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We study Nielsen coincidence theory for maps between manifolds of same dimension
regardless of orientation. We use the definition of semi-index of a class, review the defi-
nition of defective classes, and study the occurrence of defective root classes. We prove a
semi-index product formula for lifting maps and give conditions for the defective coinci-
dence classes to be the only essential classes.
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1. Introduction

In [2, 6] the Nielsen coincidence theory was extended to maps between nonorientable
topological manifolds. The main idea to do this is the notion of semi-index (a nonnegative
integer) for a coincidence set.

Let f ,g : M→N be maps between closed n-manifolds without boundary. If we define
h = ( f ,g) : M → N ×N as usual, then we may assume that h is in a transverse position,
that is, the coincidence set Coin( f ,g)= {x ∈M | f (x)= g(x)} is finite and for each coin-
cidence point x there is a chart Rn×Rn =U ⊂N ×N such that (U , ( f ,g)(M)∩U ,ΔN ∩
U) corresponds to (Rn×Rn,Rn× 0,0×Rn) (see [6] for details).

We say that two coincidence points x, y ∈ Coin( f ,g) are Nielsen related if there is a
path γ : [0,1]→M with γ(0) = x, γ(1) = y such that f γ is homotopic to gγ relative to
the endpoints. In fact, this is an equivalence relation whose equivalence classes are called
coincidence classes of the pair ( f ,g).

Let x, y ∈ Coin( f ,g) belong to the same coincidence class and let γ be a path estab-
lishing the Nielsen relation between them. We choose a local orientation μ0 of M in x and
denote by μt the translation of μ0 along γ(t).

Definition 1.1 [6, Definition 1.2]. We will say that two points x, y ∈ Coin( f ,g) are R-
related (xRy) if and only if there is a path γ establishing the Nielsen relation between them

Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2006, Article ID 68513, Pages 1–9
DOI 10.1155/FPTA/2006/68513

http://dx.doi.org/10.1155/S1687182006685136


2 Coincidence classes in nonorientable manifolds

such that the translation of the orientation h∗μ0 along a path in the diagonal Δ(N) ⊂
N ×N homotopic to hγ in N ×N is opposite to h∗μ1. In this case the path γ is called
graph-orientation-reversing.

Since ( f ,g) is transverse, Coin( f ,g) is finite. Let A⊂ Coin( f ,g), then A can be repre-
sented as A= {a1,a2, . . . ,as; b1,c1, . . . ,bk,ck} where biRci for any i and aiRaj for no i �= j.
The elements {ai}i of this decomposition are called free.

Definition 1.2. In the above setup the semi-index of the pair ( f ,g) in A = {a1, . . . ,as;
b1,c1, . . . ,bk,ck} is the number of free elements s denoted by |ind|( f ,g;A) of A.

This definition makes sense, since it does not depend on a decomposition (c.f. [2,
6]). Moreover the semi-index is homotopy invariant, it is well defined for all continuous
maps, and if U ⊂M is an open subset such that Coin( f ,g)∩U is compact, we can extend
this definition to that of the semi-index of a pair on the subset U , which is denoted by
| ind|( f ,g;U).

Definition 1.3. A coincidence class C of a transverse pair ( f ,g) is called essential if
| ind|( f ,g;C) �= 0.

In [5] Jezierski investigates whether a coincidence point x ∈ Coin( f ,g) satisfies xRx.
Such points can occur only when M or N are nonorientable, in which case they are called
self-reducing points. This is a new situation (see [5, Example 2.4]) that cannot occur nei-
ther in the orientable case nor in the fixed point context.

Definition 1.4 [5, Definition 2.1]. Let x ∈ Coin( f ,g) and let H ⊂ π1(M), H′ ⊂ π1(N)
denote the subgroups of orientation-preserving elements. We define

Coin( f#,g#)x =
{
α∈ π1(M,x) | f#(α)= g#(α)

}
,

Coin+( f#,g#)x = Coin( f#,g#)x ∩H.
(1.1)

Lemma 1.5 [5, Lemma 2.2]. Let f ,g : M→N be transverse and x ∈ Coin( f ,g). Then xRx if
and only if Coin+( f#,g#)x �= Coin( f#,g#)x ∩ f −1

# (H′) (in other words, if there exists a loop α
based at x such that f α∼ gα and exactly one of the loops α or f α is orientation-preserving).

Definition 1.6. A coincidence class C is called defective if C contains a self-reducing point.

Lemma 1.7 [5, Lemma 2.3]. If a Nielsen class C contains a self-reducing point (i.e., C is
defective), then any two points in this class are R-related, and thus

| ind|( f ,g;C)=
⎧
⎪⎨

⎪⎩

0 if #C is even;

1 if #C is odd.
(1.2)
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2. The root case

In [1] we can find a different approach to extend the Nielsen root theory to the nonori-
entable case. They use the concept of orientation-true map to classify maps between man-
ifolds of the same dimension in three types (see also [7, 8]).

Definition 2.1. A map f is orientation-true if for each loop α∈ π1(M), f α is orientation-
preserving if and only if α is orientation-preserving.

Definition 2.2 [1, Definition 2.1]. Let f : M→N be a map of manifolds. Then three types
of maps are defined as follows.

(1) Type I: f is orientation-true.
(2) Type II: f is not orientation-true but does not map an orientation-reversing loop

in M to a contractible loop in N .
(3) Type III: f maps an orientation-reversing loop in M to a contractible loop in N .

Further, a map f is defined to be orientable if it is of Type I or II, and nonorientable
otherwise.

For orientable maps they describe an Orientation Procedure [1, 2.6] for root classes.
This procedure uses local degree with coefficients in Z. For maps of Type III the same
procedure is possible only with coefficients in Z2. Then they define the multiplicity of a
root class, that is an integer for orientable maps and an element of Z2 for maps of Type
III.

Now if we consider the root classes of a map f as the coincidence classes of the pair
( f ,c) where c is the constant map, we have.

Theorem 2.3. Let f : M → N be a map between closed manifolds of the same dimension,
without boundary.

(i) If f is orientable, then no root class of f is defective.
(ii) If f is of Type III, then all root classes of f are defective.

Proof. If f is orientable and α is a loop in M, f α ∼ 1 implies that α is orientation-
preserving. On the other hand by Lemma 1.5, a coincidence class C of the pair ( f ,c)
is defective if and only if there exists a point x ∈ C and a loop α at x such that f α∼ 1 and
α is orientation-reversing.

Now if f is a Type III map, then there exists a loop α ∈ π1(M,x0) such that α is
orientation-reversing and f α ∼ 1. Let x ∈ Coin( f ,g) be a root. We fix a path β from x
to x0. Then γ = βαβ−1 is a loop based at x, orientation-reversing and f γ ∼ 1. Thus x is a
self-reducing root. �

In fact [1, Lemma 4.1] shows the equality between the multiplicity of a root class and
its semi-index.

Theorem 2.4. Let M and N be closed manifolds of the same dimension, without boundary
such that M is nonorientable and N is orientable. If f : M → N is a map, then all essential
root classes of f are defective.
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Proof. There is no orientation-true maps from a nonorientable to an orientable manifold.
If f is a Type II map then by [1, Lemma 3.10] deg( f ) = 0 and f has no essential root
classes. The result follows by Theorem 2.3. �

We use the ideas of Theorem 2.3 to state.

Lemma 2.5. Let f ,g : M → N be two maps between manifolds of the same dimension. If
there exist a coincidence point x0 and a graph-orientation-reverse loop α based in x0 such
that f α is in the center of π1(N , f (x0)), then all coincidence points of the pair ( f ,g) are
self-reducing points.

Proof. Let x1 ∈ Coin( f ,g). We fix a path β from x0 to x1 and we will show that for the
loop γ = β−1αβ, the loops f γ and gγ are homotopic and γ is orientation-reverse. In fact
f γ ∼ gγ means f β−1 · f α · f β ∼ gβ−1 · gα · gβ hence f α · ( f β · gβ−1)∼ ( f β · gβ−1) · gα.
The last holds, since the homotopy class of f α∼ gα belongs to the centre of π1(N , f (x0)).
On the other hand γ = β−1 ·α ·β is orientation-reverse, since so is α.

Corollary 2.6. Let f ,g : M → N be two maps between manifolds of the same dimension
such that f#(π1(M)) is contained in the center of π1(N). If ( f ,g) has a defective class, then
all classes of ( f ,g) are defective. �

In particular this is true for π1(N) commutative.

3. Covering maps

Let M and N be compact, closed manifolds of the same dimension, let f ,g : M → N be
two maps such that Coin( f ,g) is finite, and let p : M̃→M and q : Ñ →N be finite regular

coverings such that there exist lifts f̃ , g̃ : M̃→ Ñ of the pair f ,g:

M̃
f̃

g̃

p

Ñ

q

M
f

g N

(3.1)

Under such hypotheses there is a bijection between the set of Deck transformations,
D(M̃), of the covering space M̃ and the group (π1(M))/(p#(π1(M̃))). We fix a point x̃0 ∈
M̃ and for each Deck transformation α we choose a path γ in M̃, from x̃0 to α(x̃0). Then,
if α is the projection of γ, the formula

D(M̃)
 α−→ [α]∈ π1
(
M, p

(
x̃0
))

p#
(
π1
(
M̃, x̃0

)) (3.2)

gives such bijection. It is easy to see that such bijection is an isomorphism of groups.
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The above isomorphism and a fixed lift f̃ determine the homomorphism from the
group D(M̃) to D(Ñ) for which the diagram

D(M̃)
f̃∗,x̃0

D(Ñ)

π1(M, p(x̃0))

p#(π1(M̃, x̃0))

f# π1(N ,q( f (x̃0)))

q#(π1(Ñ , f (x̃0)))

(3.3)

commutes. This homomorphism is given by the equality

f̃∗,x0 (α)
(
f̃ (x̃)

)= f̃ α(x̃), ∀α∈D(M̃), ∀x̃ ∈ M̃. (3.4)

The same construction can be done for map g and we have the following.

Lemma 3.1. Let x̃0 ∈ Coin( f̃ , g̃) and α ∈D(M̃). Then α(x̃0) ∈ Coin( f̃ , g̃) if and only if

f̃∗,x0 (α)= g̃∗,x0 (α) where x0 = p(x̃0).

Corollary 3.2. Let x̃0 ∈ Coin( f̃ , g̃) and x0 = p(x̃0). Then p−1(x0)∩Coin( f̃ , g̃) have ex-

actly #Coin( f̃∗,x0 , g̃∗,x0 ) elements.

Lemma 3.3. Let x̃0 and x̃′0 be two coincidences of the pair ( f̃ , g̃) such that p(x̃0)= p(x̃′0)=
x0, and let γ be the unique element of D(M̃) such that γ(x̃0)= x̃′0. The points x̃0 and x̃′0 are

in the same coincidence class of ( f̃ , g̃) if and only if there exists γ ∈ π1(M,x0) such that
(i) [γ]∈ (π1(M,x0))/(p#(π1(M̃, x̃0))) corresponds to γ;

(ii) f#(γ)= g#(γ).

Proof. (⇒) If x̃0 and x̃′0 are in the same coincidence class of ( f̃ , g̃), there exists a path β

from x̃0 to x̃′0 establishing the Nielsen relation, (i.e., f̃ β ∼ g̃β).

Take γ = pβ ∈ π1(M,x0). We can see that [γ] = γ and f γ = q f̃ β ∼ qg̃β = gγ, this
means that f#(γ)= g#(γ).

(⇐) The lift γ̃ of γ starting at x̃0 is a path from x̃0 to x̃′0 establishing the Nielsen relation,

(i.e., f̃ γ̃ ∼ g̃ γ̃). �

If γ is a loop in a manifold, we say that sign(γ)= 1 or −1 if γ is orientation-preserving
or orientation-reversing, respectively.

Corollary 3.4. In Lemma 3.3, if the points x̃0 and x̃′0 are in the same coincidence class

of ( f̃ , g̃), then x̃0Rx̃
′
0 if and only if sign( f̃∗,x0 (γ)) · sign(γ) = −1. In this case, x0 is a self-

reducing coincidence point.

Proof. First we note that since f#(γ) = g#(γ), f̃∗,x0 (γ) = g̃∗,x0 (γ) and we have that

sign( f̃∗,x0 (γ)) · sign(γ) = −1 if and only if the paths γ and γ̃ in the proof of Lemma 3.3
are both graph orientation-reversing. �

If we denote by jx0 the natural projection from π1(M,x0) to D(M̃) and by Coin( f#,g#)x0

the set {α∈ π1(M,x0) | f#(α)= g#(α)}, we have the following.
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Corollary 3.5. If x0 is a coincidence of the pair ( f ,g), then the set p−1(x0)∩Coin( f̃ , g̃)

can be partitioned in (#Coin( f̃∗,x0 , g̃∗,x0 ))/(# jx0 (Coin( f#,g#)x0 )) disjoint subsets, each of
them with # jx0 (Coin( f#,g#)x0 ) elements all of them Nielsen related (therefore they are con-

tained in the same coincidence class of the pair ( f̃ , g̃)). Moreover, no two points of different
subsets are Nielsen related.

Lemma 3.6. Let x0, x1 be coincidence points in the same coincidence class of the pair ( f ,g), α
be a path from x0 to x1 establishing the Nielsen relation, x̃0, x̃′0 coincidence points of the pair

( f̃ , g̃) such that p(x̃0)= p(x̃′0)= x0, and γ the unique element of D(M̃) such that γ(x̃0)= x̃′0.
If α̃ and α̃′ are the two liftings of α starting at x̃0 and x̃′0 respectively then:

(i) α̃(1) and α̃′(1) are coincidence points of the pair ( f̃ , g̃);
(ii) α̃(1) (α̃′(1)) is in the same coincidence class as x̃0 (x̃′0);

(iii) p(α̃(1))= p(α̃′(1))= x1;
(iv) γ(α̃(1))= α̃′(1).
(v) If α is a graph orientation-reversing-path (in this case x0Rx1), then α̃ and α̃′ are graph

orientation-reverse-paths (in this case x̃0Rx̃1 and x̃′0Rx̃
′
1).

Proof. (i), (ii), and (iii) are known (we prove using covering space theory). To prove (iv)
we notice that γ(α̃(0))= γ(x̃0)= x̃0

′ = α̃′(0) implies γ(α̃(1))= α̃′(1).
To prove (v), we use [2, Lemma 2.1, page 77]. �

Theorem 3.7. Let M and N be compact, closed manifolds of the same dimension, let f ,g :
M → N be two maps, and let p : M̃ →M and q : Ñ → N be finite coverings such that there

exist lifts f̃ , g̃ : M̃ → Ñ of the pair ( f ,g). If C̃ is a coincidence class of the pair ( f̃ , g̃), then
C = p(C̃) is a coincidence class of the pair ( f ,g) and

| ind|( f̃ , g̃; C̃
)=

⎧
⎪⎨

⎪⎩

s · k(mod2) if C is defective;

s · k otherwise,
(3.5)

where s= | ind|( f ,g,C), k = # j(Coin( f#,g#)x0 ) and x0 ∈ C.

Proof. Since | ind| is homotopy invariant, we may assume that Coin( f ,g) is finite. The
fact that C = p(C̃) is a coincidence class of the pair ( f ,g) is known. We choose a point
x0 ∈ C. Since Coin( f ,g) is finite, we can suppose C = {x1, . . . ,xs; c1,c′1, . . . ,cn,c′n} where
each xi is free, and for all pairs cj , c′j we have cjRc′j .

Now we choose paths {αi}i, 2≤ i≤ s; {βj} j and {γ j} j , 1≤ j ≤ n (see Figure 3.1) such
that

(i) αi is a path in M from x1 to xi establishing the Nielsen relation;
(ii) βj is a path in M from x1 to cj establishing the Nielsen relation;

(iii) γ j is a graph-orientation-reversing path in M from cj to c′j .

Assume that C is not defective. We notice that p−1({c1,c′1, . . . ,cn,c′n})∩ C̃ splits into the
pairs of points {γ̃rj(0), γ̃rj(1)}where γ̃rj is the lift of γrj(0) starting from a point c̃ ri ∈ p−1(ci).
By Lemma 3.6 (v) the points γ̃rj(0), γ̃rj(1) are R-related. For the same reason no two points
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x1 α2 x2
· · ·

αs

xs

β1

c1 c′1

βn

γ1
· · ·

γn

cn c′n

Figure 3.1. The class C and the chosen paths.

from p−1({x1, . . . ,xs}) are R-related. Thus

| ind|( f̃ , g̃; C̃
)= #p−1({x1, . . . ,xs}

)= | ind|( f ,g,C) · k = s · k. (3.6)

Now we assume that C is defective. Then each point from C is self-reducing hence so
also is each point in C̃ (Lemma 3.6 (v)). Now

| ind|( f̃ , g̃; C̃)= #C̃(mod 2)

= k(s+ 2n)(mod2)

= k · s(mod2).

(3.7)

�

4. Twofold orientable covering

Let M and N be compact closed manifolds of same dimension such that M is nonori-
entable and N is orientable; let f ,g : M → N be two maps, and let p : M̃ →M be the

twofold orientable covering of M. We define f̃ , g̃ : M̃→N by f̃ = f p and g̃ = g p:

M̃
f̃

g̃p

M
f

g N

(4.1)

Lemma 4.1. Under the above conditions, if C is a coincidence class of the pair ( f ,g), then

p−1(C)⊂ Coin( f̃ , g̃) is such that
(1) p−1(C) can be divided in two disjoint sets C̃ and C̃′, such that p(C̃)= p(C̃′)= C;

(2) if x̃1, x̃2 ∈ C̃ (or C̃′), then x̃1 and x̃2 are in the same coincidence class of ( f̃ , g̃);

(3) C̃ and C̃′ are in the same coincidence class of the pair ( f̃ , g̃) if and only if C is defective.

Proof. We make q : Ñ →N as the identity map in the Corollaries 3.2, 3.4 and Lemma 3.6.
�

Corollary 4.2. Under the hypotheses of Lemma 4.1 we have

(1) if C is not defective, then C̃ and C̃′ are two coincidence classes of the pair ( f̃ , g̃) such

that ind( f̃ , g̃, C̃)=− ind( f̃ , g̃, C̃′) and | ind( f̃ , g̃, C̃)| = | ind|( f ,g,C);
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(2) if C is defective, then C̃ ∪ C̃′ is a unique coincidence class of the pair ( f̃ , g̃) with

ind( f̃ , g̃, C̃∪ C̃′)= 0.

Proof. It is useful to remember that the pair ( f̃ , g̃) is a pair of maps between orientable

manifolds and that ind( f̃ , g̃, C̃) are the indices of the coincidence class C̃. Since the index
and the semi index are homotopy invariants, we may assume that Coin( f ,g) is finite.

(1) SinceM is nonorientable, the antipodism ofA : M̃→ M̃, that is, the map exchang-
ing the points in p−1(x) reverses the orientation of M̃. On the other hand A(C̃)=
C̃′, hence ind( f̃ , g̃; C̃′)= ind( f̃ , g̃;A(C̃))= ind( f̃ A−1, g̃A−1; C̃)=− ind( f̃ , g̃; C̃).

(2) As above we deduce that for x̃, x̃′ ∈ p−1(x), ind( f̃ , g̃; x̃)= ind( f̃ , g̃; x̃′), hence ind( f̃ ,
g̃; p−1(x))= 0. �

Corollary 4.3. Under de hypotheses of Lemma 4.1 we have

(1) L( f̃ , g̃)= 0;

(2) N( f̃ , g̃) is even;

(3) N( f ,g)≥ (N( f̃ , g̃))/2;

(4) if N( f̃ , g̃)= 0, then all coincidence classes with nonzero semi-index of the pair ( f ,g)
are defective.

Proof. We have that p(Coin( f̃ , g̃))= Coin( f ,g), and in the pair ( f̃ , g̃) the pre-image, by
p, of a defective class of the pair ( f ,g) has index zero. �

5. Applications

Theorem 5.1. Let f ,g : M→N be two maps between closed manifolds of the same dimen-
sion such that M is nonorientable and N is orientable. Suppose that N is such that for all ori-
entable manifolds M′ of the same dimension of N and all pairs of maps f ′,g′ : M′ →N we
have that L( f ′,g′)= 0 implies that N( f ′,g′)= 0. Then all coincidence classes with nonzero
semi-index of the pair ( f ,g) are defective.

Proof. The hypotheses on N are enough to show, using the notation of the proof of

Lemma 4.1, that N( f̃ , g̃) = 0. So by Corollary 4.3, all coincidence classes with nonzero
semi-index of the pair ( f ,g) are defective. �

We notice that the hypotheses on the manifoldN in Theorem 5.1, in dimension greater
than two, are equivalent to the converse of Lefschetz theorem. In dimension two these
hypotheses are not equivalent but necessary for the converse of Lefschetz theorem.

Remark 5.2. The following manifolds satisfy the hypotheses on the manifold N in
Theorem 5.1:

(1) Jiang spaces [3, Corollary 1];
(2) nilmanifolds [4, Theorem 5];
(3) homogeneous spaces of a compact connected Lie group G by a finite subgroup K

[3, Theorem 4].
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[3] D. L. Gonçalves and P. N.-S. Wong, Homogeneous spaces in coincidence theory, Matemática
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