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We consider a finite regular covering pH : ˜XH → X over a compact polyhedron and a map

f : X → X admitting a lift ˜f : ˜XH → ˜XH . We show some formulae expressing the Nielsen
number N( f ) as a linear combination of the Nielsen numbers of its lifts.
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1. Introduction

Let X be a finite polyhedron and let H be a normal subgroup of π1(X). We fix a covering
pH : ˜XH → X corresponding to the subgroup H , that is, p#(π1( ˜XH))=H .

We assume moreover that the subgroup H has finite rank, that is, the covering pH is
finite. Let f : X → X be a map satisfying f (H)⊂H . Then f admits a lift

˜XH

˜f

pH

˜XH

pH

X
f

X

(1.1)

Is it possible to find a formula expressing the Nielsen number N( f ) by the numbers

N( ˜f ) where ˜f runs the set of all lifts? Such a formula seems very desirable since the
difficulty of computing the Nielsen number often depends on the size of the fundamental

group. Since π1 ˜X ⊂ π1X , the computation of N( ˜f ) may be simpler. We will translate this
problem to algebra. The main result of the paper is Theorem 4.2 expressing N( f ) as a

linear combination of {N( ˜fi)}, where the lifts are representing all the H-Reidemeister
classes of f .

The discussed problem is analogous to the question about “the Nielsen number prod-
uct formula” raised by Brown in 1967 [1]. A locally trivial fibre bundle p : E→ B and a
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2 Nielsen number of a covering map

fibre map f : E→ E were given and the question was how to express N( f ) by N( f ) and
N( fb), where f : B→ B denoted the induced map of the base space and fb was the restric-
tion to the fibre over a fixed point b ∈ Fix( f ). This problem was intensively investigated
in 70ties and finally solved in 1980 by You [4]. At first sufficient conditions for the “prod-
uct formula” were formulated: N( f ) = N( f )N( fb) assuming that N( fb) is the same for
all fixed points b ∈ Fix( f ). Later it turned out that in general it is better to expect the
formula

N( f )=N
(

fb1

)

+ ···+N
(

fbs
)

, (1.2)

where b1, . . . ,bs represent all the Nielsen classes of f . One may find an analogy between
the last formula and the formulae of the present paper. There are also other analogies: in
both cases the obstructions to the above equalities lie in the subgroups {α∈ π1X ; f#α=
α} ⊂ π1X .

2. Preliminaries

We recall the basic definitions [2, 3]. Let f : X → X be a self-map of a compact polyhe-
dron. Let Fix( f )= {x ∈ X ; f (x)= x} denote the fixed point set of f . We define the Nielsen
relation on Fix( f ) putting x ∼ y if there is a path ω : [0,1] → X such that ω(0) = x,
ω(1) = y and the paths ω, f ω are fixed end point homotopic. This relation splits the
set Fix( f ) into the finite number of classes Fix( f ) = A1 ∪ ··· ∪As. A class A ⊂ Fix( f )
is called essential if its fixed point index ind( f ;A) �= 0. The number of essential classes is
called the Nielsen number and is denoted by N( f ). This number has two important prop-
erties. It is a homotopy invariant and is the lower bound of the number of fixed points:
N( f )≤ #Fix(g) for every map g homotopic to f .

Similarly we define the Nielsen relation modulo a normal subgroup H ⊂ π1X . We as-
sume that the map f preserves the subgroup H , that is, f#H ⊂H . We say that then x ∼H y
ifω = f ωmodH for a pathω joining the fixed points x and y. This yieldsH-Nielsen classes
and H-Nielsen number NH( f ). For the details see [4].

Let us notice that each Nielsen class modH splits into the finite sum of ordinary
Nielsen classes (i.e., classes modulo the trivial subgroup):A= A1∪···∪As. On the other
hand NH( f )≤N( f ).

We consider a regular finite covering p : ˜XH → X as described above.
Let

�XH =
{

γ : ˜XH −→ ˜XH ; pHγ = pH
}

(2.1)

denote the group of natural transformations of this covering and let

liftH( f )=
{

˜f : ˜XH −→ ˜XH ; pH ˜f = f pH
}

(2.2)

denote the set of all lifts.
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We start by recalling classical results giving the correspondence between the coverings
and the fundamental groups of a space.

Lemma 2.1. There is a bijection �XH = p−1
H (x0)= π1(X)/H which can be described as fol-

lows:

γ ∼ γ
(

x̃0
)∼ pH(γ̃). (2.3)

We fix a point x̃0 ∈ p−1
H (x0). For a natural transformation γ ∈ �XH , γ(x̃0) ∈ p−1

H (x0) is a
point and γ̃ is a path in ˜XH joining the points x̃0 and γ(x̃0). The bijection is not canonical. It
depends on the choice of x0 and x̃0.

Let us notice that for any two lifts ˜f , ˜f ′ ∈ liftH( f ) there exists a unique γ ∈ �XH satis-

fying ˜f ′ = γ ˜f . More precisely, for a fixed lift ˜f , the correspondence

�XH 
 α−→ α ˜f ∈ liftH( f ) (2.4)

is a bijection. This correspondence is not canonical. It depends on the choice of ˜f .
The group �XH is acting on liftH( f ) by the formula

α◦ ˜f = α · ˜f ·α−1 (2.5)

and the orbits of this action are called Reidemeister classes modH and their set is denoted
�H( f ). Then one can easily check [3]

(1) pH(Fix( ˜f )) ⊂ Fix( f ) is either exactly one H-Nielsen class of the map f or is

empty (for any ˜f ∈ liftH( f ))

(2) Fix( f )=⋃
˜f pH(Fix( ˜f )) where the summation runs the set liftH( f )

(3) if pH(Fix( ˜f ))∩ pH(Fix( ˜f ′)) �= ∅ then ˜f , ˜f ′ represent the same Reidemeister
class in �H( f )

(4) if ˜f , ˜f ′ represent the same Reidemeister class then pH(Fix( ˜f ))= pH(Fix( ˜f ′)).

Thus Fix( f )=⋃
˜f pH(Fix( ˜f )) is the disjoint sum where the summation is over a sub-

set containing exactly one lift ˜f from each H-Reidemeister class. This gives the natu-
ral inclusion from the set of Nielsen classes modulo H into the set of H-Reidemeister
classes

�H( f )−→�H( f ). (2.6)

The H-Nielsen class A is sent into the H-Reidemeister class represented by a lift ˜f satis-

fying pH(Fix( ˜f ))= A. By (1) and (2) such lift exists, by (3) the definition is correct and
(4) implies that this map is injective.
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3. Lemmas

For a lift ˜f ∈ liftH( f ), a fixed point x0 ∈ Fix( f ) and an element β ∈ π1(X ;x0) we define
the subgroups

�( ˜f )=
{

γ ∈ �XH ; ˜f γ = γ ˜f
}

C
(

f#,x0;β
)= {α∈ π1

(

X ;x0
)

; αβ = β f#(α)
}

CH
(

f#,x0;β
)= {[α]H ∈ π1

(

X ;x0
)

/H
(

x0
)

; αβ = β f#(α) modulo H
}

.

(3.1)

If β = 1 we will write simply C( f#,x0) or CH( f#,x0).
We notice that the canonical projection j : π1(X ;x0) → π1(X ;x0)/H(x0) induces the

homomorphism j : C( f#,x0;β)→ CH( f#,x0;β).

Lemma 3.1. Let ˜f be a lift of f and let ˜A be a Nielsen class of ˜f . Then pH( ˜A) ⊂ Fix( f ) is
a Nielsen class of f . On the other hand if A⊂ Fix( f ) is a Nielsen class of f then p−1

H (A)∩
Fix( ˜f ) splits into the finite sum of Nielsen classes of ˜f .

Proof. It is evident that pH( ˜A) is contained in a Nielsen class A⊂ Fix( f ). Now we show
that A ⊂ pH( ˜A). Let us fix a point x̃0 ∈ ˜A and let x0 = pH(x̃0). Let x1 ∈ A. We have to
show that x1 ∈ pH( ˜A). Let ω : I → X establish the Nielsen relation between the points
ω(0) = x0 and ω(1) = x1 and let h(t,s) denote the homotopy between ω = h(·,0) and
f ω = h(·,1). Then the path ω lifts to a path ω̃ : I → ˜XH , ω̃(0)= x̃0. Let us denote ω̃(1)=
x̃1. It remains to show that x̃1 ∈ ˜A. The homotopy h lifts to ˜h : I × I → ˜XH , ˜h(0,s) = x̃0.

Then the paths ˜h(·,1) and ˜f ω̃ as the lifts of f ω starting from x̃0 are equal. Now ˜f (x̃1)=
˜f (ω̃(1))= ˜h(1,1)= ˜h(1,0)= ω̃(1)= x̃1. Thus x̃1 ∈ Fix( ˜f ) and the homotopy ˜h gives the
Nielsen relation between x̃0 and x̃1 hence x̃1 ∈ ˜A.

Now the second part of the lemma is obvious. �

Lemma 3.2. Let ˜A⊂ Fix( ˜f ) be a Nielsen class of ˜f . Let us denote A= pH( ˜A). Then
(1) pH : ˜A→ A is a covering where the fibre is in bijection with the image j#(C( f#,x))⊂

π1(X ;x)/H(x) for x ∈ A,
(2) the cardinality of the fibre (i.e., #(p−1

H (x)∩ ˜A)) does not depend on x ∈ A and we will
denote it by JA,

(3) if ˜A′ is another Nielsen class of ˜f satisfying pH( ˜A′)= pH( ˜A) then the cardinalities of
p−1
H (x)∩ ˜A and p−1

H (x)∩ ˜A′ are the same for each point x ∈A.

Proof. (1) Since pH is a local homeomorphism, the projection pH : ˜A→ A is the covering.
(2) We will show a bijection φ : j(C( f#;x0))→ p−1

H (x0)∩ ˜A (for a fixed point x0 ∈A).
Let α∈ C( f#). Let us fix a point x̃0 ∈ p−1

H (x0). Let α̃ : I → ˜X denote the lift of α starting
from α̃(0)= x̃0. We define φ([α]H)= α̃(1). We show that

(2a) The definition is correct. Let [α]H = [α′]H . Then α ≡ α′modH hence α̃(1) =
˜α′(1). Now we show that α̃(1) ∈ ˜A. Since α ∈ C( f#), there exists a homotopy h between

the loops h(·,0)= α and h(·,1)= f α. The homotopy lifts to ˜h : I × I → ˜XH , ˜h(0,s)= x̃0.

Then x̃1 = ˜h(1,s) is also a fixed point of ˜f and moreover ˜h is the homotopy between the

paths ω̃ and ˜f ω̃. Thus x̃0, x̃1 ∈ Fix( ˜f ) are Nielsen related hence x̃1 ∈ ˜A.
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(2b) φ is onto. Let x̃1 ∈ p−1
H (x0)∩ ˜A. Now x̃0, x̃1 ∈ Fix( ˜f ) are Nielsen related. Let ω̃ :

I → ˜XH establish this relation ( ˜f ω̃ ∼ ω̃). Now

f
(

pHω̃
)= pH ˜f ω̃ ∼ pHω̃ (3.2)

hence pHω̃ ∈ C( f#;x0). Moreover φ[pHω̃]H = ω̃(1)= x̃1.
(2c) φ is injective. Let [α]H , [α′]H ∈ j(C( f#)) and let α̃, α̃′ : I → ˜XH be their lifts starting

from α̃(0) = α̃′(0) = x̃0. Suppose that φ[α]H = φ[α′]H . This means α̃(1) = α̃′(1) ∈ ˜XH .
Thus pH(α̃∗α̃′−1)= α∗α′−1 ∈H which implies [α]H = [α′]H .

(3) Let x0 ∈ pH( ˜A) = pH( ˜A′). Then by the above #(p−1(x0) ∩ ˜A) = j#(C( f#)) =
#(p−1(x0)∩ ˜A′). �

Lemma 3.3. The restriction of the covering map pH : Fix( ˜f )→ pH(Fix( ˜f )) is a covering.
The fibre over each point is in a bijection with the set

�( ˜f )=
{

γ ∈ �XH ; ˜f γ = γ ˜f
}

. (3.3)

Proof. Since the fibre of the covering pH is discrete, the restriction pH : Fix( ˜f ) →
pH(Fix( ˜f )) is a locally trivial bundle. Let us fix points x0 ∈ pH(Fix( ˜f )), x̃0 ∈ p−1

H (x0)∩
Fix( ˜f ). We recall that

α : p−1
H

(

x0
)−→ �XH , (3.4)

where αx̃ ∈ �XH is characterized by αx̃(x̃0) = x̃, is a bijection. We will show that

α(p−1
H (x0)∩Fix( ˜f ))=�( ˜f ).

Let ˜f (x̃)= x̃ for an x̃ ∈ p−1
H (x0). Then

˜f αx̃
(

x̃0
)= ˜f (x̃)= x̃ = αx̃

(

x̃0
)= αx̃ ˜f

(

x̃0
)

(3.5)

which implies ˜f αx̃ = αx̃ ˜f hence αx̃ ∈�( ˜f ).

Now we assume that ˜f αx̃ = αx̃ ˜f . Then in particular ˜f αx̃(x̃0) = αx̃ ˜f (x̃0) which gives
˜f (x̃)= αx̃(x̃0), ˜f (x̃)= x̃ hence x̃ ∈ Fix( ˜f ). �

We will denote by IAH the cardinality of the subgroup #�( ˜f ) for the H-Nielsen class

AH = pH(Fix( ˜f )). We will also write IAi = IAH for any Nielsen class Ai of f contained in
A.

Lemma 3.4. Let A0 ⊂ Fix( f ) be a Nielsen class and let ˜A0 ⊂ Fix( ˜f ) be a Nielsen class con-
tained in p−1

H (A0). Then, by Lemma 3.1 A0 = pH( ˜A0) and moreover

ind
(

˜f ; p−1
H

(

A0
))= IA0 · ind

(

f ;A0
)

ind
(

˜f ; ˜A0
)= JA0 · ind

(

f ;A0
)

.
(3.6)



6 Nielsen number of a covering map

Proof. Since the index is the homotopy invariant we may assume that Fix( f ) is finite. Now

for any fixed points x0 ∈ Fix( f ), x̃0 ∈ Fix( ˜f ) satisfying pH(x̃0)= x0 we have ind( ˜f0; x̃0)=
ind( f0;x0) since the projection pH is a local homeomorphism. Thus

ind
(

˜f ; p−1
H

(

A0
))=

∑

x∈A0

ind
(

˜f ; p−1
H (x)

)=
∑

x∈A0

IA0 · ind( f ;x)

= IA0

∑

x∈A0

ind( f ;x)= IA0 · ind
(

f ;A0
)

.
(3.7)

Similarly we prove the second equality:

ind
(

˜f ; ˜A0
)=

∑

x∈A0

ind
(

˜f ; p−1
H (x)∩ ˜A0

)

=
∑

x∈A0

∑

x̃∈p−1
H (x)∩ ˜A0

ind
(

˜f ; x̃
)

=
∑

x∈A0

JA0 · ind( f ;x)= JA0 ·
(

∑

x∈A0

ind( f ;x)

)

= JA0 · ind
(

f ;A0
)

.

(3.8)

�

To get a formula expressing N( f ) by the numbers N( ˜f ) we will need the assumption
that the numbers JA = JA′ for any two H-Nielsen related classes A,A′ ⊂ Fix( f ). The next
lemma gives a sufficient condition for such equality.

Lemma 3.5. Let x0 ∈ p(Fix( ˜f )). If the subgroups H(x0),C( f ,x0) ⊂ π1(X ,x0) commute,
that is, h · α = α · h, for any h ∈ H(x0), α ∈ C( f ,x0), then JA = JA′ for all Nielsen classes

A,A′ ⊂ p(Fix( ˜f )).

Proof. Let x1 ∈ p(Fix( ˜f )) be another point. The points x0,x1 ∈ p(Fix( ˜f )) are H-Nielsen
related, that is, there is a path ω : [0,1] → X satisfying ω(0) = x0, ω(1) = x1 such that
ω∗ f (ω−1)∈H(x0). We will show that the conjugation

π1
(

X ,x0
)
 α−→ ω−1∗α∗ω ∈ π1

(

X ,x1
)

(3.9)

sends C( f ,x0) onto C( f ,x1). Let α∈ C( f ,x0). We will show that ω−1∗α∗ω ∈ C( f ,x1).
In fact f (ω−1 ∗ α∗ ω) = ω−1 ∗ α∗ ω ⇔ (ω∗ f ω−1)∗ α = α∗ (ω∗ f ω−1) but the last
equality holds since ω∗ f ω−1 ∈H(x0) and α∈ C( f ,x0). �

Remark 3.6. The assumption of the above lemma is satisfied if at least one of the groups
H(x0), C( f ,x0) belongs to the center of π1(X ;x0).

Remark 3.7. Let us notice that if the subgroups H(x0),C( f ,x0)⊂ π1(X ,x0) commute then

so do the corresponding subgroups at any other point x1 ∈ pH(Fix( ˜f )).

Proof. Let us fix a path ω : [0,1]→ X . We will show that the conjugation

π1
(

X ,x0
)
 α−→ ω−1∗α∗ω ∈ π1

(

X ,x1
)

(3.10)

sends C( f ,x0) onto C( f ,x1). Let α∈ C( f ,x0). We will show that ω−1∗α∗ω ∈ C( f ,x1).
But the last means f (ω−1∗ α∗ω) = ω−1∗ α∗ω hence f (ω−1)∗ f α∗ f ω = ω−1∗ α∗
ω ⇔ f (ω−1)∗ α∗ f ω = ω−1 ∗ α∗ω ⇔ (ω∗ f ω−1)∗ α = α∗ (ω∗ f ω−1) and the last
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holds since (ω∗ f ω−1) ∈H(x0) and α ∈ C( f ,x0). Now it remains to notice that the el-
ements of H(x1), C( f ;x1) are of the form ω−1 ∗ γ∗ω and ω−1 ∗ α∗ω respectively for
some γ ∈H(x0) and α∈ C( f ,x0). �

Now we will express the numbers IA, JA in terms of the homotopy group homomor-

phism f# : π1(X ,x0)→ π1(X ,x0) for a fixed point x0 ∈ Fix( f ). Let ˜f : ˜XH → ˜XH be a lift

satisfying x̃0 ∈ p−1
H (x0)∩Fix( ˜f ). We also fix the isomorphism

π1
(

X ;x0
)

/H
(

x0
)
 α−→ γα ∈ �XH , (3.11)

where γα(x̃0)= α̃(1) and α̃ denotes the lift of α starting from α̃(0)= x̃0.

We will describe the subgroup corresponding to C( ˜f ) by this isomorphism and then

we will do the same for the other lifts ˜f ′ ∈ liftH( f ).

Lemma 3.8.

˜f γα = γ f α
˜f . (3.12)

Proof.

˜f γα
(

x̃0
)= ˜f α̃(1)= γ f α

(

x̃0
)= γ f α

˜f
(

x̃0
)

, (3.13)

where the middle equality holds since ˜f α̃ is a lift of the path f α from the point x̃0. �

Corollary 3.9. There is a bijection between

�( ˜f )=
{

γ ∈ �XH ; ˜f γ = γ ˜f
}

,

CH( f )= {α∈ π1
(

X ;x0
)

/H
(

x0
)

; fH#(α)= α
}

.
(3.14)

Thus

IA/JA = #�( ˜f )/# j
(

C( f )
)= #

(

CH( f )/ j
(

C( f )
))

. (3.15)

Let us emphasize that C( f ), CH( f ) are the subgroups of π1(X ;x0) or π1(X ;x0)/H(x0)
respectively where the base point is the chosen fixed point. Now will take another fixed
point x1 ∈ Fix( f ) and we will denote C′( f )= {α′ ∈ π1(X ;x1); f#α= α} and similarly we
define C′H( f ). We will express the cardinality of these subgroups in terms of the group
π1(X ;x0).

Lemma 3.10. Let η : [0,1]→ X be a path from x0 to x1. This path gives rise to the isomor-
phism Pη : π1(X ;x1)→ π1(X ;x0) by the formula Pη(α)= ηαη−1. Let δ = η · ( f η)−1. Then

Pη
(

C′( f )
)= {α∈ π1

(

X ;x0
)

; αδ = δ f#(α)
}

Pη
(

C′H( f )
)= {[α]∈ π1

(

X ;x0
)

/H
(

x0
)

; αδ = δ f#(α) modulo H
}

.
(3.16)
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Proof. We notice that δ is a loop based at x0 representing the Reidemeister class of the
point x1 in �( f )= π1(X ;x0)/�.

We will denote the right-hand side of the above equalities by C( f ;δ) and CH( f ;δ)
respectively. Let α′ ∈ π1(X ;x1). We denote α = Pη(α′) = ηα′η−1. We will show that α ∈
C( f ;δ)⇔ α′ ∈ C′( f ).

In fact α ∈ C( f ;δ) ⇔ αδ = δ · f α ⇔ (ηα′η−1)(η · f η−1) = (η · f η−1)( f η · f α′ ·
( f η)−1)⇔ ηα′ · ( f η)−1 = η · f α′ · ( f η)−1 ⇔ α′ = f α′.

Similarly we prove the second equality. �

Thus we get the following formulae for the numbers IA, JA.

Corollary 3.11. Let δ ∈ π1(X ;x0) represent the Reidemeister class A∈�( f ). Then IA =
#CH( f ; j(δ)), JA = # j(C( f ;δ)).

4. Main theorem

Lemma 4.1. Let A⊂ pH(Fix( ˜f )) be a Nielsen class of f . Then p−1
H A contains exactly IA/JA

fixed point classes of ˜f .

Proof. Since the projection of each Nielsen class ˜A⊂ p−1
H (A)∩ Fix( ˜f ) is onto A (Lemma

3.1), it is enough to check how many Nielsen classes of ˜f cut p−1
H (a) for a fixed point

a ∈ A. But by Lemma 3.3 p−1
H (a)∩ Fix( ˜f ) contains IA points and by Lemma 3.2 each

class in this set has exactly JA common points with p−1
H (a). Thus exactly IA/JA Nielsen

classes of ˜f are cutting p−1
H (a)∩Fix( ˜f ). �

Let f : X → X be a self-map of a compact polyhedron admitting a lift ˜f : ˜XH → ˜XH . We
will need the following auxiliary assumption:

for any Nielsen classes A,A′ ∈ Fix( f ) representing the same class modulo
the subgroup H the numbers JA = JA′ .

We fix lifts ˜f1, . . . , ˜fs representing all H-Nielsen classes of f , that is,

Fix( f )= pH
(

Fix
(

˜f1
))∪···∪ pH

(

Fix
(

˜fs
)

)

(4.1)

is the mutually disjoint sum. Let Ii, Ji denote the numbers corresponding to a (Nielsen

class of f ) A⊂ pH(Fix( ˜fi)). By the remark after Lemma 3.3 and by the above assumption

these numbers do not depend on the choice of the class A⊂ pH(Fix( ˜fi)). We also notice
that Lemmas 3.3, 3.2 imply

Ii = #�
(

˜fi
)= #

{

γ ∈ �XH ; γ ˜fi = ˜fiγ
}

Ji = # j
(

C
(

f#;x
))= # j

({

γ ∈ π1
(

X ,xi
)

; f#γ = γ
})

(4.2)

for an xi ∈ Ai.
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Theorem 4.2. Let X be a compact polyhedron, PH : ˜XH → ˜X a finite regular covering and let

f : X → X be a self-map admitting a lift ˜f : ˜XH → ˜XH . We assume that for each two Nielsen
classes A,A′ ⊂ Fix( f ), which represent the same Nielsen class modulo the subgroup H , the
numbers JA = JA′ . Then

N( f )=
s
∑

i=1

(

Ji/Ii
) ·N( ˜fi

)

, (4.3)

where Ii, Ji denote the numbers defined above and the lifts ˜fi represent all H-Reidemeister
classes of f , corresponding to nonempty H-Nielsen classes.

Proof. Let us denote Ai = pH(Fix( ˜fi)). Then Ai is the disjoint sum of Nielsen classes of

f . Let us fix one of them A ⊂ Ai. By Lemma 3.1 p−1
H A∩ Fix( ˜fi) splits into IA/JA Nielsen

classes in Fix( ˜fi). By Lemma 3.4 A is essential iff one (hence all) Nielsen classes in p−1
H A⊂

Fix ˜fi is essential. Summing over all essential classes of ˜f in Ai = pA(Fix( ˜fi)) we get

the number of essential Nielsen classes of f in Ai

=
∑

A

(

JA/IA
) · (number of essential Nielsen classes of ˜fi in p−1

H A
)

, (4.4)

where the summation runs the set of all essential Nielsen classes contained in Ai.
But JA = Ji, IA = Ii for all A⊂Ai hence

(

the number of essential Nielsen classes of f in Ai
)= Ji/Ii ·N

(

˜fi
)

. (4.5)

Summing over all lifts { ˜fi} representing non-empty H-Nielsen classes of f we get

N( f )=
∑

i

(

Ji/Ii
) ·N( ˜fi

)

(4.6)

since N( f ) equals the number of essential Nielsen classes in Fix( f )=⋃s
i=1 pH Fix( ˜fi). �

Corollary 4.3. If moreover, under the assumptions of Theorem 4.2, C = Ji/Ii does not de-
pend on i then

N( f )= C ·
s
∑

i=1

N
(

˜fi
)

. (4.7)

5. Examples

In all examples given below the auxiliary assumption JA = JA′ holds, since the assump-
tions of Lemma 3.5 are satisfied (in 1, 2, 3 and 5 the fundamental groups are commutative
and in 4 the subgroup C( f ,x0) is trivial).
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(1) If π1X is finite and p : ˜X → X is the universal covering (i.e., H = 0) then ˜X is simply

connected hence for any lift ˜f : ˜X → ˜X

N( ˜f )=
⎧

⎨

⎩

1 for L( ˜f ) �= 0

0 for L( ˜f )= 0.
(5.1)

But L( ˜f ) �= 0 if and only if the Nielsen class p(Fix( ˜f )) ⊂ Fix( f ) is essential (Lemma
3.4). Thus

N( f )= number of essential classes=N
(

˜f1
)

+ ···+N
(

˜fs
)

, (5.2)

where the lifts ˜f1, . . . , ˜fs represent all Reidemeister classes of f .
(2) Consider the commutative diagram

S1
pl

pk

S1

pk

S1
pl

S1

(5.3)

Where pk(z) = zk, pl(z) = zl, k, l ≥ 2. The map pk is regarded as k-fold regular cover-
ing map. Then each natural transformation map of this covering is of the form α(z) =
exp(2πp/k) · z for p = 0, . . . ,k− 1 hence is homotopic to the identity map. Now all the
lifts of the map pl are maps of degree l hence their Nielsen numbers equal l − 1. On
the other hand the Reidemeister relation of the map pl : S1 → S1 modulo the subgroup
H = impk# is given by

α∼ β ⇐⇒ β = α+ p(l− 1)∈ k ·Z for a p ∈ Z
⇐⇒ β = α+ p(l− 1) + qk for some p,q ∈ Z
⇐⇒ α= β modulo g.c.d. (l− 1,k).

(5.4)

Thus #�H(pl)= g.c.d.(l− 1,k). Now the sum

∑

p′l

N
(

p′l
)= (g.c.d.(l− 1,k)

) · (l− 1), (5.5)

(where the summation runs the set having exactly one common element with each H-
Reidemeister class) equals N(pl)= l− 1 iff the numbers k, l− 1 are relatively prime.

Notice that in our notation I = g.c.d.(l− 1,k) while J = 1.
(3) Let us consider the action of the cyclic group Z8 on S3 = {(z,z′) ∈ C×C; |z|2 +

|z′|2 = 1} given by the cyclic homeomorphism

S3 
 (z,z′)−→ (

exp(2πi/8) · z, exp(2πi/8) · z′)∈ S3. (5.6)

The quotient space is the lens space which we will denote L8. We will also consider the
quotient space of S3 by the action of the subgroup 2Z4 ⊂ Z8. Now the quotient group is
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also a lens space which we will denote by L4. Let us notice that there is a natural 2-fold
covering pH : L4 → L8

L4 = S3/Z4 
 [z,z′]−→ [z,z′]∈ S3/Z8 = L8. (5.7)

The group of natural transformations �L of this covering contains two elements: the
identity and the map A[z,z′]= [exp(2πi/8) · z, exp(2πi/8) · z′]. Now we define the map

f : L8 → L8 putting f [z,z′]= [z7/|z|6,z
′7/|z|′6]. This map admits the lift ˜f : L4 → L4 given

by the same formula and the lift A ˜f . We notice that each of the maps f , ˜f , A ˜f is a map of
a closed oriented manifold of degree 49. Since H1(L;Q)=H2(L;Q)= 0 for all lens spaces,
the Lefschetz number of each of these three maps equals; L( f ) = 1− 49 = −48 �= 0. On
the other hand since the lens spaces are Jiang [3], all involved Reidemeister classes are
essential hence the Nielsen number equals the Reidemeister number in each case.

Now

�( f )= coker(id−7 · id)= coker(−6 · id)= coker(2 · id)= Z2. (5.8)

Similarly �( ˜f ) = Z2 and �(A · ˜f ) = �( ˜f ) = Z2 since A is homotopic to the identity.
Thus

R( f )= 2 �= 2 + 2= R( ˜f ) +R(A · ˜f ). (5.9)

Since all the classes are essential, the same inequality holds for the Nielsen numbers.
(4) If the group {α∈ π1(X ;x)/H(x); f#α= α} is trivial for each x ∈ Fix( f ) lying in an

essential Nielsen class of f then all the numbers Ii = Ji = 1 and the sum formula holds.
(5) If π1X/H is abelian then the rank of the groups

C
(

fH#
)= {α∈ π1(X ,x)/H(x); f#α= α

}= ker
(

id− f#
)

: π1(X ,x)/H(x)−→ π1(X ,x)/H(x)
(5.10)

does not depend on x ∈ Fix( f ) hence I is constant. If moreover π1X is abelian then also
the group C( f#)= ker(id− f#) does not depend on x ∈ Fix( f ). Then we get

N( f )= J/I ·
(

N
(

˜f1
)

+ ···+N
(

˜fs
)

)

. (5.11)
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