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We consider a finite regular covering py : Xu — X over a compact polyhedron and a map
f:X — X admitting a lift f : Xy — Xp. We show some formulae expressing the Nielsen
number N(f) as a linear combination of the Nielsen numbers of its lifts.

Copyright © 2006 Jerzy Jezierski. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let X be a finite polyhedron and let H be a normal subgroup of 71 (X). We fix a covering
PH :)?H — X corresponding to the subgroup H, that is, ps(m; ()?H)) =H.

We assume moreover that the subgroup H has finite rank, that is, the covering py is
finite. Let f : X — X be a map satistying f(H) C H. Then f admits a lift

~y o~
XHHXH (11)

pﬁi f lpH

X—X

Is it possible to find a formula expressing the Nielsen number N(f) by the numbers
N (f) where f runs the set of all lifts? Such a formula seems very desirable since the
difficulty of computing the Nielsen number often depends on the size of the fundamental
group. Since m X C m X, the computation of N (f) may be simpler. We will translate this
problem to algebra. The main result of the paper is Theorem 4.2 expressing N(f) as a
linear combination of {N (f,-)}, where the lifts are representing all the H-Reidemeister
classes of f.

The discussed problem is analogous to the question about “the Nielsen number prod-
uct formula” raised by Brown in 1967 [1]. A locally trivial fibre bundle p: E — B and a
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2 Nielsen number of a covering map

fibre map f : E — E were given and the question was how to express N(f) by N(f) and
N(f,), where f : B— B denoted the induced map of the base space and f; was the restric-
tion to the fibre over a fixed point b € Fix(f). This problem was intensively investigated
in 70ties and finally solved in 1980 by You [4]. At first sufficient conditions for the “prod-
uct formula” were formulated: N(f) = N (7)N (fp) assuming that N(f;) is the same for
all fixed points b € Fix(f). Later it turned out that in general it is better to expect the
formula

N(f) =N(fo,) +---+N(fp,), (1.2)

where by,...,b; represent all the Nielsen classes of f. One may find an analogy between
the last formula and the formulae of the present paper. There are also other analogies: in
both cases the obstructions to the above equalities lie in the subgroups {a € mX; feax =
al cmX.

2. Preliminaries

We recall the basic definitions [2, 3]. Let f : X — X be a self-map of a compact polyhe-
dron. Let Fix(f) = {x € X; f(x) = x} denote the fixed point set of f. We define the Nielsen
relation on Fix(f) putting x ~ y if there is a path w:[0,1] — X such that w(0) = x,
w(1) = y and the paths w, fw are fixed end point homotopic. This relation splits the
set Fix(f) into the finite number of classes Fix(f) = A; U - - - U A,. A class A C Fix(f)
is called essential if its fixed point index ind(f;A) # 0. The number of essential classes is
called the Nielsen number and is denoted by N (). This number has two important prop-
erties. It is a homotopy invariant and is the lower bound of the number of fixed points:
N(f) = #Fix(g) for every map g homotopic to f.

Similarly we define the Nielsen relation modulo a normal subgroup H C m; X. We as-
sume that the map f preserves the subgroup H, thatis, fsH C H. We say that thenx ~p y
ifw = fwomodH for a path w joining the fixed points x and y. This yields H -Nielsen classes
and H-Nielsen number Ny (f). For the details see [4].

Let us notice that each Nielsen class modH splits into the finite sum of ordinary
Nielsen classes (i.e., classes modulo the trivial subgroup): A = A; U - - - U A;. On the other
hand Ny (f) < N(f).

We consider a regular finite covering p : X — X as described above.

Let

Oxn = {V:J?H—')?H; puY = pu} (2.1)
denote the group of natural transformations of this covering and let
lifty (f) = {fi)?H — Xi; PHf= pr} (2.2)

denote the set of all lifts.
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We start by recalling classical results giving the correspondence between the coverings
and the fundamental groups of a space.

LemMA 2.1. There is a bijection Oxy = py (xo) = m(X)/H which can be described as fol-
lows:

y ~y(%0) ~ pu(¥). (2.3)

We fix a point Xy € pl}l (x0). For a natural transformation y € Oxp, y(X) € pf{l (x0) is a
point and y is a path in Xy joining the points Xy and y(Xo). The bijection is not canonical. It
depends on the choice of xo and Xo.

Let us notice that for any two lifts ]?, ]?’ e lifty (f) there exists a unique y € Oxy satis-
fying f" = y f. More precisely, for a fixed lift f, the correspondence

Oxn > a — af €lifty(f) (2.4)

is a bijection. This correspondence is not canonical. It depends on the choice of f
The group Oxy is acting on lifty ( f) by the formula

aof=a-f-at (2.5)

and the orbits of this action are called Reidemeister classes mod H and their set is denoted
Ry (f). Then one can easily check [3]

~

(1) pu(Fix(f)) c Fix(f) is either exactly one H-Nielsen class of the map f or is
empty (for any f e lifty (f))

(2) Fix(f) = Uy pu (Fix(f)) where the summation runs the set lifty (f)

(3) if pH(Fix(f)) N pH(Fix(f’)) # @ then f, f’ represent the same Reidemeister
class in Ry (f)

(4) if f, ]7’ represent the same Reidemeister class then pH(Fix(f)) = pH(FiX(fN’)).

~

Thus Fix(f) =U ¥ pu(Fix(f)) is the disjoint sum where the summation is over a sub-

set containing exactly one lift f from each H-Reidemeister class. This gives the natu-
ral inclusion from the set of Nielsen classes modulo H into the set of H-Reidemeister
classes

Nu(f) — Ru(f). (2.6)

The H-Nielsen class A is sent into the H-Reidemeister class represented by a lift ]? satis-
tying pu (Fix(f)) = A. By (1) and (2) such lift exists, by (3) the definition is correct and
(4) implies that this map is injective.
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3. Lemmas

For a lift f e liftg (f), a fixed point xy € Fix(f) and an element 8 € m(X;x0) we define
the subgroups

%(f) = {y € Oxus fy=yf}
C(fe-x0:p) = {a € m(X5x0); af = Bfe()} (3.1)
Cu (fe,x03f) = {laln € m (X;3x0)/H (x0); aff = B fe(ar) modulo H}.

If B = 1 we will write simply C( fz,xo) or Cu( f¢ Xo0).
We notice that the canonical projection j : m(X;x9) — m(X;x0)/H(x9) induces the
homomorphism j : C(fxx0;8) = Cu(fi>x03 ).

LEmMaA 3.1. Letf be a lift of f and let A be a Nielsen class off Then pu(A) C le(f) is
a Nielsen class of f. On the other hand if A C Fix(f) is a Nielsen class of f then py'(A) N
Fix(f) splits into the finite sum of Nielsen classes of f.

Proof. It is evident that pg(A) is contained in a Nielsen class A C Fix(f) f). Now we show
that A C pH(A). Let us fix a point Xy € A and let xo = pu(Xo). Let x; € A. We have to
show that x; € pH(fT). Let w: I — X establish the Nielsen relation between the points
w(0) = x and w(1) = x; and let h(t,s) denote the homotopy between w = h(-,0) and
fw = h(-,1). Then the path w lifts to a path @ : I — Xu, @(0) = %. Let us denote &(1) =
%1. It remains to show that JNcl € A. The homotopy h lifts to helxI— Xu, ﬁ(O 5) = Xo.
Then the paths h(-,1) and f o as the lifts of fw startlng from Xy are equal. Now f (%) =
f(w 1)) = ( 1) = h(l 0) = @(1) =X,. Thus ¥ X € le(f) and the homotopyh gives the
Nielsen relation between Xy and X hence x; € A.

Now the second part of the lemma is obvious. O

LEMMA 3.2. Let A C Fix(f) be a Nielsen class off Let us denote A = py(A). Then
(1) py : A — A is a covering where the fibre is in bijection with the image j+(C(fs,X)) C
m (X;x)/H(x) for x € A,
(2) the cardinality of the fibre (i.e., #(pg' (x) N A)) does not depend on x € A and we will
denote it by ] 5,
3) if A" is another Nielsen class of f satisfying pr(A') = pu(A) then the cardinalities of
piit (x) N A and pg'(x) N A" are the same for each point x € A.

Proof. (1) Since py is a local homeomorphism, the projection py : A — A is the covering.
(2) We will show a bijection ¢ : j(C(f#;xO)) - pii (x0) N A (for a fixed point xy € A).
Let a € C( ﬁ; ). Letus fixa point X0 € pii(x0). Let&: I — X denote the lift of a starting

from a(0) = Xy. We define ¢([a]p) = @(1). We show that
(2a) The definition is correct. Let [a]g = [&']g. Then & = &’ modH hence a(1) =

a'(1). Now we show that &(1) € A. Since a € C(f#), there exists a homotopy h between

the loops h(-,0) = a and h(+,1) = fa. The homotopy lifts to heIxI— Xu, ﬁ(O,s) = Xo.

Then % = h(1,s) is also a fixed point of f and moreover } is the homotopy between the

paths @ and f(T) Thus Xy, %, € Fix(f) are Nielsen related hence X; € A.
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(2b) ¢ is onto. Let X1 € pg'(x0) N A. Now %p,%) € Fix(f) are Nielsen related. Let @ :
I — Xy establish this relation ( f@ ~ @). Now

f(pu@) = prféo ~ pud (3.2)

hence py@ € C(fix0). Moreover ¢ pr@]y = @(1) = X1.

(2¢) ¢ isinjective. Let [a]p, [o' ]y € j(C(f¢)) andleta, & : I — Xy be their lifts starting
from @(0) = a’(0) = Xp. Suppose that ¢[a]y = ¢[a’]y. This means a(1) = a'(1) Xu.
Thus py(@+& ') = axa ~' € H which implies [a]y = [o ]

(3) Let xo € pu(A) = pu(A’). Then by the above #(p~'(xo) N A) = js(C(fs)) =
#(p'(xo) NA"). 0

LemMma 3.3. The restriction of the covering map py : Fix(f) - pH(Fix(f)) is a covering.
The fibre over each point is in a bijection with the set

%(f) = {y € Oxus fy=yf} (3.3)
Proof. Since the fibre of the covering py is discrete, the restriction pp : Fix(f) -
pr(Fix(f)) is a locally trivial bundle. Let us fix points xo € py(Fix(f)), X0 € pg' (x0) N

~

Fix(f). We recall that
a: py' (x0) — Oxm, (3.4)

where ay € Oxpy is characterized by az(Xy) = X, is a bijection. We will show that
a(pi (o) N Fix( ) = %( ).
Let f(X) = X for an X € p' (x0). Then

Foz (%) = FR) =% = az(%) = axf (%0) (3.5)

which implies focg = oc;fN hence ay € Sf(f).
Now we assume that fay = azf. Then in particular fax(%p) = azf(Xo) which gives
f(x) = ax(X)), f(X) = X hence X € Fix(f). O

We will denote by I, the cardinality of the subgroup #Sﬁ(f) for the H-Nielsen class

Ay = pH(Fix(f)). We will also write Iy, = I, for any Nielsen class A; of f contained in
A.

LemMaA 3.4. Let Ay C Fix(f) be a Nielsen class and let Ko C Fix(fN) be a Nielsen class con-
tained in py' (Ap). Then, by Lemma 3.1 A = pH(Ko) and moreover

ind (f;p! (Ao)) = L, - ind (f3A0)

. (3.6)
il’ld (f,Ao) = ]Ao . 1nd (f,A())



6  Nielsen number of a covering map

Proof. Since the index is the homotopy invariant we may assume that Fix( f) is finite. Now
for any fixed points x € Fix(f), Xy € Fix(f) satisfying py(Xo) = xo we have ind( fo;X) =
ind( fo; x0) since the projection py is a local homeomorphism. Thus

ind(f;pﬁl (Ag)) = Z ind (f;p,}l(x)) = Z Iy, - ind(f;x)

x€Ay x€Ay (3 7)
=14, > ind(f;x) = I, - ind (f3As). '
x€EAy
Similarly we prove the second equality:
ind (f;ﬁo) = > ind (f;p,}l (x) ﬂf?o) = > > ind( £3%)
XEAg XEAg Fepr' (x)nA,
(3.8)
= Z Ja, - ind(f3x) = Ja, - ( Z ind(f;x)) = Ja, - ind (f;Ao).
x€Ag XEAp |:|

To get a formula expressing N(f) by the numbers N (]7) we will need the assumption
that the numbers J, = J4- for any two H-Nielsen related classes A,A" C Fix(f). The next
lemma gives a sufficient condition for such equality.

Lemma 3.5. Let xy € p(Fix( f If the subgroups H(xy),C(f,x0) C m(X,x0) commute,
thatis, h- o« = a - h, for any h € H(xy), « € C(f,x0), then Jo = Ja for all Nielsen classes
A,A" C p(Fix(f)).

Proof. Let x; € p(Fix( f )) be another point. The points xy,x; € p(Fix(f)) are H-Nielsen
related, that is, there is a path w: [0,1] — X satisfying w(0) = x9, w(1) = x; such that
w* f(w™) € H(xp). We will show that the conjugation

m(X,x) da— 0 ' kxakxwem(X,x) (3.9)

sends C(f,xp) onto C(f,x1). Let a € C(f,xp). We will show that w™! % a *x w € C(f,x1).
In fact f(w ' *a*xw)=w''*xa*xwe (wkfw!)*xa=ax*x(wkfo ') but the last
equality holds since w* fw™! € H(xp) and a € C(f,xp). O

Remark 3.6. The assumption of the above lemma is satisfied if at least one of the groups
H(xo), C(f,x0) belongs to the center of 1 (X;xo).

Remark 3.7. Let us notice that if the subgroups H(xy), C(f,x) C m1(X,xo) commute then
so do the corresponding subgroups at any other point x; € py (Fix(f)).

Proof. Let us fix a path w: [0,1] — X. We will show that the conjugation
m(X,x) 2a— w ' kxaxwem(X,x) (3.10)

sends C(f,x9) onto C(f,x1). Let a € C(f,xp). We will show that w™! x a % w € C(f,x1).
But the last meansf (w'ska*xw)=w'*%a*xwhence f(w™!)* fax fw=0w"*xax
we flo)kax fo=wlxaxwe (0*x fo)xa=ax(w* fo!)and the last
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holds since (w * fw™') € H(xo) and a € C(f,x0). Now it remains to notice that the el-
ements of H(x;), C(f;x;) are of the form w™! % y * w and w™! * a * w respectively for
some y € H(xo) and o € C(f,xo). O

Now we will express the numbers I, J4 in terms of the homotopy group homomor-
phism fi: m (X,x0) — m(X,x0) for a fixed point xy € Fix(f). Let f : Xy — Xy be a lift
satisfying Xy € pg' (x0) N Fix(f). We also fix the isomorphism

m (X;x0)/H (x0) 3 & — yq € Oxn, (3.11)

where y,(X) = &(1) and & denotes the lift of « starting from &(0) = Xo.
We will describe the subgroup corresponding to C( f) by this isomorphism and then
we will do the same for the other lifts f € lifty (f).

LemmMmA 3.8.
Fye=ysaf- (3.12)
Proof.
Tya(%o) = Fa1) = yra(Zo) = yraf (R0), (3.13)

where the middle equality holds since f& is a lift of the path fa from the point Xo. O

CoROLLARY 3.9. There is a bijection between

#(f) = {y € Oxus fy=vf 1,

Cu(f) = {a e m (X;x0)/H (x0); fuz(a) = a}.

(3.14)

Thus

Lu/Ta = #5(1)/#§ (C()) = #(Cu(£)/§(C(f))). (3.15)

Let us emphasize that C(f), Cu(f) are the subgroups of 71 (X;x0) or 7, (X;x0)/H (xo)
respectively where the base point is the chosen fixed point. Now will take another fixed
point x; € Fix(f) and we will denote C'(f) = {&' € m(X;x1); fsa = a} and similarly we
define Cyy(f). We will express the cardinality of these subgroups in terms of the group
1 (X;x0).

LEmMa 3.10. Let n1:[0,1] — X be a path from xy to x;. This path gives rise to the isomor-
phism Py : m (X;5x1) — m(X;x0) by the formula P,(a) = nan™'. Let § = - (fn)~'. Then

P, (C'(f)) = {aem(X;x0); ad = 8 fe(a)}

(3.16)
Py (Cy(f)) = {la] € m (X;x0)/H (x0); a8 = 8 fs(a) modulo H}.
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Proof. We notice that § is a loop based at xy representing the Reidemeister class of the
point x; in R(f) = m (X;x0)/R.
We will denote the right-hand side of the above equalities by C(f;8) and Cy(f;6)

respectively. Let &’ € 1 (X;x1). We denote a = P, («') = na'n~'. We will show that a €

C(f;0) e o €C'(f).
In fact e € C(f30) e a6 =8 - fa e (n/n™ (- fn) =+ fr)fn- fo -
(fm) D end - (fn) ' =n-fo'-(fn) e =fda.
Similarly we prove the second equality. O
Thus we get the following formulae for the numbers Iy4, J4.

CoroLLARY 3.11. Let § € m(X;x0) represent the Reidemeister class A € R(f). Then I =
#Cr(f3j(8)), Ja = #j(C(f39)).

4. Main theorem

LEmMa 4.1. Let A C pH (Fix ]7 be a Nielsen class of f. Then py'A contains exactly I11/]a
fixed point classes of f .

Proof. Since the projection of each Nielsen class Ac P (AN Fix(f) is onto A (Lemma
3.1), it is enough to check how many Nielsen classes of f cut pj'(a) for a fixed point

a € A. But by Lemma 3.3 py'(a) N Fix(f contains I points and by Lemma 3.2 each
class in this set has exactly Ja common points with py 1(a). Thus exactly In/J4 Nielsen

classes of f are cutting py'(a) N Fix( f ). O
Let f : X — X be a self-map of a compact polyhedron admitting a lift f : Xy — Xy We
will need the following auxiliary assumption:

for any Nielsen classes A,A" € Fix(f) representing the same class modulo
the subgroup H the numbers Jo = Jar.

We fix lifts ﬁ, ... ,ﬁ representing all H-Nielsen classes of f, that is,

Fix(f) = par (Fix (fi)) U - -+ U pr (Fix (f2)) (4.1)

is the mutually disjoint sum. Let [;, J; denote the numbers corresponding to a (Nielsen
classof f) A C pH(Fix(f,')). By the remark after Lemma 3.3 and by the above assumption
these numbers do not depend on the choice of the class A C pH(Fix(fi)). We also notice
that Lemmas 3.3, 3.2 imply

= #%(f)) = #{y € Oxus i = fiy}
#j(C(fsx)) =#j({y € m(X,x:1); fey =y})

(4.2)

for an x; € A;.
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THEOREM 4.2. Let X be a compact polyhedron, Py : Xy — X a finite regular covering and let
f:X = X be a self-map admitting a lift f : Xy — Xy. We assume that for each two Nielsen
classes A,A” C Fix(f), which represent the same Nielsen class modulo the subgroup H, the
numbers Jo = Ja. Then

i (i/1;) (4.3)

i=1

where 1, J; denote the numbers defined above and the lifts f, represent all H-Reidemeister
classes of f, corresponding to nonempty H-Nielsen classes.

Proof. Let us denote A; = py(Fix f, . Then A; is the disjoint sum of Nielsen classes of
f. Let us fix one of them A C A;. By Lemma 3.1 p'A N le(f) splits into I4/J4 Nielsen
classes in Fix( f, . By Lemma 3.4 A is essential iff one (hence all) Nielsen classes in pp' A C
F]xf, is essential. Summing over all essential classes of f inA; = pA(Fix(ﬁ)) we get

the number of essential Nielsen classes of f in A;

= > (Ja/I4) - (number of essential Nielsen classes ofﬁ- in py'A), (44)
where the summation runs the set of all essential Nielsen classes contained in A;.
But J4 =J;, Iy = I; for all A C A; hence
(the number of essential Nielsen classes of f in A;) = Ji/I; - N ( Nl) (4.5)

Summing over all lifts {fi} representing non-empty H-Nielsen classes of f we get
N(f) =3 0/1) - N(f) (4.6)

since N( f) equals the number of essential Nielsen classes in Fix(f) = Uj_; pu Fix(ﬁ). O

CoROLLARY 4.3. If moreover, under the assumptions of Theorem 4.2, C = Ji/I; does not de-
pend on i then

N(f)=C- 2 .N(f). (4.7)

5. Examples

In all examples given below the auxiliary assumption J4 = Ja- holds, since the assump-
tions of Lemma 3.5 are satisfied (in 1, 2, 3 and 5 the fundamental groups are commutative
and in 4 the subgroup C(f,xo) is trivial).
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(1) If m X is finite and p : X — X is the universal covering (i.e., H = 0) then X is simply
connected hence for any lift f: X — X

~ 1 forL(fN
N(f)= ~
Pefs s

But L(f) # 0 if and only if the Nielsen class p(Fix( f )) C Fix(f) is essential (Lemma
3.4). Thus

0
N (5.1)

N(f) = number of essential classes = N(fl) .- +N(fs), (5.2)

where the lifts f],. .. ,ﬁ represent all Reidemeister classes of f.
(2) Consider the commutative diagram

P (5.3)

"
pi

st ——=g!

Where pi(z) = z¥, pi(z) = 2}, k,1 > 2. The map py is regarded as k-fold regular cover-
ing map. Then each natural transformation map of this covering is of the form a(z) =
exp(2np/k) - z for p = 0,...,k — 1 hence is homotopic to the identity map. Now all the
lifts of the map p; are maps of degree | hence their Nielsen numbers equal / — 1. On
the other hand the Reidemeister relation of the map p; : S' — S' modulo the subgroup
H = impy is given by

~B = B=a+p(l-1)ck-Z forapeZ
<= B=a+p(l-1)+gk forsomep,gqeZ (5.4)
< a = modulo g.cd. (I-1,k).

Thus #Rp (p1) = g.c.d.(I— 1,k). Now the sum

ZN p)) = (ged.(—-1,k)-(1-1), (5.5)

(where the summation runs the set having exactly one common element with each H-
Reidemeister class) equals N(p;) = I — 1 iff the numbers k, [ — 1 are relatively prime.
Notice that in our notation I = g.c.d.(l — 1,k) while ] = 1.
(3) Let us consider the action of the cyclic group Zg on §° = {(z,2) € Cx G; |z|> +
1Z|12=1} given by the cyclic homeomorphism

$ 3 (z,2') — (exp(2ni/8) - z,exp(27i/8) - Z') € S°. (5.6)

The quotient space is the lens space which we will denote Lg. We will also consider the
quotient space of $? by the action of the subgroup 27, C Zs. Now the quotient group is
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also a lens space which we will denote by L,. Let us notice that there is a natural 2-fold
covering py : Ly — Lg

Ly, =8%7,3 [z,7] — |2,2'] € §/Zs = Ls. (5.7)

The group of natural transformations O, of this covering contains two elements: the
identity and the map A[z,z'] = [exp(27i/8) - z,exp(27i/8) - z']. Now we define the map
f:Ls — Lg putting f[z,2'] = [27/121%,27/|z|"®]. This map admits the liftf : Ly — Ly given
by the same formula and the lift Af. We notice that each of the maps f, ]7, Af is a map of
a closed oriented manifold of degree 49. Since H,(L; Q) = H»(L; Q) = 0 for all lens spaces,
the Lefschetz number of each of these three maps equals; L(f) = 1 —49 = —48 # 0. On
the other hand since the lens spaces are Jiang [3], all involved Reidemeister classes are
essential hence the Nielsen number equals the Reidemeister number in each case.
Now

R(f) = coker(id—7 - id) = coker(—6 - id) = coker(2 - id) = Z,. (5.8)

Similarly @i(f) =7, and R(A - f) = %(f) = 7, since A is homotopic to the identity.
Thus

R(f)=2+#2+2=R(f)+R(A- ). (5.9)

Since all the classes are essential, the same inequality holds for the Nielsen numbers.
(4) If the group {a € m (X;x)/H(x); fsa = a} is trivial for each x € Fix(f) lying in an
essential Nielsen class of f then all the numbers I; = J; = 1 and the sum formula holds.
(5) If m; X/H 1is abelian then the rank of the groups

C(fu#) = {a e m(X,x)/H(x); fea = a} =ker (id— fi) : m (X, x)/H(x) — m(X,x)/H(x)
(5.10)

does not depend on x € Fix(f) hence I is constant. If moreover m, X is abelian then also
the group C( f) = ker(id — f) does not depend on x € Fix(f). Then we get

~

N(f)=J/1- (N(f)+---+N(f). (5.11)

References

[1] R.E Brown, The Nielsen number of a fibre map, Annals of Mathematics. Second Series 85 (1967),
483-493.

2] |, The Lefschetz Fixed Point Theorem, Scott, Foresman, Illinois, 1971.

[3] B.]J.Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, vol. 14, Ameri-
can Mathematical Society, Rhode Island, 1983.

[4] C.Y. You, Fixed point classes of a fiber map, Pacific Journal of Mathematics 100 (1982), no. 1,
217-241.

Jerzy Jezierski: Department of Mathematics, University of Agriculture, Nowoursynowska 159,
02 766 Warszawa, Poland
E-mail address: jezierski_acn@waw.pl


mailto:jezierski_acn@waw.pl

	1. Introduction
	2. Preliminaries
	3. Lemmas
	4. Main theorem
	5. Examples
	References

