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The purpose of this paper is to study sufficient and necessary conditions for finite-step
iterative sequences with mean errors for a finite family of asymptotically quasi-nonexpan-
sive and type mappings in Banach spaces to converge to a common fixed point. The re-
sults presented in this paper improve and extend the recent ones announced by Ghost-
Debnath, Liu, Xu and Noor, Chang, Shahzad et al., Shahzad and Udomene, Chidume et
al., and all the others.
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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, F(T), D(T), and N
denote the set of fixed points of T , the domain of T , and the set of positive integers,
respectively.

Definition 1.1. Let T : D(T)= E→ E be a mapping.
(1) T is said to be quasi-nonexpansive if F(T) �= ∅ and ‖Tx− p‖ ≤ ‖x− p‖, for all

x ∈ E and p ∈ F(T).
(2) T is said to be asymptotically nonexpansive if there exists a sequence {kn} of pos-

itive real numbers with kn ≥ 1 and limn→+∞ kn = 1, such that ‖Tnx − Tny‖ ≤
kn‖x− y‖, for all x, y ∈ E and n∈N .

(3) T is said to be asymptotically quasi-nonexpansive if F(T) �= ∅ and there exists a
sequence {kn} of positive real numbers with kn ≥ 1 and limn→+∞ kn = 1 such that
‖Tnx− p‖ ≤ kn‖x− p‖, for all x ∈ E, p ∈ F(T), and all n∈N .

(4) T is said to be asymptotically nonexpansive type if

limsup
n→∞

{
sup
x,y∈E

[∥∥Tnx−Tny
∥∥2−‖x− y‖2]}≤ 0. (1.1)
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(5) T is said to be asymptotically quasi-nonexpansive type if

limsup
n→∞

{
sup

x∈E, y∈F(T)

[∥∥Tnx− p
∥∥2−‖x− p‖2]}≤ 0. (1.2)

From the above definitions, it follows that if F(T) is nonempty, quasi-nonexpensive
mappings, asymptotically nonexpensive mappings, asymptotically quasi-nonexpensive
mappings, and asymptotically nonexpensive type-mappings are all special cases of as-
ymptotically quasi-nonexpensive-type mappings.

Definition 1.2 (see [2]). Let T1,T2,T3 : E→ E be asymptotically quasi-nonexpansive-type
mappings. Let {un}, {vn}, {wn} be three given sequences in E and let x1 be a given point.
Let {αn}, {βn}, {γn}, {δn}, {ηn}, {ξn} be sequences in [0,1] satisfying the following con-
ditions:

αn + γn ≤ 1, βn + δn ≤ 1, ηn + ξn ≤ 1,

∞∑
n=1

γn <∞,
∞∑
n=1

δn <∞,
∞∑
n=1

ξn <∞.
(1.3)

Then the sequence {xn} ⊂ E defined by

xn+1 =
(
1−αn− γn

)
xn +αnT

n
1 yn + γnun, n≥ 1,

yn =
(
1−βn− δn

)
xn +βnT

n
2 zn + δnvn, n≥ 1,

zn =
(
1−ηn− ξn

)
xn +ηnT

n
3 xn + ξnwn, n≥ 1,

(1.4)

is called the three-step iterative sequence with mean errors of T1, T2, T3.
Let T1,T2, . . . ,TN : E→ E be N asymptotically quasi-nonexpansive-type mappings. Let

x1 be a given point. Then the sequence {xn} defined by

xn+1 =
(
1− an1− bn1

)
xn + an1T

n
1 yn1 + bn1un1,

yn1 =
(
1− an2− bn2

)
xn + an2T

n
2 yn2 + bn2un2,

...

ynN−2 =
(
1− anN−1− bnN−1

)
xn + anN−1T

n
N−1ynN−1 + bnN−1unN−1,

ynN−1 =
(
1− anN − bnN

)
xn + anNT

n
Nxn + bnNunN ,

(1.5)

is called the N-step iterative sequence with mean errors of T1,T2, . . . ,TN , where {uni}∞n=1,
i= 1,2, . . . ,N , are N sequences in E, {ani}∞n=1, {bni}∞n=1, i= 1,2, . . . ,N , are N sequences in
[0,1] satisfying the following conditions:

ani + bni ≤1, n≤ 1, i= 1,2, . . . ,N ,

∞∑
n=1

bni <∞, i= 1,2, . . . ,N.
(1.6)
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Petryshyn and Williamson [9] proved a sufficient and necessary condition for the
Mann iterative sequences to converge to a fixed point for quasi-nonexpansive mappings.
Ghosh and Debnath [5] extended the result of [9] and gave a sufficient and necessary
condition for the Ishikawa iterative sequence to converge to a fixed point for quasi-
nonexpansive mappings. Liu [6–8] extended the above results and proved some sufficient
and necessary conditions for the Ishikawa iterative sequence or the Ishikawa iterative se-
quences with errors for asymptotically quasi-nonexpansive mappings to converge to a
fixed point. Chidume et al. [4] obtained a strong convergence theorem to a fixed point of
a family of nonself nonexpansive mappings in Banach spaces by an algorithm for nonself-
mappings. Shahzad and Udomene [10] established necessary and sufficient conditions
for the convergence of the Ishikawa-type iterative sequences involving two asymptoti-
cally quasi-nonexpansive mappings to a common fixed point of the mappings defined
on a nonempty closed convex subset of a Banach space and a sufficient condition for the
convergence of the Ishikawa-type iterative sequences involving two uniformly continuous
asymptotically quasi-nonexpansive mappings to a common fixed point of the mappings
defined on a nonempty closed convex subset of a uniformly convex Banach space. Al-
ber [1] studied the approximating methods for finding the fixed points of asymptotically
nonexpansive mappings.

Recently, Chang et al. [2] complement, improve, and perfect all the above results and
obtained some necessary and sufficient conditions for the Ishikawa iterative sequence
with mixed errors of asymptotically quasi-nonexpansive-type mappings in Banach spaces
to converge to a fixed point in Banach spaces. And also using the N-step iterative se-
quences (1.5), Chang et al. [3] proved the weak and strong convergence of finite steps
iterative sequences with mean errors to a common fixed point for a finite family of asymp-
totically nonexpansive mappings.

The purpose of this paper is to study sufficient and necessary conditions for finite-
step iterative sequences with mean errors for a finite family of asymptotically quasi-
nonexpansive-type mappings in Banach spaces to converge to a common fixed point.
Our result shows that [2, Condidtion (2.1) in Theorem 2.1] can be removed. The re-
sults present in this paper improve, extend, and perfect the recent ones announced by
Petryshyn and Williamson [9], Ghost and Debnath [5], Liu [6, 7], Xu and Noor [12],
Chang [2, 3], Shahzad et al. [4], Shahzad and Udomene [10], Chidume et al. [1], and all
the others.

In order to prove our main results, we will need the following lemma.

Lemma 1.3 (see [11]). Let {an},{bn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ an + bn, n≥ 1. (1.7)

If
∑∞

n=1 bn <∞, then limn→∞ an exists.

2. Main results

Theorem 2.1. Let E be a Banach space and Ti : E→ E (i= 1,2, . . . ,N) be N asymptotically
quasi-nonexpansive-type mappings with a nonempty fixed-point set F(T)=⋂N

i=1F(Ti), that
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is,

limsup
n→∞

{
sup

x∈E, p∈F(T)

[∥∥Tn
i x− p

∥∥2−‖x− p‖2]}≤ 0, i= 1,2, . . . ,N. (2.1)

Let {uni} be a bounded sequence in E. For any given point x1 in E, generate the sequence {xn}
defined by (1.5). If

∑∞
n=1αni <∞, then sequence {xn} strongly converges to a common fixed

point of Ti (i = 1,2, . . . ,N) if and only if liminfn→∞d(xn,F(T)) = 0, where d(y,S) denotes
the distance of y to set S; that is, d(y,S)= inf s∈S‖y− s‖.

Proof. (1) For the sake of convenience, we prove the conclusion only for the case of N = 3
and then the other cases can be proved by the same way. For the purpose, let αn = an1 ,
βn = an2 , ηn = an3 , γn = bn1 , δn = bn2 , ξn = bn3 . Then we can consider the sequence {xn}
defined by (1.4) and {un}, {vn}, {wn} are bounded. For all p ∈ F(T), let

M1 = sup
{∥∥un− p

∥∥} : n≥ 1, M2 = sup
{∥∥vn− p

∥∥} : n≥ 1,

M3 = sup
{∥∥wn− p

∥∥} : n≥ 1, M =max
{
Mi : i= 1,2,3

}
.

(2.2)

It follows from (2.1) that

limsup
n→∞

{
sup

x∈E, p∈F(T)

[
(
∥∥Tn

i x− p
∥∥−‖x− p‖)(∥∥Tn

i x+ p
∥∥−‖x− p‖)]

}

= limsup
n→∞

{
sup

x∈E, p∈F(T)

[∥∥Tn
i x− p

∥∥2−‖x− p‖2]}≤ 0, i= 1,2,3.

(2.3)

Therefore we have

limsup
n→∞

{
sup

x∈E, p∈F(T)

[∥∥Tn
i x− p

∥∥−‖x− p‖]
}
≤ 0, i= 1,2,3. (2.4)

This implies that for any given ε > 0, there exists a positive integer n0 such that for n≥ n0,
we have

sup
x∈E, p∈F(T)

{∥∥Tn
i x− p

∥∥−‖x− p‖
}
< ε, i= 1,2,3. (2.5)

Since {xn},{yn},{zn} ⊂ E, we have

∥∥Tn
1 yn− p

∥∥−∥∥yn− p
∥∥ < ε, ∀p ∈ F(T),∀n≥ n0, (2.6)∥∥Tn

2 zn− p
∥∥−∥∥zn− p

∥∥ < ε, ∀p ∈ F(T),∀n≥ n0, (2.7)∥∥Tn
3 xn− p

∥∥−∥∥xn− p
∥∥ < ε, ∀p ∈ F(T),∀n≥ n0. (2.8)
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Thus for any p ∈ F(T), using (1.4) and (2.6), we have

∥∥xn+1− p
∥∥= ∥∥(1−αn− γn

)(
xn− p

)
+αn

(
Tn

1 yn− p
)

+ γn
(
un− p

)∥∥
≤ (1−αn− λn

)∥∥xn− p
∥∥+αn

(∥∥Tn
1 yn− p

∥∥−∥∥yn− p
∥∥)

+αn
∥∥yn− p

∥∥+ γn
∥∥un− p

∥∥
≤ (1−αn− λn

)∥∥xn− p
∥∥+αnε+αn

∥∥yn− p
∥∥+ γnM.

(2.9)

Consider the third term in the right-hand side of (2.9), using (1.4) and (2.7), we have that
∥∥yn− p

∥∥= ∥∥(1−βn− δn
)(
xn− p

)
+βn

(
Tn

2 zn− p
)

+ δn
(
vn− p

)∥∥
≤ (1−βn− δn

)∥∥xn− p
∥∥+βn

(∥∥Tn
2 zn− p

∥∥−∥∥zn− p
∥∥)

+βn
∥∥zn− p

∥∥+ δn
∥∥vn− p

∥∥
≤ (1−βn− δn

)∥∥xn− p
∥∥+βnε+βn

∥∥zn− p
∥∥+ δnM.

(2.10)

Consider the third term in the right-hand side of (2.10), using (1.4) and (2.8), we have
that ∥∥zn− p

∥∥= ∥∥(1−ηn− ξn
)(
xn− p

)
+ηn

(
Tn

3 xn− p
)

+ ξn
(
wn− p

)∥∥
≤ (1−ηn− ξn

)∥∥xn− p
∥∥+ηn

(∥∥Tn
3 xn− p

∥∥−∥∥xn− p
∥∥)

+ηn
∥∥xn− p

∥∥+ ξn
∥∥wn− p

∥∥
≤ (1− ξn

)∥∥xn− p
∥∥+ηnε+ ξnM.

(2.11)

Substituting (2.11) into (2.10) and simplifying, we have

∥∥yn− p
∥∥≤ (1−βnξn− δn

)∥∥xn− p
∥∥+βnε

(
1 +ηn

)
+βnξnM + δnM. (2.12)

Substituting (2.12) into (2.9) and simplifying, we have
∥∥xn+1− p

∥∥≤ (1− γn−αnβnξn−αnδn
)∥∥xn− p

∥∥+αnε+αnβnε
(
1 +ηn

)
+αnδnM +αnβnξnM + γnM

≤ ∥∥xn− p
∥∥+αn

(
1 +βn +βnηn

)
ε+

(
γn + δn + ξn

)
M

≤ ∥∥xn− p
∥∥+ 3αnε+

(
γn + δn + ξn

)
M.

(2.13)

Let An = 3αnε+ (γn + δn + ξn)M. Then An ≥ 0. It follows from (1.3) and
∑∞

n=1αni <∞
that

∑∞
n=1An <∞. Then by (2.13), we have

∥∥xn+1− p
∥∥≤ ∥∥xn− p

∥∥+An. (2.14)

It follows from (2.14) and
∑∞

n=1An <∞ that

d
(
xn+1,F(T)

)≤ d
(
xn,F(T)

)
+An. (2.15)
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By Lemma 1.3, we know that limn→∞d(xn,F(T)) exists. Because liminfn→∞d(xn,F(T))=
0, then we have

lim
n→∞d

(
xn,F(T)

)= 0. (2.16)

Next we prove that {xn} is a Cauchy sequence in E.
It follows from (2.14) that for any m≥ 1, for all n≥ n0, for all p ∈ F(T),

∥∥xn+m− p
∥∥≤ ∥∥xn+m−1− p

∥∥+An+m−1

≤ ∥∥xn+m−2− p
∥∥+

(
An+m−1 +An+m−2

)

≤ ··· ≤ ∥∥xn− p
∥∥+

n+m−1∑
k=n

Ak.

(2.17)

So by (2.17), we have

∥∥xn+m− xn
∥∥≤ ∥∥xn+m− p

∥∥+
∥∥xn− p

∥∥≤ 2
∥∥xn− p

∥∥+
∞∑
k=n

Ak. (2.18)

By the arbitrariness of p ∈ F(T) and (2.18), we know that

∥∥xn+m− xn
∥∥≤ 2d

(
xn,F(T)

)
+

∞∑
k=n

Ak, ∀n≥ n0. (2.19)

For any given ε̄ > 0, there exists a positive integer n1 ≥ n0 such that for any n ≥ n1,
d(xn,F(T)) < ε̄/4 and

∑∞
k=nAk < ε̄/2. Thus when n ≥ n1, ‖xn+m − xn‖ < ε̄. So we have

that

lim
n→∞

∥∥xn+m− xn
∥∥= 0. (2.20)

This implies that {xn} is a Cauchy sequence in E. Since E is complete, there exists a p∗ ∈ E
such that xn→ p∗ as n→∞.

Now we have to prove that p∗ is a common fixed point of Ti, i = 1,2, . . . ,N , that is,
p∗ ∈ F(T).

By contradiction, we assume that p∗ is not in F(T). Since F(T) is closed in Banach
spaces, d(p∗,F(T)) > 0. So for all p ∈ F(T), we have

∥∥p∗ − p
∥∥≤ ∥∥p∗ − xn

∥∥+
∥∥xn− p

∥∥. (2.21)

By the arbitrary of p ∈ F(T), we know that

d
(
p∗, F(T)

)≤ ∥∥p∗ − xn
∥∥+d

(
xn,F(T)

)
. (2.22)

By (2.16), above inequality and xn→ p∗ as n→∞, we have

d
(
p∗, F(T)

)= 0, (2.23)

which contracts d(p∗, F(T)) > 0. This completes the proof of Theorem 2.1. �
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Corollary 2.2. Suppose the conditions in Theorem 2.1 are satisfied. Then the N-step iter-
ative sequence {xn} generated by (1.5) converges to a common fixed point p ∈ E if and only
if there exists a subsequence {xnj} of {xn} which converges to p.

Theorem 2.3. Let E be a Banach space and let Ti : E→ E (i= 1,2, . . . ,N) be N asymptoti-
cally quasi-nonexpansive mappings with a nonempty fixed-point set F(T)=⋂N

i=1F(Ti). Let
{uni} be a bounded sequence in E. For any given point x1 in E, generate the sequence {xn} by
(1.5). If

∑∞
n=1αni <∞, then sequence {xn} strongly converges to a common fixed point of Ti

(i= 1,2, . . . ,N) if and only if liminfn→∞d(xn,F(T))= 0, where d(y,S) denotes the distance
of y to set S.

Proof. Since Ti are asymptotically quasi-nonexpansive mappings with a nonempty fixed-
point set F(T)=⋂N

i=1F(Ti), by [3, Proposition 1] or [13], we know that there must exist
a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→∞ such that

∥∥Tn
i x− p

∥∥≤ kn‖x− p‖, ∀p ∈ F(T),∀x ∈ E, n≥ 1. (2.24)

This implies that

∥∥Tn
i x− p

∥∥2− (kn)2‖x− p‖2 ≤ 0, ∀p ∈ F(T),∀x ∈ E, n≥ 1. (2.25)

Therefore we have

limsup
n→∞

{
sup

x∈D, p∈F(T)

[∥∥Tn
i x− p

∥∥2−‖x− p‖2]}≤ 0, i= 1,2, . . . ,N. (2.26)

This implies that Ti, i = 1,2, . . . ,N , are N asymptotically quasi-nonexpansive-type map-
pings with a nonempty fixed-point set F(T)=⋂N

i=1F(Ti). Theorem 2.3 can be proved by
Theorem 2.1 immediately. �

Theorem 2.4. Let E be a Banach space and let Ti : E→ E (i= 1,2, . . . ,N) be N asymptoti-
cally nonexpansive mappings with a nonempty fixed-point set F(T)=⋂N

i=1F(Ti). Let {uni}
be a bounded sequence in E. For any given point x1 in E, generate the sequence {xn} by
(1.5). If

∑∞
n=1αni <∞, then sequence {xn} strongly converges to a common fixed point of Ti

(i= 1,2, . . . ,N) if and only if liminfn→∞d(xn,F(T))= 0.

Remarks 2.5. We would like to point out that Theorems 2.1, 2.3, and 2.4 generalize and
improve the corresponding results of Petryshyn and Williamson [9], Ghost and Debnath
[5], Liu [6, 7], and Xu and Noor [12]. These theorems especially improve Chang’s results
[2] in the following aspects.

(1) We removed the condition (2.1) “there exists constant L > 0 and α > 0 such that
‖Tx− p‖ ≤ L‖x− p‖α,∀x ∈ E, ∀p ∈ F(T)” in [2].

(2) “The Ishikawa iterative sequence with mixed errors” is extended to N-step iterative
sequence with mean errors, and so we obtain the common fixed point of N asymp-
totically nonexpansive-type mappings.
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