
ALGEBRAIC PERIODS OF SELF-MAPS OF A RATIONAL
EXTERIOR SPACE OF RANK 2

GRZEGORZ GRAFF

Received 29 November 2004; Revised 27 January 2005; Accepted 21 July 2005

The paper presents a complete description of the set of algebraic periods for self-maps of
a rational exterior space which has rank 2.

Copyright © 2006 Grzegorz Graff. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A natural number m is called a minimal period of a map f if f m has a fixed point which is
not fixed by any earlier iterates. One important device for studying minimal periods are
the integers im( f )=∑k/m μ(m/k)L( f k), where L( f k) denotes the Lefschetz number of f k

and μ is the classical Möbius function. If im( f ) �= 0, then we say that m is an algebraic
period of f . In many cases the fact that m is an algebraic period provides information
about the existence of minimal periods that are less then or equal to m. For example, let
us consider f , a self-map of a compact manifold. If f is a transversal map and odd m
is an algebraic period, then m is a minimal period (cf. [10, 12]). If f is a nonconstant
holomorphic map, then there exists M > 0 such that for each prime number m >M, m
is a minimal period of f if and only if m is an algebraic period of f (cf. [3]). Further
relations between algebraic and minimal periods may be found in [8].

Sometimes the structure of the set of algebraic periods is a property of the space and
may be deduced from the form of its homology groups. In [11] there is a description
of algebraic periods for self-maps of a space M with three nonzero (reduced) homology
groups, each of which is equal to Q, in [6] the authors consider a space M with nonzero
homology groups H0(M;Q) =Q, H1(M;Q) =Q⊕Q. The main difficulty in giving the
overall description in the latter case is that for a map f∗ induced by f on homology, for
each m there are complex eigenvalues for which m is not an algebraic period. Rational
exterior spaces are a wide class of spaces (e.g., Lie groups) which do not have this disad-
vantage, namely under the natural assumption of essentiality of f there is a constant mX

and computable set TM , such that if m >mX , m �∈ TM , then m is an algebraic period of
f (cf. [5]). The aim of this paper is to provide a full characterization of algebraic periods
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in the case when homology spaces of X are small dimensional, namely when X is of the
rank 2. Our work is based on [1, 9], where the description of the so-called “homotopical
minimal periods” of self-maps of, respectively the two-, and three-dimensional torus are
given using Nielsen numbers. We follow the algebraical framework of [9], the final de-
scription is similar to the one obtained in [1]. The differences result from the fact that the
coefficients im( f ) are a sum of Lefschetz numbers, which unlike Nielsen numbers, do not
have to be positive.

2. Rational exterior spaces

For a given space X and an integer r ≥ 0 let Hr(X ;Q) be the rth singular cohomology
space with rational coefficients. Let H∗(X ;Q) =⊕s

r=0H
r(X ;Q) be the cohomology al-

gebra with multiplication given by the cup product. An element x ∈Hr(X ;Q) is decom-
posable if there are pairs (xi, yi) ∈ Hpi(X ;Q)×Hqi(X ;Q) with pi,qi > 0, pi + qi = r > 0
so that x =∑xi ∪ yi. Let Ar(X) = Hr(X)/Dr(X), where Dr is the linear subspace of all
decomposable elements.

Definition 2.1. By A( f ) we denote the induced homomorphism on A(X)=⊕s
r=0A

r(X).
Zeros of the characteristic polynomial ofA( f ) onA(X) will be called quotient eigenvalues
of f . By rankX we will denote the dimension of A(X) overQ.

Definition 2.2. A connected topological space X is called a rational exterior space if there
are some homogeneous elements xi ∈ Hodd(X ;Q), i = 1, . . . ,k, such that the inclusions
xi↩H∗(X ;Q) give rise to a ring isomorphism ΛQ(x1, . . . ,xk)=H∗(X ;Q).

Finite H-spaces including all finite dimensional Lie groups and some real Stiefel man-
ifolds are the most common examples of rational exterior spaces. The two dimensional
torus T2, a product of two n-dimensional sphere Sn× Sn, and the unitary group U(2) are
examples of rational exterior spaces of rank 2.

The Lefschetz number of self-maps of a rational exterior space can be expressed in
terms of quotient eigenvalues.

Theorem 2.3 (cf. [7]). Let f be a self-map of a rational exterior space, and let λ1, . . . ,λk be
the quotient eigenvalues of f . Let A denote the matrix of A( f ). Then L( f m)= det(I −Am)=
∏k

i=1(1− λmi ).

Remark 2.4. A basis of the space A(X) may be chosen in such a way that the matrix A is
integral (cf. [7]).

3. The set of algebraic periods of self-maps of rational exterior space of rank 2

Let μ denote the Möbius function, that is, the arithmetical function defined by the three
following properties: μ(1) = 1, μ(k) = (−1)r if k is a product of r different primes, and
μ(k)= 0 otherwise. Let APer( f )= {m∈N : im( f ) �= 0}, where im( f )=∑k/m μ(m/k)L( f k).
We will study the form of APer( f ) for f : X → X and X a rational exterior space of rank 2.
We assume that X is not simple which means that there exists r ≥ 1 such that dimAr = 2,
otherwise, that is, if there are i, j ≥ 1 such that dimAi = dimAj = 1, we get the case with
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Table 3.1. The set of algebraic periods APer( f ) for the set R.

No. (t,d) APer( f )

10 (−2,1) {1,2}
20 (−1,0) {1,2}
30 (0,0) {1}
40 (0,1) {1,2,4}
50 (1,1) {1,2,3,6}
60 (−1,1) {1,3}

integer quotient eigenvalues (cf. [7]) for which the description of APer( f ) easily follows
from the case under consideration.

By Theorem 2.3 we see that A is a 2× 2 matrix and that the Lefschetz numbers L( f m)
are expressed by its two quotient eigenvalues (in short we will call them eigenvalues):
λ1,λ2 : L( f m) = (1− λm1 )(1− λm2 ). The characteristic polynomial of A has integer co-
efficients by Remark 2.4 and is given by the formula: WA(x) = x2 − tx + d, where t =
λ1 + λ2 is the trace of A and d = λ1λ2 is its determinant. The characterization of the set
APer( f ) will be given in terms of these two parameters: t and d. Let us define the set
R= {(−2,1),(−1,0),(0,0),(0,1),(1,1),(−1,1)}.
Theorem 3.1. Let f be a self-map of a rational exterior space X of rank 2, which is not
simple. Then APer( f ) is one of the three mutually exclusive types:

(E) APer( f ) is empty if and only if 1 is an eigenvalue of A, which is equivalent to
t−d = 1.

(F) APer( f ) is nonempty but finite if and only if all the eigenvalues of A are either zero
or roots of unity not equal to 1, which is equivalent to (t,d) ∈ R. The algebraic periods
for the set R are given in Table 3.1.

(G) APer( f ) is infinite. Assume that (t,d) is not covered by the types (E) and (F),
then,

(1) for (t,d)= (−2,2), APer( f )=N \ {2,3};
(2) for (t,d)= (−1,2), APer( f )=N \ {3};
(3) for (t,d)= (0,2), APer( f )=N \ {4};
(4) for t =−d and (t,d) �= (−2,2), APer( f )=N \ {2};
(5) for t+d =−1, APer( f )=N \ {n∈N : n≡ 0 (mod4)};
(6) if (t,d) is not covered by any of the cases 1–5, then APer( f )=N.

Remark 3.2. The letters E, F, G are chosen to represent empty, finite and generic case,
respectively, which corresponds to the notation used in [9].

The rest of the paper consists of the proof of Theorem 3.1 and is organized in the
following way: in the first part we describe the conditions equivalent to the fact that m∈
{1,2,3} is not an algebraic period. In the second part we analyze the situation when m> 3
and none of eigenvalues is a root of unity. This is done by considering two cases: we will
study the behaviour of im( f ) separately for real and complex eigenvalues. In the third
stage we consider the case when m> 3 and one of eigenvalues is a root of unity.
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3.1. Algebraic periods in {1,2,3}
(A) Conditions for 1 �∈ APer( f ). We have: i1( f )= L( f )= (1− λ1)(1− λ2)= 0. This may
happen if and only if one of the eigenvalues is equal to 1, that is, t−d = 1.

(B) Conditions for 2 �∈ APer( f ). We have: i2( f ) = L( f 2)− L( f ) = 0, which is equiv-
alent to: (1 − λ2

1)(1 − λ2
2) − (1 − λ1)(1 − λ2) = 0. This gives: (1 − λ1)(1 − λ2)[(1 + λ1)

(1 + λ2)− 1]= 0, so again t−d = 1 or:

λ1λ2 + λ1 + λ2 = 0, (3.1)

which gives d+ t = 0. The conditions for 2 �∈ APer( f ) are: t−d = 1 or t =−d.

(C) Conditions for 3 �∈ APer( f ). We have: i3( f )= L( f 3)−L( f )= 0, which is equivalent
to: (1− λ3

1)(1− λ3
2)− (1− λ1)(1− λ2) = 0. We obtain the following equation: (1− λ1)

(1− λ2)[(1 + λ1 + λ2
1)(1 + λ2 + λ2

2)− 1] = 0. Again t − d = 1 if one of the eigenvalues is
equal to 1, otherwise:

λ1 + λ2 + λ1λ2 + λ2
1 + λ2

2 + λ1λ2
(
λ1 + λ2

)
+
(
λ1λ2

)2 = 0. (3.2)

In parameters t and d this gives:

t2 + t−d+dt+d2 = 0. (3.3)

The last equality may be written as:

(

d− 1− t

2

)2

+
3
4

(1 + t)2 = 1, (3.4)

which leads to the following alternatives.
If t = 0, then d ∈ {0,1}, which corresponds to characteristic polynomials x2 = 0 (λ1 =

λ2 = 0) and x2 + 1= 0 (λ1,2 =±i).
If t =−1, then d ∈ {0,2}, which corresponds to characteristic polynomials x2 + x = 0

(λ1 = 0, λ2 =−1) and x2 + x+ 2= 0 (λ1,2 =−(1/2)± i(
√

7/2)).
If t = −2, then d ∈ {1,2}, which corresponds to characteristic polynomials x2 + 2x +

1= 0 (λ1,2 =−1) and x2 + 2x+ 2= 0 (λ1,2 =−1± i).
The conditions for 3 �∈ APer( f ) are: t− d = 1 or (t,d) ∈ {(0,0),(0,1),(−1,0),(−1,2),

(−2,1),(−2,2)}.

3.2. Algebraic periods in the set m > 3 in the case when none of the two eigenvalues
is a root of unity. Let for the rest of the paper |λ1| =max{|λ1|,|λ2|}. We will need the
following lemma.

Lemma 3.3. If for some m and each n|m, n �=m we have |L( f m)|/|L( f n)| > 2
√
m− 1, then

m is an algebraic period.
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Proof. Let |L( f s)| =max{|L( f l)| : l|m, l �=m}. We have

∣
∣im( f )

∣
∣=

∣
∣
∣
∣
∣

∑

l|m
μ
(
m

l

)

L
(
f l
)
∣
∣
∣
∣
∣
≥ ∣∣L( f m)∣∣−

∣
∣
∣
∣
∣

∑

l|m, l �=m
μ
(
m

l

)

L
(
f l
)
∣
∣
∣
∣
∣

≥ ∣∣L( f m)∣∣− (2√m− 1
)∣
∣L
(
f s
)∣
∣.

(3.5)

The last inequality is a consequence of the fact that the number of different divisors of
m is not greater than 2

√
m (cf. [2]), by the assumption we get |im( f )| > 0, which is the

desired assertion. �

Now, using the algebraic arguments of [9] in a case of two eigenvalues, we find the
bound for the ratio |L( f m)|/|L( f n)|. We have

∣
∣L
(
f m
)∣
∣

∣
∣L
(
f n
)∣
∣ =

∣
∣1− λm1

∣
∣
∣
∣1− λm2

∣
∣

∣
∣1− λn1

∣
∣
∣
∣1− λn2

∣
∣ ≥

∣
∣λ1
∣
∣m− 1

∣
∣λ1
∣
∣n + 1

∣
∣λ2
∣
∣m− 1

∣
∣λ2
∣
∣n + 1

. (3.6)

Let us consider two cases.

Case 1. λ1, λ2 are complex conjugates, then |λ1| = |λ2|. Notice that |λ1| =
√
d, so if we ex-

clude three pairs (t,d)∈ {(0,1),(−1,1),(1,1)}, which correspond to some roots of unity,
we obtain: |λ1| > 1.4.

Let n|m, for Lefschetz numbers in this case we have
∣
∣L
(
f m
)∣
∣

∣
∣L
(
f n
)∣
∣ ≥

(∣
∣λ1
∣
∣m/2− 1

)(∣
∣λ2
∣
∣m/2− 1

)
=
(∣
∣λ1
∣
∣m/2− 1

)2
. (3.7)

Case 2. λ1, λ2 are real. Then |λ1| = (|t|+
√
t2− 4d)/2. If (t,d) = (0,0) then we immedi-

ately have APer( f ) = {1}. Cases t = 0, d = −1 and t = ±1, d = 0 and t = ±2, d = 1 give
some roots of unity. In the rest of the cases: |λ1| ≥ 1.4.

In order to obtain the estimation for Lefschetz numbers we use the following inequal-
ity for the moduli of eigenvalues (cf. [9, Lemma 5.2]).

Lemma 3.4. Let λi �= ±1, i= 1,2, then

∣
∣1−∣∣λ2

∣
∣
∣
∣≥ 1

1 +
∣
∣λ1
∣
∣ . (3.8)

Proof. |(±1− λ1)(±1− λ2)| = |WA(±1)| ≥ 1, because both eigenvalues are different from
±1. We obtain |1±λ2|≥1/|1±λ1|≥1/(1+|λ1|), which gives the needed inequality. �

We have by Lemma 3.4: |λ2| − 1≥ (|λ1|+ 1)−1 for |λ2| > 1 and 1− |λ2| ≥ (|λ1|+ 1)−1

for |λ2| < 1.
Let h(x)= (xm− 1)/(xn + 1), notice that h(x) is an increasing and−h(x) is a decreasing

function for m> n > 0 and x > 0.
Taking into account the two facts mentioned above we obtain:

∣
∣1− λm2

∣
∣

∣
∣1− λn2

∣
∣ ≥min

⎧
⎪⎨

⎪⎩

[
1 +
(∣
∣λ1
∣
∣+ 1

)−1
]m− 1

[
1 +
(∣
∣λ1
∣
∣+ 1

)−1
]n

+ 1
,
1−

[
1− (∣∣λ1

∣
∣+ 1

)−1
]m

1 +
[

1− (∣∣λ1
∣
∣+ 1

)−1
]n

⎫
⎪⎬

⎪⎭
. (3.9)
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As n|m we get

∣
∣L
(
f m
)∣
∣

∣
∣L
(
f n
)∣
∣ ≥

(∣
∣λ1
∣
∣m/2− 1

)
min

{[
1 +
(∣
∣λ1
∣
∣+ 1

)−1
]m/2− 1,1−

[
1− (∣∣λ1

∣
∣+ 1

)−1
]m/2

}

.

(3.10)

Let f̄C(|λ1|,m), f̄R(|λ1|,m) be the functions equal to the right-hand side of the formu-
las (3.7) and (3.10), respectively. We define functions fC(|λ1|,m)= f̄C(|λ1|,m)− (2

√
m−

1) and fR(|λ1|,m)= f̄R(|λ1|,m)− (2
√
m− 1). Notice that the inequalities:

fC
(∣
∣λ1
∣
∣,m

)
> 0, (3.11)

fR
(∣
∣λ1
∣
∣,m

)
> 0, (3.12)

imply that |L( f m)|/|L( f n)| > 2
√
m− 1 for n|m.

It is not difficult to verify the following statement by calculation and estimation of
appropriate partial derivatives.

Remark 3.5. fC(·,m) and fC(|λ1|,·) are increasing functions for |λ1| > 1.4, m≥ 4.
fR(·,m) and fR(|λ1|,·) are increasing functions for |λ1| > 1.4, m≥ 6 and for |λ1| ≥ 3,

m≥ 4.

If one of the inequalities (3.11), (3.12) is satisfied for given values |λ0
1| and m0, then, by

Remark 3.5, it is valid for each |λ1| > |λ0
1| and m>m0 and by Lemma 3.3 all such m>m0

are algebraic periods.

Lemma 3.6. Let us assume that both eigenvalues are complex
(a) if m≥ 7, then m is an algebraic period,
(b) if |λ1| ≥ 2 and m≥ 4, then m is an algebraic period.

Proof. We take the minimal modulus of the eigenvalue which may appear and put it
in the formula (3.11): (a) fC(1.4,7) > 0.75, (b) fC(2,4) = 6, which gives the result by
Remark 3.5. �

Lemma 3.7. Let us assume that both eigenvalues are real
(a) if m≥ 12, then m is an algebraic period,
(b) if |λ1| ≥ 3 and m≥ 6, then m is an algebraic period.

Proof. We put in the formula (3.12) the minimal modulus of the greater eigenvalue: (a)
fR(1.4,12) > 0.59, (b) fR(3,6) > 17.47, which implies the result by Remark 3.5. �

Remark 3.8. We must only check the cases when |λ1| < 3 and 4 ≤m ≤ 11. Notice that
for the coefficients t, d of the characteristic polynomial WA(x) we have the following
estimates: |t| ≤ 2|λ1|, |d| ≤ |λ1|2. This gives the bound: |t| < 6, |d| < 9, thus there are
at most 11× 17× 8 = 1496 cases which should be checked. This is done by numerical
computation. If we exclude (t,d) = (0,0) and the pairs which give the eigenvalues being
roots of unity, we find in the range under consideration that only for (t,d)= (0,2), m= 4
is not an algebraic period.
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3.3. Algebraic periods in the set m > 3 in the case when one of the two eigenvalues is
a root of unity. If both eigenvalues are real, then one of them is equal ±1. If they are
complex conjugates, then λ1λ2 = λ1λ̄1 = 1, thus d = 1. On the other hand 0≤ |λ1 + λ2| ≤
|λ1|+ |λ2| = 2, thus |t| ≤ 2. This gives three pairs of complex eigenvalues:±i (t = 0,d = 1)
and (1/2)± i(

√
3/2) (t = 1,d = 1) and−(1/2)± i(

√
3/2) (t =−1,d = 1). Each of these five

cases we consider separately.

(1) 1 is one of eigenvalues (t−d = 1). Then L( f m)= 0 for all m and consequently im( f )=
0 for all m. Thus APer( f )=∅.

(2) −1 is one of eigenvalues (t+d =−1). We have to consider the subcases.
(2a) If d =−1, then t = 0, so we are in case 1.
(2b) If d = 0, then t = −1, so WA(x) = x2 + x and the second eigenvalue is equal to

0. L( f m)= 1− (−1)m, thus L( f m)= 0 for m even and L( f m)= 2 for m odd. We
get: im( f ) =∑k:2|k|mμ(m/k)L( f k) +

∑
k:2�k|mμ(m/k)L( f k) = 2

∑
k:2�k|mμ(m/k). It

is easy to find (see the calculation of im( f ) in (2d)) that i1( f ) = 2, i2( f ) = −2,
im( f )= 0 for m≥ 3. As a consequence: APer( f )= {1,2}.

(2c) If d = 1, then t =−2, so WA(x)= x2 + 2x+ 1 and the second eigenvalue is equal
to −1. L( f m) = (1− (−1)m)2, thus L( f m) = 0 for m even and L( f m) = 4 for m
odd. We check in the same way as above that i1( f )= 4, i2( f )=−4, im( f )= 0 for
m≥ 3, so APer( f )= {1,2}.

(2d) If d ∈ Z \ {−1,0,1}, then for each m : |L( f m)| = |(1− (−1)m)||1− λm1 |. Notice
that in the case under consideration {1,2,3} ⊂ APer( f ), which follows from
Section 3.1.

As |d| = |λ1||λ2| and −1 is one of eigenvalues we obtain for k odd : |L( f k)| ≥ 2(|λk1| −
1) = 2(|d|k − 1), |L( f k)| ≤ 2(|λk1|+ 1) = 2(|d|k + 1). Thus, for m odd, estimating in the
same way as in Lemma 3.3, we get:

∣
∣im( f )

∣
∣≥ 2

(|d|m− 1
)− (2√m− 1

)
2
(|d|m/3 + 1

)
. (3.13)

The right-hand side of the above formula is greater then zero for |d| ≥ 2, m> 3, so all
odd m> 3 are algebraic periods.

If m> 3 is even, then m= 2nq, where q is odd. By the fact that L( f r)= 0 if 2|r, we get
L( f 2iq)= 0, for 1≤ i≤ n, thus

im( f )=
∑

l|2nq
μ
(

2n
q

l

)

L
(
f l
)=

∑

l|q
μ
(

2n
q

l

)

L
(
f l
)
. (3.14)

As μ is multiplicative and μ(2n)=−1 for n= 1 and μ(2n)= 0 for n > 1, we get

im( f )=
⎧
⎨

⎩

−iq( f ) if n= 1,

0 if n > 1.
(3.15)

This leads to the conclusion that even m is an algebraic period if and only if m = 2q
where q is odd. Finally in the case (2d) we obtain

APer( f )=N \ {n∈N : n≡ 0 (mod4)
}
. (3.16)
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Before we consider complex cases let us state the following fact (cf. [4]). Let g∗, gen-
erated by g on homology, have as its only eigenvalues ε1, . . . ,εφ(d) which are all the dth
primitive roots of unity (φ(d) denotes the Euler function). Then the Lefschetz numbers

of iterations of g are the sum of powers of these roots: L(gm) =∑φ(d)
i=1 εmi . We have the

formula for im(g) in such a case:

im(g)=

⎧
⎪⎪⎨

⎪⎪⎩

0 if m � |d,
∑

k|m
μ
(
d

k

)

μ
(
m

k

)
φ(d)
φ(d/k)

if m | d. (3.17)

Let now λ1,2 be complex conjugates eigenvalues, then

L
(
f m
)= 1− λm1 − λm2 +

(
λ1λ2

)m = 2− (λm1 + λm2
)
. (3.18)

We may rewrite formula for L( f m) in the following way: L( f m) = 2− L(gm), where g is
described above. As

∑
k|mμ(m/k)2= 2 for m= 1 and 0 for m> 1; we get

im( f )=
⎧
⎨

⎩

2− im(g) if m= 1,

−im(g) if m> 1.
(3.19)

(3) λ1,2 =±i (t = 0,d = 1) are all primitive roots of unity of degree 4. Thus, applying
formula (3.17) and (3.19), we get i1( f )= 2, i2( f )= 2, i3( f )= 0, i4( f )=−4, and im( f )=
0 for m> 4. Summing it up: APer( f )= {1,2,4}.

(4) λ1,2 = −1/2± i(
√

3/2) (t = 1,d = 1) are all the primitive roots of unity of de-
gree 6. Again by formulas (3.17) and (3.19) we calculate the values of im( f ) and get:
i1( f )= 1, i2( f )= 2, i3( f )= 3, i4( f )= 0, i5( f )= 0, i6( f )=−6 and im( f )= 0 for m > 6,
so APer( f )= {1,2,3,6}.

(5) λ1,2 = (1/2)± i(
√

3/2) (t =−1,d = 1) are all the primitive roots of unity of degree
3. By (3.17) and (3.19) we have: i1( f )= 3, i2( f )= 0, i3( f )=−3, im( f )= 0 for m> 3, so
APer( f )= {1,3}.
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