U . Then the fixed point index of f at x, i( f ,x), is the
degree of the map of pairs

(
id−h f h−1) :

(
h(V),h(V)− {h(x)

})−→ (
Rn,Rn−{0}). (2.8)

For a fixed point class Fk, define

i( f ,Fk)=
∑

x∈Fk
i( f ,x)∈ Z. (2.9)

Definition 2.1. The classical geometric Lefschetz invariant of f with respect to the base
point ∗ and the base path τ is

Lgeo( f ,∗,τ)=
s∑

k=1

i( f ,Fk)Φ(Fk)∈ Zπφ, (2.10)

where Zπφ is the free abelian group generated by the set πφ.

2.2. The algebraic invariant. To construct the classical algebraic Lefschetz invariant, let
M be a finite connected CW complex and f : M →M a cellular map. Again, choose a
base point ∗ ∈M (a vertex of M) and a base path τ from ∗ to f (∗). Also, choose an
orientation on each cell in M.

Let p : M̃ →M be the universal cover of M. The CW structure on M lifts to a CW
structure on M̃. Choose a lift of the base point ∗ to a base point ∗̃ ∈ M̃, and lift the base
path τ to a path τ̃ such that τ̃(0)= ∗̃. Then f lifts to a cellular map f̃ : M̃→ M̃ such that

f̃ (∗̃)= τ̃(1).
The group π = π1(M,∗) acts on M̃ on the left by covering transformations. For each

cell σ in M, choose a lift σ̃ in M̃ and orient it compatibly with σ . Take the cellular chain
complex C(M̃) of M̃. The action of π on M̃ makes Ck(M̃) into a finitely generated free
left Zπ-module with basis given by the chosen lifts of the oriented k-cells of M.

As in the geometric construction, f and τ induce a homomorphism φ : π → π. Since

f̃ is cellular, it induces a chain map f̃k : Ck(M̃)→ Ck(M̃) which is φ-linear, namely if σ̃

is a k-cell of M̃ and g ∈ π then f̃k(gσ̃) = φ(g) f̃k(σ̃). Classically, one represents f̃k by a

matrix over Zπ whose (i, j) entry is the coefficient of σ̃ j in the chain f̃k(σ̃i), where σ̃i and

σ̃ j are k-cells. For each k, one can now take the trace of f̃k, that is, the sum of the diagonal

entries of the matrix which represents f̃k.
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Definition 2.2. The classical algebraic Lefschetz invariant of f with respect to the base
point ∗ and the base path τ is

Lalg( f ,∗,τ)=
∑

k≥0

(−1)kq
(

trace
(
f̃k
))∈ Zπφ, (2.11)

where q : Zπ → Zπφ is the map sending g ∈ π to its semiconjugacy class.

2.3. Hattori-Stallings trace. In the classical algebraic construction of the Lefschetz in-

variant above, Reidemeister viewed f̃k as a matrix and took its trace, the sum of the
diagonal entries, to define Lalg( f ). In our generalizations, we will need to use a more
sophisticated trace map, namely the Hattori-Stallings trace. Since on finitely generated
free modules, the Hattori-Stallings trace agrees with the usual trace of a matrix, we could
use it in the classical case as well. We introduce the classical Hattori-Stallings trace here.
(For the special case when M = R, see [1, 2, 9].)

Let R be a ring, M an R-bimodule, and P a finitely generated projective left R-module.
Let P∗ = HomR(P,R) be the dual of P. Let [R,M] denote the abelian subgroup of M
generated by elements of the form rm−mr, for r ∈ R and m∈M. The Hattori-Stallings
trace map, tr is given by the following composition:

HomR
(
P,M⊗R P

)

tr

P∗ ⊗R M⊗R P
∼=

M/[R,M]

HH0(R;M)

(2.12)

The map P∗ ⊗R M ⊗R P →HomR(P,M ⊗R P) is given by α⊗m⊗ p 	→ (p1 	→ α(p1)(m⊗
p)). The map P∗ ⊗R M⊗R P→M/[R,M] is given by α⊗m⊗ p 	→ α(p)m.

The fact that the first map is an isomorphism is an application of the following lemma.

Lemma 2.3. Let R be a ring, P a finitely generated projective right R-module, and N a
left R-module. Define fP : P∗ ⊗R N →HomR(P,N) by fP(α,n)(p) = α(p)n. Then fP is an
isomorphism of groups.

Proof. Note that fR : R∗ ⊗R N →HomR(R,N) is an isomorphism with inverse given by (g :
R→N) 	→ idR⊗Rg(1R). The result follows from the fact that f(−) : (−)∗ ⊗R N →HomR(−,
N) preserves finite direct sums. �

3. Background on groups and ringoids

In this section, we generalize to the “oid” setting the basic algebraic definitions and re-
sults which we will need for our constructions. This treatment is based on [7, Section 9],
though we have developed additional material as needed. In particular, in Section 3.2, we
generalize the Hattori-Stallings trace.

We use the following notation. If C is a category, denote the collection of objects in C
by Ob(C). If x and y are objects in C, denote the collection of maps from x to y in C by
C(x, y). The category of sets will be denoted Sets, the category of abelian groups will be
denoted Ab, and the category of left R-modules will be denoted R-mod.

Throughout, “ring” will mean an associative ring with unit.
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3.1. General definitions and results

3.1.1. Groupoids and ringoids. Let G be a group. We may view G as a category, denoted
by G, in which there is one object ∗, and for which all of the maps are isomorphisms.
Each map corresponds to an element of G with composition of maps corresponding to
the multiplication in the group. This idea generalizes to define a groupoid.

Definition 3.1. A groupoid G is a small category (the objects form a set) such that all
maps are isomorphisms.

The analogous game can be played with rings in order to define a ringoid, also known
as a linear category or as a small category enriched in the category of abelian groups.

Definition 3.2. A ringoid � is a small category such that for each pair of objects x and y,
�(x, y) is an abelian group and the composition function �(y,z)×�(x, y)→�(x,z) is
bilinear.

Example 3.3. Recall that if H is a group, then the group ring ZH is the free abelian group
generated by H . This group ring construction can be generalized to a “groupoid ringoid”
(though we will call it the group ring): let G be a groupoid and R a ring. The group ring
of G with respect to R, denoted RG, is the category with the same objects as G, but with
maps given by RG(x, y)= R(G(x, y)), the free R-module generated by the set G(x, y).

3.1.2. Modules. For the remainder of this paper, unless otherwise noted, letG be a group-
oid and let R be a commutative ring. While much of the following can be done in terms
of a ringoid �, we will restrict our attention to group rings RG.

Definition 3.4. A left RG-module is a (covariant) functor M : G→ R-mod. A right RG-
modules is a (covariant) functors Gop → R-mod.

Definition 3.5. LetM andN be RG-modules. An RG-module homomorphism fromM to
N is a natural transformation from M to N . The set of all RG-module homomorphisms
from M to N is denoted by HomRG(M,N).

Let RG-mod denote the category of left RG-modules, and let mod-RG denote the cat-
egory of right RG-modules.

Definition 3.6. LetM andN be RG-modules. The direct sumM⊕N ofM andN is the left
RG-module defined on an object x by (M⊕N)(x)=M(x)⊕N(x) and on a map g : x→ y
by (M⊕N)(g)=M(g)⊕N(g).

Definition 3.7. Let N be a left RG-module and M a right RG-module. Define the tensor
product over RG of M and N to be the abelian group

M⊗RG N = P/Q, (3.1)

where P is the abelian group

P =
⊕

x∈Ob(G)

M(x)⊗R N(x), (3.2)
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and Q is the subgroup of P generated by

{
M( f )(m)⊗n−m⊗N( f )(n) |m∈M(y), n∈N(x), f ∈ RG(x, y)

}
. (3.3)

Proposition 3.8. Let M, N , and P be RG-modules. Then

HomRG(M⊕N ,P)∼=HomRG(M,P)⊕HomRG(N ,P). (3.4)

Proposition 3.9. Let M, N , and P be RG-modules. Then

(M⊕N)⊗RG P ∼=
(
M⊗RG P

)⊕ (N ⊗RG P
)
. (3.5)

Definition 3.10. Given an RG-bimodule M, define M/[RG,M] to be the R-module

(
⊕

x∈Ob(G)

M(x,x)

)

/
{
m−M(g,g−1)(m) | g : x −→ y, m∈M(x,x)

}
. (3.6)

Call this the zero dimensional Hochschild homology of RG with coefficients in M, de-
noted by

HH0(RG;M). (3.7)

Next, we define free RG-modules. First, we need the following notions.
Given a category C, we can view Ob(C) as the subcategory of C whose objects are the

same as the objects of C, but whose maps are only the identity maps. A covariant (con-
travariant) functor Ob(C)→ Sets will be called a left (right) Ob(C)-set. A map of Ob(C)-
sets is a natural transformation. Let Ob(C)-Sets denote the category of left Ob(C)-sets,
and let Sets-Ob(C) denote the category of right Ob(C)-sets.

Given either a left or right Ob(C)-set B, let

�=
⊔

x∈Ob(C)

B(x), (3.8)

where
⊔

denotes disjoint union, and let

β : �−→Ob(C) (3.9)

send b to x if b ∈ B(x). Given Ob(C)-sets B and B′, we say B is an Ob(C)-subset of B′ if
for every x ∈Ob(C), B(x)⊂ B′(x).

Suppose C is a small category and D is a category equipped with a “forgetful functor”
D→ Sets. For a functor F : C → D, let |F| : Ob(C)→ Sets be the composition Ob(C)↩
C → D → Sets, where the functor D → Sets is the forgetful functor. In particular, |−| :
RG-mod→Ob(C)-Sets and |−| : mod-RG→ Sets-Ob(G).

Definition 3.11. For each x ∈ Ob(G), define a left RG-module RGx = RG(x,−) by
RGx(y) = RG(x, y). For a map g : y → z in G, let RGx(g) = g ◦ (−). Define a right RG-
module RG

x = RG(−,x) similarly.
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Definition 3.12. Define a functor RG(−) : Ob(G)-Sets→ RG-mod by

RGB =
⊕

b∈�

RGβ(b) =
⊕

b∈�

RG
(
β(b),−). (3.10)

Similarly, define RG
(−)

: Sets-Ob(G)→mod-RG by

RG
B =

⊕

b∈�

RG
β(b) =

⊕

b∈�

RG
(−,β(b)

)
. (3.11)

Proposition 3.13. The functor RG(−) is a left adjoint to the functor |−| : RG-mod →
Ob(G)-Sets. The functor RG

(−)
is a left adjoint to |−| : mod-RG→ Sets-Ob(G).

Proof. For an Ob(G)-set B and a left RG-module M, define a set map ψ = ψB,M :
RG-mod(RGB,M) → Ob(G)-Sets(B,|M|) by ψ(η)y(b) = ηy(idy) ∈ |M(y)|, where η :
RGB →M is a natural transformation and b ∈ B(y). Then ψ is a bijection whose inverse
is defined in the most obvious way. �

Notice that for each Ob(G)-set B, we get a natural transformation ηB = ψ(idRGB
) : B→

|RGB| which is universal. This leads to the following definition of a free RG-module with
base B.

Definition 3.14. An RG-module M is free with base an Ob(G)-set B ⊂ |M| if for each
RG-module N and natural transformation f : B→ |N| there is a unique natural transfor-
mation F :M→N with |F| ◦ i= f , where i is the inclusion B→ |M|.
Example 3.15. The RG-module RGx is a free left RG-module with base Bx : Ob(G)→ Sets
given by

Bx(y)=
⎧
⎨

⎩

{x} if y = x,

∅ if y �= x. (3.12)

If B is any Ob(G)-set, RGB =
⊕

b∈�RGβ(b) =
⊕

b∈�RG(β(b),−) is a free RG-module with
base B.

Let M be an RG-module. Let S be an Ob(G)-subset of |M| and let Span(S) be the
smallest RG-submodule of M containing S,

Span(S)=∩{N |N is an RG-submodule of M, S⊂N}. (3.13)

Definition 3.16. Say that M is generated by S if M = Span(S), and M is finitely generated
if S is finite.

Proposition 3.17. If M is a left RG-module, and B is an Ob(G)-subset of |M|, then
Span(B) is the image of the unique natural transformation τ : RGB →M extending id : B→
B ⊂ |M|. Furthermore, M is generated by B if τ is surjective.

Proposition 3.18. Let B be an Ob(G)-set. If M is a free left RG-module with base B, then
M is generated by B. In particular, there is a natural equivalence τ : RGB →M.
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Proof. Define τ : RGB →M. For x ∈Ob(G), let

τx : RGB(x)=
⊕

b∈�

RG
(
β(b),x

)−→M(x) (3.14)

be given by (g : β(b) → x) 	→M(g)(b). To construct an inverse natural transformation,
define η : B → |RGB| by setting ηx(b) = idx. Since M is free with base B, η extends to a
unique natural transformation M→ RGB. �

Definition 3.19. An RG-module P is projective if it is the direct summand of a free RG-
module.

3.1.3. Bimodules.

Definition 3.20. An RG-bimodule is a (covariant) functor

M :G×Gop −→ R-mod. (3.15)

Denote the category of RG-bimodules by RG-bimod.

Example 3.21. Let RG be RG with the following RG-bimodule structure. For (x, y) ∈
G×Gop, set RG(x, y) = RG(y,x). Notice the change in the order of x and y. For maps
g : x→ x′ in G and h : y→ y′ in Gop, set RG(g,h)= g ◦ (−)◦h : RG(y,x)→ RG(y′,x′).

We would like to be able to view an RG-bimodule N as either a right or a left RG-
module. However, there is no canonical way to do so as each choice of object in G pro-
duces a different left and a right RG-module structure on N . Instead, we define two func-
tors: (−)ad and ad(−). In essence, N ad encapsulates all of the right RG-module struc-
tures on N induced by objects of G, and adN encapsulates all of the left RG-module
structure on N .

Definition 3.22. Define a covariant functor

(−)ad : RG-bimod−→ (mod-RG)G (3.16)

as follows. Let N be an RG-bimodule. For x ∈Ob(G), let

N ad(x)=N(x,−). (3.17)

For g a map in G, let

N ad(g)=N(g,−). (3.18)

Explicitly, N ad(x) : Gop → R-mod is given by N ad(x)(y) = N(x, y) and N ad(x)(h) =
N(idx,h) for h : y→ z a map in Gop.

Definition 3.23. Define a covariant functor

ad(−) : RG-bimod−→ (RG-mod)G
op

(3.19)
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as follows. Let N be an RG-bimodule. For x ∈Ob(Gop), let

adN(x)=N(−,x). (3.20)

For g a map in Gop, let

adN(g)=N(−,g). (3.21)

Explicitly, adN(x) : G→ R-mod is given by adN(x)(y)=N(y,x) and adN(x)(h)=N(h,
idx) for h : y→ z a map in G.

Example 3.24. Apply the ad functors to the RG-bimodule RG. For instance, if x ∈Ob(G),
then adRG(x) = RG(x,−) = RGx. Hence, adRG(x) : G → R-mod, with adRG(x)(y) =
RG(x, y) and adRG(x)(h) = h ◦ (−) for h : y → z a map in G. Also, for g : x→ x′ a map
in Gop, adRG(g)= RG(−,g) : RG(x,−)→ RG(x′,−) is the natural transformation of left
RG-modules given by adRG(g)y = (−)◦ g : RG(x, y)→ RG(x′, y).

Next, if N is an RG-bimodule and M is an RG-module, we define HomRG(N ,M),
HomRG(M,N), N ⊗RG Ml and Mr ⊗RG N in such a way that they are also RG-modules,
as one would expect. Let Ml (resp., Mr) denote a left (resp., right) RG-module.

Definition 3.25. Let N be an RG-bimodule. HomRG(Ml,N) is defined to be the right RG-
module given by the composition

Gop adN
RG-mod

HomRG(Ml ,−)
R-mod. (3.22)

HomRG(N ,Ml) is defined to be the left RG-module given by the composition

Gop adN
RG-mod

HomRG(−,Ml)
R-mod. (3.23)

HomRG(Mr ,N) is defined to be the left RG-module given by the composition

G
N ad

mod-RG
HomRG(Mr ,−)

R-mod. (3.24)

HomRG(N ,Mr) is defined to be the right RG-module given by the composition

G
N ad

mod-RG
HomRG(−,Mr )

R-mod. (3.25)

Definition 3.26. Let N be an RG-bimodule. Define N ⊗RG Ml to be the left RG-module
given by the composition

G
N ad

mod-RG
(−)⊗RGMl

R-mod. (3.26)

Define Mr ⊗RG N to be the right RG-module given by the composition

Gop adN
RG-mod

Mr⊗RG(−)
R-mod. (3.27)
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Applying the above definitions to the RG-bimodule RG, we get the results for Hom
and tensor product which we would expect from algebra. These next three propositions
justify viewing RG as “the free rank-one” RG-module. Notice that it is not, however, a
free RG-module. The proofs are straightforward and left to the reader.

Proposition 3.27. Given an RG-module M, HomRG(RG,M)∼=M as RG-modules.

Proposition 3.28. Given a left RG-module M, RG⊗RGM ∼=M as left RG-modules.

Proposition 3.29. Given right RG-module M, M⊗RG RG∼=M as right RG-modules.

In particular, we can now define the dual of an RG-module.

Definition 3.30. Let M be a left (right) RG-module. The dual of M is the right (left) RG-
module M∗ =HomRG(M,RG).

Proposition 3.31. LetM andN be RG-modules. Then there is a natural equivalence (M⊕
N)∗ ∼=M∗ ⊕N∗.

3.1.4. Chain complexes.

Definition 3.32. An RG-chain complex is a (covariant) functor C� : G→ Ch(R), where
Ch(R) is the category of chain complexes over the ring R.

Lemma 3.33. The following are equivalent:
(i) C� is an RG-chain complex;

(ii) there exist a family {Cn} of RG-modules together with a family of natural transfor-
mations {dn : Cn→ Cn−1}, called differentials, such that dn−1 ◦dn = 0.

Using the second characterization of RG-chain complexes, we can now define finitely
generated projective chain complexes, chain maps and chain homotopies in the usual
manner.

Definition 3.34. An RG-chain complex P� is said to be a finitely generated projective if
each Pn is a finitely generated projective RG-module and P� is bounded (i.e., Pn = 0 for
all but a finite number of n). Let �(RG) denote the subcategory of finitely generated
projective RG-chain complexes.

Definition 3.35. An RG-chain map f : C�→D� is a family { fn : Cn→Dn} of natural trans-
formations such that d′n ◦ fn = fn−1 ◦ dn for all n, where the dn are the differentials of C�
and the d′n are the differentials of D�.

Definition 3.36. Two RG-chain maps f : C�→ D� and g : C�→ D� are RG-chain homo-
topic, denoted by f ∼ch g, if there exists a family {sn : Cn→Dn−1} of natural transforma-
tions such that

fn− gn = d′n+1 ◦ sn + sn−1 ◦dn. (3.28)

Definition 3.37. Two RG-chain complexes C� and D� are chain homotopy equivalent if
there exist RG-chain maps f : C�→ D� and g : D�→ C� such that f ◦ g ∼ch idD� and g ◦
f ∼ch idC�. In this case, f is said to be a chain homotopy equivalence.
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3.1.5. Everything α-twisted. For the remainder of the paper, let α : G→ G be a functor.
We can use α to create an “α-twisted” version of many of our algebraic objects.

Definition 3.38. Define an RG-bimodule αRG :G×Gop → R-mod by

αRG(x, y)= RG(y,α(x)
)

(3.29)

for x, y ∈Ob(G), and

αRG(g,h)= α(g)◦ (−)◦h (3.30)

for g a map in G and h a map in Gop. This is the RG-bimodule RG, but with the left
module structure twisted by α.

Definition 3.39. Let M and N be RG-modules. An α-linear homomorphism M → N is
defined to be a natural transformation η : M → N ◦ α. A chain map f : C�→ D� of RG-
chain complexes is called α-linear if for each n, fn is α-linear.

Lemma 3.40. Given left RG-modules P and Q, there is an isomorphism

HomRG(P,Q ◦α)∼=HomRG
(
P,αRG⊗RG Q

)
. (3.31)

Definition 3.41. Let M be an RG-module. The α-dual of M is

Mα =HomRG
(
M,αRG

)
. (3.32)

Proposition 3.42. Let P and Q be RG-modules and N an RG-bimodule. Then there is a
natural equivalence of RG-modules

HomRG(P⊕Q,N)∼=HomRG(P,N)⊕HomRG(Q,N). (3.33)

Corollary 3.43. Let P and Q be left RG-modules. Then there is a natural equivalence

(P⊕Q)α ∼= Pα⊕Qα. (3.34)

3.2. Generalized Hattori-Stallings trace. In this section, we define an α-twisted Hattori-
Stallings trace for RG-modules. One can define a more general Hattori-Stallings trace for
RG-modules, in the same manner as the classical definition given in Section 2.3. However,
as we will not need this more general form, we will concern ourselves only with the special
α-twisted case. We also extend the trace to RG-chain complexes.

3.2.1. Definition and commutativity. Given leftRG-modulesN and P, define anR-module
homomorphism

φP = φP,N : Pα⊗RG N −→HomRG(P,N ◦α) (3.35)

by letting: φP(τ⊗n) : P→N ◦α be the natural transformation given by

φP(τ ⊗n)y(p)=N(τy(p)
)
(n), (3.36)

where τ ∈ Pα(x), m∈N(x), p ∈ P(y), and x, y ∈Ob(G).



12 A base-point-free definition of the Lefschetz invariant

Proposition 3.44. If P is a finitely generated projective RG-module, then φP is an isomor-
phism.

The proof will use the following three lemmas.

Lemma 3.45. Given x ∈Ob(G), then φRGx
is an isomorphism.

Proof. Write φ for φRGx
. Define

ψ : HomRG
(
RGx,N ◦α)−→ RG

α
x ⊗RG N (3.37)

by

η 	−→ α⊗ηx
(

idx
)
, (3.38)

where η : RGx → N ◦ α is a natural transformation. Here, α∈ Pα(x) is the natural trans-
formation induced by α, that is, αy( f )= α( f ) for y ∈Ob(G) and f ∈ RG(x, y).

It is easy to show that φ ◦ψ = id and ψ ◦φ= id. �

Lemma 3.46. If P and Q are left RG-modules, then φP⊕Q = φP ⊕φQ.

Proof. Consider the following diagram:

(P⊕Q)α⊗RG N
φP⊕Q

∼=

HomRG(P⊕Q,N ◦α)

∼=
(
Pα⊕Qα

)⊗RG N

∼=
(
Pα⊗RG N

)⊕ (Qα⊗RG N
)

φP⊕φQ
HomRG(P,N ◦α)⊕HomRG(Q,N ◦α)

(3.39)

The vertical isomorphisms are as in Propositions 3.8 and 3.9 and Corollary 3.43. Using
those isomorphism, one can see that the diagram commutes. �

Lemma 3.47. Let P and Q be left RG-modules and let N = P⊕Q. If φN is an isomorphism,
then φP is an isomorphism also.

Proof. By the previous lemma, φN = φP ⊕φQ. The result follows immediately. �

Proof of Proposition 3.44. The proof is in two steps.
Step 1. Suppose that P is a finitely generated free RG-module. Then P is naturally equiv-
alent to RGB =

⊕

b∈�RGβ(b) for some Ob(G)-set B. By Lemma 3.46, φP =
⊕

b∈�φRGβ(b)
,

and by Lemma 3.45, it is an isomorphism.
Step 2. Suppose that P is a finitely generated projective RG-modules and so P is a direct
summand of a finitely generated free RG-module. Combining Step 1 and Lemma 3.47 we
see that φP is an isomorphism.

�
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For P a left RG-module, define an R-module homomorphism

Pα⊗RG P −→ αRG/
[
RG,αRG

]
(3.40)

by τ ⊗ p 	→ τx(p) where τ ∈ Pα(x) and p ∈ P(x).

Definition 3.48. Let P be a finitely generated projective left RG-module. The Hattori-
Stallings trace, denoted by tr, is the composition

HomRG(P,P ◦α)

tr

Pα⊗RG P
∼=

αRG/
[
RG,αRG

]

HH0
(
RG;αRG

)

(3.41)

where the isomorphism is the map φP and the unadorned arrow is the homomorphism
described above.

Proposition 3.49 (commutativity). Let P and Q be finitely generated projective left RG-
modules. If f ∈HomRG(P,Q ◦α) and g ∈HomRG(Q,P), then

tr( f ◦ g)= tr(g ◦α◦ f ). (3.42)

Proof. The result follows from commutativity of three diagrams.
The first diagram is

HomRG(P,Q ◦α)×HomRG(Q,P)
(
Pα⊗RG Q

)× (Q∗ ⊗RG P
)

B

HomRG(P,P ◦α) Pα⊗RG P
φP

(3.43)

where B is given by (η⊗ p)× (τ⊗ q) 	→ (α◦η)⊗Q(τy(p))(q), the unlabelled vertical map
is given by ( f ,g) 	→ g ◦α◦ f and the unlabelled horizontal map is φPα,Q×φQ,P .

The second diagram is gotten by transposing the products in the first diagram.
The third diagram is

Qα⊗RG Q

(
Q∗ ⊗RG P

)× (Pα⊗RG Q
)

B′

(
Pα⊗RG Q

)× (Q∗ ⊗RG P
)

B

HH0
(
RG;αRG

)

Pα⊗RG P

(3.44)
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where the unlabelled arrow is transposition, B′ is analogous to B, and the other maps are
defined in the obvious ways. �

3.2.2. For connected groupoids. Consider the following setup. LetG be a connected group-
oid, that is, one for which there exists a map between any two objects. Let α :G→G be a
functor and let P be a finitely generated projective left RG-module. Choose an object ∗
of G and choose a map τ :∗→ α(∗) in G.

Let RG(∗) be the subcategory of RG with a single object, ∗, and with maps given
by the maps in RG from ∗ to ∗. Then the inclusion RG(∗)→ RG is an equivalence of
categories. The proof amounts to choosing a map μx : ∗ → x for each x ∈ Ob(G). For
each x, we fix a choice of μx.

The functor α induces a functor ατ : RG(∗) → RG(∗) which maps the object ∗ to
itself. If g : ∗→ ∗, let ατ(g) = τ−1 ◦ α(g) ◦ τ. In the obvious way, the RG-module P in-
duces a finitely generated projective left RG(∗)-module, denoted P(∗). A natural trans-
formation β ∈ HomRG(P,P ◦ α) induces a natural transformation βτ = P(τ−1) ◦ β∗ ∈
HomRG(∗)(P(∗),P(∗)◦ατ).

Lemma 3.50. There is an isomorphism of groups

A :HH0
(
RG(∗);ατRG(∗)

)−→HH0
(
RG;αRG

)
(3.45)

given by A(m)= τ ◦m for m∈HH0(RG(∗);ατRG(∗)).

Proposition 3.51. The Hattori-Stallings trace of βτ and β are equivalent, that is,

A
(

tr(βτ)
)= tr(β). (3.46)

Proof. Given η ∈ Pα(x) for some x ∈ Ob(G), define η : P(∗) → RG(∗,∗) ∈ P(∗)ατ by
η(p)= τ−1 ◦η∗(p)◦μx, where p ∈ P(∗). This gives us a map Pα→ P(∗)ατ .

Define a map B : Pα ⊗RG P → P(∗)ατ ⊗RG(∗)P(∗) by η⊗ p 	→ η⊗ P(μ−1
x )(p), where

η ∈ Pα(x) and p ∈ P(x) for some x ∈ Ob(G). Define a map C : HomRG(P,P ◦ α) →
HomRG(∗)(P(∗),P(∗)◦ατ) by γ 	→ γτ = P(τ−1)◦ γ∗ for γ ∈HomRG(P,P ◦α).

Commutativity of the following two diagrams implies that A(tr(βτ))= tr(β).

HomRG(∗)
(
P(∗),P(∗)◦ατ

)
P(∗)ατ ⊗RG(∗) P(∗)

φP(∗)

[3pt]HomRG(P,P ◦α)

C

Pα⊗RG P
φP

B

P(∗)ατ ⊗RG(∗) P(∗) HH0
(
RG(∗);ατRG(∗)

)

A

[3pt]Pα⊗RG P

B

HH0(RG;αRG)

(3.47)

�

Notice that A(tr(βτ)) is independent of the choices of maps μx.
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3.2.3. For chain complexes. We begin with the general case.

Definition 3.52. Let P� be a finitely generated projective RG-chain complex. Define the
Hattori-Stallings trace

Tr : Hom�(RG)(P�,P �◦α)−→HH0
(
RG;αRG

)
(3.48)

by

f 	−→
∑

i

(−1)i tr
(
fi
)
, (3.49)

where f : P�→ P �◦α is given by the family { fi ∈HomRG(Pi,Pi ◦α)}.
Commutativity follows from commutativity of the Hattori-Stallings trace for RG-

modules.

Proposition 3.53 (commutativity). Let P� and Q� be finitely generated projective RG-
chain complexes, and let f ∈Hom�(RG)(P�,Q �◦α) and g ∈Hom�(RG)(Q�,P�). Then

Tr( f ◦ g)= Tr(g ◦α◦ f ). (3.50)

The Hattori-Stallings trace is also invariant up to chain homotopy.

Proposition 3.54. Let P� be a finitely generated projective RG-chain complex. If f : P�→
P �◦α and g : P�→ P �◦α are chain homotopic, then Tr( f )= Tr(g).

Proof. Let {sn : Pn→ Pn+1 ◦α} be a chain homotopy from f to g. Then

Tr( f )−Tr(g)=
∑

i

(−1)i tr
(
fi− gi

)

=
∑

i

(−1)i tr
(
di+1 ◦α◦ si + si−1 ◦di

)

=
∑

i

(−1)i
[

tr
(
si ◦di+1) + tr(si−1 ◦di

)]
.

(3.51)

The last equality comes from applying commutativity. Rearranging the terms in the last
sum gives Tr( f )−Tr(g)= 0. �

Now suppose that C� is an RG-chain complex which is chain homotopy equivalent
to a finitely generated projective RG-chain complex. Suppose further that φ : C�→ C � ◦α
is a chain map. Choose a finitely generated projective RG-chain complex P�, choose a
chain homotopy equivalence f : C�→ P�, and choose a lift ψ : P�→ P �◦α of φ. We get the
diagram

P�
ψ

P �◦α

C�
f

φ
C �◦α
f (3.52)

which commutes up to chain homotopy.
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Definition 3.55. The Hattori-Stallings trace of φ : C�→ C �◦α is defined to be the trace of
ψ : P�→ P �◦α:

Tr(φ)= Tr(ψ). (3.53)

We must show that Tr is independent of the choices we made. First, suppose that φ′ is
another lift of φ. Then ψ ∼ch f ◦φ ◦ f −1 ∼ch ψ′ and by Proposition 3.54, Tr(ψ)= Tr(ψ′).
Second, suppose that Q� is another finitely generated projective RG-chain complex and
g : C�→Q� is a chain homotopy equivalence. Then

Tr
(
g ◦φ ◦ g−1)= Tr

(
g ◦ f ◦ f −1 ◦φ ◦ f −1 ◦ f ◦ g−1)

= Tr
(
f ◦ g−1 ◦ g ◦ f −1 ◦ f ◦φ ◦ f −1)

= Tr
(
f ◦φ ◦ f −1).

(3.54)

4. Base-point-free Lefschetz-Nielsen invariants

In this section, we present our base-point-free refinements of the classical geometric and
algebraic Lefschetz-Nielsen invariants. We begin by defining the fundamental groupoid,
and describing the way in which we think of the universal cover.

4.1. Fundamental groupoid. An important example of a groupoid is the fundamental
groupoid. Let X be a topological space.

Definition 4.1. The fundamental groupoid ΠX is the category whose objects are the
points in X , whose maps are the homotopy classes rel endpoints of paths in X . Com-
position is given by concatenation of paths. To be precise, if f and g are paths in X such
that f(1)= g(0), then

[g]◦ [ f ]= [ f · g]. (4.1)

For each morphism, an inverse is given by traversing a representative path backwards.

This groupoid deserves to be called the fundamental groupoid since for a given point
x ∈ X , the subcategory of ΠX generated by x is π1(X ,x). The subcategory generated by x
is the category with one object, x, and whose morphism set is ΠX(x,x). In a sense, then,
the fundamental groupoid is a way of encoding in one object the fundamental groups
with all possible choices of base point.

Let f : X → X be a continuous map. Then f induces a functor Π f : ΠX →ΠX given
by Π f (x)= f (x) and Π f (g)= f ◦ g where x ∈ X and g is a path in X .

4.2. Universal cover. Let X be a path connected, locally path connected, semilocally sim-
ply connected space. For each x ∈ X , one can describe the universal cover [5, page 64] of
X as the space

X̃x = (X ,x)(I ,0)/ ∼, (4.2)
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where I is the closed unit interval and ∼ is the equivalence relation given by homotopy
rel endpoints. The set (X ,x)(I ,0) is given the compact-open topology, and X̃x is given the
quotient topology. The projection map p : X̃x → X is given by p([γ])= γ(1).

Recall ΠX , the fundamental groupoid of X . Let Top be the category of topological
spaces.

Definition 4.2. The universal cover functor

U : ΠX −→ Top (4.3)

is defined by U(x)= X̃x for x ∈Ob(ΠX). For g : x→ y a map in ΠX , define U(g) : X̃x →
X̃y by U(g)[γ]= [g−1 · γ], where [γ]∈ X̃x.

4.3. The geometric invariant. Fix a compact, path-connected n-dimensional manifold
X and a continuous endomorphism f : X → X such that Fix( f ) is finite.

Let Π be the fundamental groupoid of X . The map f induces a functor ϕ=Π f : Π→
Π defined by ϕ(x)= f (x), where x ∈Ob(Π). For g : x→ y a map in Π let ϕ(g)= f ◦ g.

Let Fix(ϕ) be the subcategory of Π whose set of objects is Fix( f ), and whose maps are
the maps g : x→ y in Π (x, y ∈ Fix( f )) such that f ◦ g = g. The category Fix(ϕ) decom-
poses into a finite number of connected components; denote them by F1, . . . ,Fr .

Define an ZΠ-bimodule ϕZΠ : Π×Πop → Ab given by (x, y) 	→ ZΠ(y,ϕ(x)), where
x, y ∈ Ob(Π). For g : x → x′ a map in Π and h : y → y′ a map in Πop, let ϕZΠ(g,h) =
ϕ(g)◦ (−)◦h. By definition,

HH0
(
ZΠ;ϕZΠ

)= ϕZΠ/
[
ZΠ,ϕZΠ

]

=
⊕

x∈Ob(Π)

ZΠ
(
x,ϕ(x)

)
/Q, (4.4)

where Q is generated by elements of the form σ − ϕ(g) ◦ σ ◦ g−1 for maps σ : x→ ϕ(x)
and g : x→ y in Π.

Define

Φ :
{
Fk
}r
k=1 −→HH0

(
ZΠ;ϕZΠ

)
(4.5)

by choosing an object x in Fk and mapping Fk to idx : x→ x = ϕ(x). One can check that
this is a well-defined injection.

Also, let

i
(
f ,Fk

)=
∑

x∈Ob(Fk)

i( f ,x)∈ Z, (4.6)

where i( f ,x) is the fixed point index.

Definition 4.3. The geometric Lefschetz invariant of f : X → X is

Lgeo( f )=
∑

k

i
(
f ,Fk

)
Φ
(
Fk
)∈HH0

(
ZΠ;ϕZΠ

)
. (4.7)
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Theorem 4.4. The classical geometric Lefschetz invariant and the base-point-free geometric
Lefschetz invariant correspond under an isomorphism

A : Zπφ −→HH0
(
ZΠ;ϕZΠ

)
. (4.8)

The isomorphism A is not canonical; it depends on choosing a path from ∗ to f (∗).
On the other hand, HH0(ZΠ;ϕZΠ) is canonical.

Proof. Recall that in the classical definition, we have chosen a base point∗ and a base path
τ. The fundamental group π1(X ,∗) is denoted by π, the map on π induced by f : X → X
and the base path τ is denoted by φ, and the injection {Fi}si=1 → πφ is denoted by Φ.
Step 1. After appropriate reordering of the fixed point classes F1, . . . ,Fs, s = r and Fi =
Ob(Fi). This can be seen as follows. If x and y are equivalent in Fix( f ), then there exists
a path ν from x to y in X such that ν · ( f ◦ ν)−1 � ∗. But this is equivalent to saying
that ν is a map in Fix(ϕ) from x to y, and hence that x and y are in the same connected
component of Fix(ϕ).
Step 2. Define an isomorphism of abelian groups

A : Zπφ −→HH0
(
ZG;ϕZG

)
(4.9)

by A(ω)= ω · τ = τ ◦ω, where [ω]∈ π.
To see that A is well defined, suppose that [ω] and [ω1] are equivalent in Zπφ. By

definition, there exists g ∈ π such that ω1 = g · ω · τ · ( f ◦ g)−1 · τ−1. Hence, τ ◦ ω1 =
ϕ(g−1)◦ τ ◦ω ◦ g = τ ◦ g in HH0(ZG;ϕZG), and A is well-defined.

To see that A is an epimorphism, suppose that σ : x→ ϕ(x)∈HH0(ZG;ϕZG). Choose
a path μ in X from ∗ to x, that is, a map μ : ∗ → x in G. Then σ = ϕ(μ−1) ◦ σ ◦ μ in
HH0(ZG;ϕZG), and μ · σ · ( f ◦ μ)−1 · τ−1 gives an element in π which is mapped to σ by
A.

The last thing to check is that A is a monomorphism. Suppose [ω] and [ω1] are el-
ements of π such that τ ◦ ω = τ ◦ ω1. Then there exists g ∈ Ob(G) such that τ ◦ ω1 =
ϕ(g−1) ◦ τ ◦ ω ◦ g. It follows that ω1 = g · ω · τ · ( f ◦ g)−1 · τ−1 and hence that [ω1] is
equivalent to [ω] in Zπφ.
Step 3. Let F be a fixed point class, and F the corresponding connected component of
Fix(ϕ). For any choice of x ∈ F and path μ from ∗ to x, we have that A(Φ(F)) = A(μ ·
( f ◦μ)−1 · τ−1)= ϕ(μ−1)◦μ= idx in HH0(ZG;ϕZG).

Therefore, the image of

Lgeo( f ,∗,τ)=
s∑

k=1

i
(
f ,Fk

)
Φ
(
Fk
)∈ Zπφ (4.10)

is equivalent to

Lgeo( f )=
r∑

k=1

i
(
f ,Fk

)
Φ
(
Fk
)∈HH0

(
ZG;ϕZG

)
. (4.11)

�
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4.4. The algebraic invariant. Let X be a finite CW complex and f : X → X a continuous
map. Let Π = ΠX be the fundamental groupoid of X and let ϕ : Π→ Π be the functor
induced by f , as above.

The map f induces a natural transformation f̃ : U → U ◦ϕ. Given an object x in Π,

f̃x : X̃x → X̃ f (x) is defined by [γ] 	→ [ f ◦ γ], where [γ]∈ X̃x. One can check naturality.
There is a functor S : Top→ Ch(Z) given by taking the singular chain complex of a

space. If f : X → Y is a continuous map, then S( f ) : S(X)→ S(Y) is given by σ 	→ f ◦ σ ,
where σ : Δn→ X . Here, Δn is the standard n-simplex.

Let C� be the ZΠ-chain complex given by the composition

Π
U−−→ Top

S−→ Ch(Z). (4.12)

The map f induces a natural transformation f̃∗ : SU → SUϕ. Given an object x in Π,

let f̃∗(x) : S(X̃x)→ S(X̃ f (x)) be given by σ 	→ f̃x ◦ σ , where σ : Δn → X̃x. Naturality of f̃∗
follows from naturality of f̃ . Hence, f̃∗ is a ϕ-linear chain map C�→ C�. As usual, f̃∗ is

given by a family of ϕ-linear natural transformations f̃n : Cn→ Cn.
The singular chain complex of a finite CW complex is chain homotopy equivalent to

a finitely generated projective ZΠ chain complex. Hence, the Hattori-Stallings trace of f̃∗
is defined, and we can define the algebraic Lefschetz invariant as follows.

Definition 4.5. The algebraic Lefschetz invariant of f : X → X is

Lalg( f )= Tr
(
f̃∗
)=

∑

k≥0

(−1)k tr
(
f̃k
)∈HH0

(
ZΠ;ϕZΠ

)
. (4.13)

As an immediate corollary of Proposition 3.51 we get the following theorem.

Theorem 4.6. The classical algebraic Lefschetz invariant and the base point free algebraic
Lefschetz invariant correspond under the isomorphism

A : Zπφ −→HH0
(
ZΠ;ϕZΠ

)
. (4.14)
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