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We are concerned with the study of a multistep iterative scheme with errors involving
a finite family of nonexpansive nonself-mappings. We approximate the common fixed
points of a finite family of nonexpansive nonself-mappings by weak and strong conver-
gence of the scheme in a uniformly convex Banach space. Our results extend and improve
some recent results, Shahzad (2005) and many others.
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1. Introduction

Let K be a subset of a real normed linear space E and let T be a self-mapping on K . T is
said to be nonexpansive provided ‖Tx−Ty‖� ‖x− y‖ for all x, y ∈ K .

Fixed-point iteration process for nonexpansive mappings in Banach spaces includ-
ing Mann and Ishikawa iteration processes has been studied extensively by many au-
thors to solve the nonlinear operator equations in Hilbert spaces and Banach spaces;
see [3, 7, 10, 11, 15, 16]. Tan and Xu [15] introduced and studied a modified Ishikawa
process to approximate fixed points of nonexpansive mappings defined on nonempty
closed convex bounded subsets of a uniformly convex Banach space E. Five years later,
Xu [18] introduced iterative schemes known as Mann iterative scheme with errors and
Ishikawa iterative scheme with errors. Takahashi and Tamura [14] introduced and stud-
ied a generalization of Ishikawa iterative schemes for a pair of nonexpansive mappings
in Banach spaces. Recently, Khan and Fukhar-ud-din [6] extended their scheme to the
modified Ishikawa iterative schemes with errors for two mappings and gave weak and
strong convergence theorems. On the other hand, iterative techniques for approximat-
ing fixed points of nonexpansive nonself-mappings have been studied by various au-
thors; see [4, 8, 13, 19]. Shahzad [12] introduced and studied an iteration scheme for
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2 Weak and strong convergence

approximating a fixed point of nonexpansive nonself-mappings (when such a fixed point
exists) and gave some strong and weak convergence theorems for such mappings.

Inspired and motivated by these facts, we introduce and study a multistep iterative
scheme with errors for a finite family of nonexpansive nonself-mappings. Our schemes
can be viewed as an extension for two-step iterative schemes of Shahzad [12]. The scheme
is defined as follows.

Let K be a nonempty closed convex subset of a uniformly convex Banach space E,
which is also a nonexpansive retract of E. And let T1,T2, . . . ,TN : K → E be nonexpansive
mappings, the following iteration scheme is studied:

x1
n = P

(
α1
nT1xn +β1

nxn + γ1
nu

1
n

)
,

x2
n = P

(
α2
nT2x

1
n +β2

nxn + γ2
nu

2
n

)
,

...
...

xn+1 = xNn = P
(
αNn TNx

N
n − 1 +βNn xn + γNn u

N
n

)

(1.1)

with x1 ∈ K , n � 1, where P is a nonexpansive retraction with respect to K and {α1
n},

{α2
n}, . . . ,{αNn }, {β1

n},{β2
n}, . . . ,{βNn }, {γ1

n},{γ2
n}, . . . ,{γNn } are sequences in [0,1] with αin +

βin + γin = 1 for all i= 1,2, . . . ,N , and {u1
n},{u2

n}, . . . ,{uNn } are bounded sequences in K .
For N = 2, T1 = T2 ≡ T , βn = α1

n, αn = α2
n, and γ1

n = γ2
n ≡ 0, then (1.1) reduces to the

scheme for a mapping defined by Shahzad [12]:

x1 = x ∈ K ,

xn+1 = P
((

1−αn
)
xn +αnTP

[(
1−βn

)
xn +βnTxn

])
,

(1.2)

where {αn}, {βn} are sequences in [0,1].
For N = 2, T1,T2 : K → K , T1 = T , T2 = S, and yn = x1

n, then (1.1) reduces to the
scheme with errors for two mappings defined by

x1 = x ∈ K ,

yn = α1
nTxn +β1

nxn + γ1
nu

1
n,

xn+1 = x2
n = α2

nSyn +β2
nxn + γ2

nu
2
n,

(1.3)

where {α1
n}, {α2

n}, {β1
n}, {β2

n}, {γ1
n}, {γ2

n} are sequences in [0,1] with α1
n +β1

n + γ1
n=1=α2

n +
β2
n + γ2

n and {u1
n}, {u2

n} are bounded sequences in K .
It is our purpose in this paper to establish several weak and strong convergence

theorems of the multistep iterative scheme with errors for a finite family of nonexpansive
nonself-mappings. More precisely, we prove weak convergence of these implicit iteration
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processes in a uniformly convex Banach space which has the Kadec-Klee property. The
results presented in this paper extend and improve the corresponding ones announced
by Shahzad [12], and many others.

2. Preliminaries

In this section, we recall the well-known concepts and results.
Let E be a real Banach space. A subset K of E is said to be a retract of E if there exists

a continuous map P : E→ K such that Px = x for all x ∈ K . A map P : E→ E is said to be
a retraction if P2 = P. It follows that if a map P is a retraction, then Py = y for all y in
the range of P. A mapping T : K → E is called demiclosed with respect to y ∈ E if for each
sequence {xn} in K and each x ∈ E, xn⇀ x and Txn→ y imply that x ∈ K and Tx = y. A
Banach space E is said to satisfy Opial’s condition [9] if for any sequence {xn} in E, xn⇀ x
implies that

limsup
n→∞

∥∥xn− x
∥∥ < limsup

n→∞

∥∥xn− y
∥∥ (2.1)

for all y ∈ E with x �= y. A Banach space E is said to have the Kadec-Klee property if for
every sequence {xn} in E, xn⇀ x and ‖xn‖→ ‖x‖ together imply ‖xn− x‖→ 0. A family
{Ti : i= 1,2, . . . ,N} ofN nonself-mappings ofK (i.e.,Ti : K → E) with F =⋂N

i=1F(Ti) �=∅

is said to satisfy condition (B) onK if there is a nondecreasing function f : [0,∞)→ [0,∞)
with f (0)= 0 and f (r) > 0 for all r ∈ (0,∞) such that for all x ∈ K ,

max
1�i�N

{∥∥x−Tix
∥∥}� f

(
d(x,F)

)
. (2.2)

The family {Ti : i = 1,2, . . . ,N} is said to satisfy condition (AN ) if (2.2) is replaced by
1/N

∑N
i=1‖x−Tix‖� f (d(x,F)) for all x ∈ K . Note that condition (B) reduces to condi-

tion (AN ) when ‖x−T1x‖ = ‖x−T2x‖ = ··· = ‖x−TNx‖.
A mapping T : K → E is called semicompact if any sequence {xn} in K satisfying ‖xn−

Txn‖→ 0 as n→∞ has a convergent subsequence.

Lemma 2.1 (Tan and Xu [15]). Let {sn}, {tn} be two nonnegative sequences satisfying

sn+1 � sn + tn, ∀n� 1. (2.3)

If
∑∞

n=1 tn <∞, then limn→∞sn exists. Moreover, if there exists a subsequence {snj} of {sn}
such that snj → 0 as j →∞, then sn→ 0 as n→∞.

Lemma 2.2 (Xu [17]). Let p > 1 and R > 0 be two fixed numbers and E a Banach space.
Then E is uniformly convex if and only if there exists a continuous, strictly increasing, and
convex function g : [0,∞) → [0,∞) with g(0) = 0 such that ‖λx + (1− λ)y‖p � λ‖x‖p +
(1− λ)‖y‖p −Wp(λ)g(‖x− y‖) for all x, y ∈ BR(0) = {x ∈ E : ‖x‖� R}, and λ ∈ [0,1],
where Wp(λ)= λ(1− λ)p + λp(1− λ).

Lemma 2.3 (Kaczor [5]). Let E be a real reflexive Banach space such that its dual E∗ has the
Kadec-Klee property. Let {xn} be a bounded sequence in E and x∗, y∗ ∈ ωw(xn); here ωw(xn)
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denote the set of all weak subsequential limits of {xn}. Suppose limn→∞‖txn+(1−t)x∗−y∗‖
exists for all t ∈ [0,1]. Then x∗ = y∗.

Lemma 2.4 (Browder [1]). Let E be a uniformly convex Banach space, K a nonempty closed
convex subset of E, and T : K → E a nonexpansive mapping. Then I − T is demiclosed at
zero.

3. Main results

In this section, we prove weak and strong convergence theorems of the iterative scheme
given in (1.1) for a finite family of nonexpansive mappings in a Banach space. In order to
prove our main results, the following lemmas are needed.

Lemma 3.1. Let E be a uniformly convex Banach space and K a nonempty closed con-
vex subset of E which is also a nonexpansive retract of E. Let T1,T2, . . . ,TN : K → E be
nonexpansive mappings. Let {xn} be the sequence defined by (1.1) with

∑∞
n=1 γ

i
n <∞ for

each i= 1,2, . . . ,N . If
⋂N

i=1F(Ti) �=∅, then limn→∞‖xn− x∗‖ exists for all x∗ ∈⋂N
i=1F(Ti).

Proof. For each n� 1, we note that

∥∥x1
n− x∗

∥∥� α1
n

∥∥T1xn− x∗
∥∥+β1

n

∥∥xn− x∗
∥∥+ γ1

n

∥∥u1
n− x∗

∥∥

� α1
n

∥∥xn− x∗
∥∥+β1

n

∥∥xn− x∗
∥∥+ γ1

n

∥∥u1
n− x∗

∥∥

�
∥∥xn− x∗

∥∥+d0
n,

(3.1)

where d0
n = γ1

n‖u1
n− x∗‖. Since

∑∞
n=1 γ

1
n <∞,

∑∞
n=1d

0
n <∞. Next, we note that

∥∥x2
n− x∗

∥∥� α2
n

∥∥T2x
1
n− x∗

∥∥+β2
n

∥∥xn− x∗
∥∥+ γ2

n

∥∥u2
n− x∗

∥∥

� α2
n

∥∥x1
n− x∗

∥∥+β2
n

∥∥xn− x∗
∥∥+ γ2

n

∥∥u2
n− x∗

∥∥

= (α2
n +β2

n

)∥∥xn− x∗
∥∥+α2

nd
0
n + γ2

n

∥∥u2
n− x∗

∥∥

�
∥∥xn− x∗

∥∥+d1
n,

(3.2)

where d1
n = α2

nd
0
n + γ2

n‖u2
n− x∗‖. Since

∑∞
n=1d

0
n <∞ and

∑∞
n=1 γ

2
n <∞,

∑∞
n=1d

1
n <∞. Simi-

larly, we have

∥∥x3
n− x∗

∥∥� α3
n

∥∥x2
n− x∗

∥∥+β3
n

∥∥xn− x∗
∥∥+ γ3

n

∥∥u3
n− x∗

∥∥

� α3
n

[∥∥xn− x∗
∥∥+d1

n

]
+β3

n

∥∥xn− x∗
∥∥+ γ3

n

∥∥u3
n− x∗

∥∥

�
∥∥xn− x∗

∥∥+α3
nd

1
n + γ3

n

∥∥u3
n− x∗

∥∥= ∥∥xn− x∗
∥∥+d2

n,

(3.3)

where d2
n = α3

nd
1
n + γ3

n‖u3
n− x∗‖, so

∑∞
n=1d

2
n <∞.
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By continuing the above method, there exists a nonnegative real sequence {di−1
n } such

that
∑∞

n=1d
i−1
n <∞ and

∥∥xin− x∗
∥∥�

∥∥xn− x∗
∥∥+di−1

n , ∀n� 1, ∀i= 1,2, . . . ,N. (3.4)

Thus ‖xn+1− x∗‖ = ‖xNn − x∗‖� ‖xn− x∗‖+ dN−1
n for all n∈N . Hence, by Lemma 2.1,

limn→∞‖xn− x∗‖ exists. This completes the proof. �

Lemma 3.2. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1,T2, . . . ,TN : K → E be nonex-
pansive mappings. Let {xn} be the sequence defined by (1.1) with

∑∞
n=1 γ

i
n <∞ and {αin} ⊆

[ε,1− ε] for all i = 1,2, . . . ,N , for some ε ∈ (0,1). If
⋂N

i=1F(Ti) �= ∅, then limn→∞‖xn −
Tixn‖ = 0 for all i= 1,2, . . . ,N .

Proof. Let x∗ ∈⋂N
i=1F(Ti). Then, by Lemma 3.1, limn→∞‖xn − x∗‖ exists. Let limn→∞‖

xn − x∗‖ = r. If r = 0, then by the continuity of each Ti the conclusion follows. Sup-
pose that r > 0. Firstly, we are now to show that limn→∞‖TNxn− xn‖ = 0. Since {xn} and
{uin} are bounded for all i= 1,2, . . . ,N , there exists R > 0 such that xn− x∗ + γin(uin− xn),
Tixi−1

n − x∗ + γin(uin− xn)∈ BR(0) for all n� 1 and for all i= 1,2, . . . ,N . Using Lemma 2.2,
we have
∥∥xNn − x∗

∥∥2 �
∥∥αNn TNx

N−1
n +βNn xn + γNn u

N
n − x∗

∥∥2

= ∥∥αNn
(
TNx

N−1
n − x∗ + γNn

(
uNn − xn

))
+
(
1−αNn

)(
xn− x∗ + γNn

(
uNn − xn

))∥∥2

� αNn
∥∥TNx

N−1
n − x∗ + γNn

(
uNn − xn

)∥∥2
+
(
1−αNn

)∥∥xn− x∗ + γNn
(
uNn − xn

)∥∥2

−W2
(
αNn
)
g
(∥∥TNx

N−1
n − xn

∥∥)

� αNn
(∥∥xN−1

n − x∗
∥∥+ γNn

∥∥uNn − xn
∥∥)2

+
(
1−αNn

)(∥∥xn− x∗
∥∥+ γNn

∥∥uNn − xn
∥∥)2

−W2
(
αNn
)
g
(∥∥TNx

N−1
n − xn

∥∥)

� αNn
(∥∥xn− x∗

∥∥+dN−2
n + γNn

∥∥uNn − xn
∥∥)2

+
(
1−αNn

)(∥∥xn− x∗
∥∥+dN−2

n + γNn
∥∥uNn − xn

∥∥)2

−W2
(
αNn
)
g
(∥∥TNx

N−1
n − xn

∥∥)

= (∥∥xn− x∗
∥∥+ λN−2

n

)2−W2
(
αNn
)
g
(∥∥TNx

N−1
n − xn

∥∥),
(3.5)

where λN−2
n := dN−2

n + γNn ‖uNn − x∗‖. Observe that ε3 � W2(αNn ) now (3.5) implies that
ε3g(‖TNxN−1

n − xn‖) � ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ρN−2
n , where ρN−2

n := 2λN−2
n ‖xn −

x∗‖2 + (λN−2
n )2. Since

∑∞
n=1d

N−2
n <∞ and

∑∞
n=1 γ

N−2
n <∞, we get

∑∞
n=1 ρ

N−2
n <∞. This

implies that limn→∞g(‖TNxN−1
n − xn‖) = 0. Since g is strictly increasing and continuous
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at 0, it follows that limn→∞‖TNxN−1
n − xn‖ = 0. Note that

∥∥xn− x∗
∥∥�

∥∥xn−TNx
N−1
n

∥∥+
∥∥TNx

N−1
n − x∗

∥∥

�
∥∥xn−TNx

N−1
n

∥∥+
∥∥xN−1

n − x∗
∥∥,

(3.6)

for all n� 1. Thus r = limn→∞‖xn− x∗‖� liminfn→∞‖xN−1
n − x∗‖� limsupn→∞‖xN−1

n −
x∗‖ � r and therefore limn→∞‖xN−1

n − x∗‖ = r. Using the same argument in the proof
above, we have

∥∥xN−1
n − x∗

∥∥2 � αN−1
n

(∥∥xN−2
n − x∗

∥∥+ γN−1
n

∥∥uN−1
n − x∗

∥∥)2

+
(
1−αN−1

n

)(∥∥xn− x∗
∥∥+ γN−1

n

∥∥uN−1
n − x∗

∥∥)2

−W2
(
αN−1
n

)
g
(∥∥TN−1x

N−2
n − xn

∥∥)

� αN−1
n

(∥∥xn− x∗
∥∥+dN−3

n + γN−1
n

∥∥uN−1
n − x∗

∥∥)2

+
(
1−αN−1

n

)(∥∥xn− x∗
∥∥+dN−3

n + γN−1
n

∥∥uN−1
n − x∗

∥∥)2

−W2
(
αN−1
n

)
g
(∥∥TN−1x

N−2
n − xn

∥∥)

�
∥∥xn− x∗

∥∥2
+ ρN−3

n −W2
(
αN−1
n

)
g
(∥∥TN−1x

N−2
n − xn

∥∥).

(3.7)

This implies that ε3g(‖TN−1xN−2
n − xn‖) � ‖xn− x∗‖2−‖xN−1

n − x∗‖2 + ρN−3
n and there-

fore limn→∞‖TN−1xN−2
n − xn‖ = 0. Thus, we have

∥∥xn−TNxn
∥∥�

∥∥xn−TNx
N−1
n

∥∥+
∥∥TNx

N−1
n −TNxn

∥∥

�
∥∥xn−TNx

N−1
n

∥∥+
∥∥xN−1

n − xn
∥∥

= ∥∥xn−TNx
N−1
n

∥∥+
∥∥P(αN−1

n TN−1x
N−2
n +βN−1

n xn + γN−1
n uN−1

n

)−Pxn
∥∥

�
∥∥xn−TNx

N−1
n

∥∥+αN−1
n

∥∥xn−TN−1x
N−2
n

∥∥+ γN−1
n

∥∥uN−1
n − xn

∥∥.
(3.8)

Since limn→∞‖xn − TNxN−1
n ‖ = 0, limn→∞‖xn − TN−1xN−2

n ‖ = 0, and
∑∞

n=1 γ
N−1
n <∞, it

follows that limn→∞‖xn − TNxn‖ = 0. Similarly, by using the same argument as in the
proof above, we have limn→∞‖xn − TN−2xN−3

n ‖ = limn→∞‖xn − TN−3xN−4
n ‖ =, . . . ,=

limn→∞‖xn−T2x1
n‖=0. This implies that limn→∞‖xn−TN−1xn‖= limn→∞‖xn−TN−2xn‖ =

, . . . ,= limn→∞‖xn−T3xn‖ = 0. It remains to show that

limn→∞
∥∥xn−T1xn

∥∥= 0, limn→∞
∥∥xn−T2xn

∥∥= 0. (3.9)
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Note that

∥∥x1
n− x∗

∥∥2 � α1
n

(∥∥xn− x∗
∥∥+ γ1

n

∥∥u1
n− x∗

∥∥)2

+
(
1−α1

n

)(∥∥xn− x∗
∥∥+ γ1

n

∥∥u1
n− x∗

∥∥)2−W2
(
α1
n

)
g
(∥∥T1xn− xn

∥∥)

= (∥∥xn− x∗
∥∥+ γ1

n

∥∥u1
n− x∗

∥∥)2−W2
(
α1
n

)
g
(∥∥T1xn− xn

∥∥).
(3.10)

Thus, we have ε3g(‖T1xn − xn‖) � (‖xn − x∗‖+ γ1
n‖u1

n − x∗‖)2 −‖x1
n − x∗‖2 and there-

fore limn→∞‖T1xn− xn‖=0. Since ‖xn−T2xn‖� ‖xn−T2x1
n‖+α1

n‖T1xn− xn‖+ γ1
n‖u1

n−
xn‖, it implies that limn→∞‖T2xn − xn‖ = 0. Therefore limn→∞‖Tixn − xn‖ = 0 for all
i= 1,2, . . . ,N . �

Theorem 3.3. Let E be a uniformly convex Banach space and let K be a nonempty closed
convex subset of E which is also a nonexpansive retract of E. Let T1,T2, . . . ,TN : K → E be
nonexpansive mappings which are satisfying condition (B). Let {xn} be the sequence defined
by (1.1) with

∑∞
n=1 γ

i
n <∞ and {αin} ⊆ [ε,1− ε] for all i= 1,2, . . . ,N for some ε ∈ (0,1). If

F :=⋂N
i=1F(Ti) �=∅, then {xn} converges strongly to a common fixed point in F.

Proof. By Lemma 3.2, limn→∞‖Tixn− xn‖ = 0 for all i= 1,2, . . . ,N . Now by condition (B),
f (d(xn,F)) � Mn :=max1�i�N{‖Tixn − xn‖} for all n ∈ N. Hence limn→∞ f (d(xn,F)) =
0. Since f is a nondecreasing function and f (0)= 0, therefore limn→∞d(xn,F)= 0.

Now we can choose a subsequence {xnj} of {xn} and a sequence {yj} ∈ F such that
‖xnj − yj‖ < 2− j . By the following method of the proof of Tan and Xu [15], we get that
{yj} is a Cauchy sequence in F and so it converges. Let yj → y. Since F is closed, therefore
y ∈ F and then xnj → y. By Lemma 3.1, limn→∞‖xn− x∗‖ exists for all x∗ ∈ F, xn → y ∈
F. �

For N = 2, T1 = T2 ≡ T , βn = α1
n, αn = α2

n, and γ1
n = γ2

n ≡ 0 in Theorem 3.3, we obtain
the following results.

Corollary 3.4 (see [12, Theorem 3.6]). Let E be a real uniformly convex Banach space
and K a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let
T : K → E be a nonexpansive mapping with F(T) �= ∅. Let {αn} and {βn} be sequences
in [ε,1− ε] for some ε ∈ (0,1). From arbitrary x1 ∈ K , define the sequence {xn} by the
recursion (1.2). Suppose T satisfies condition (A1). Then {xn} converges strongly to some
fixed point of T .

When N = 2, S = T1, T = T2 : C → C, and yn = x1
n in Theorem 3.3, we obtain strong

convergence theorem as follows.

Corollary 3.5. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E which is also a nonexpansive retract of E. Let S, T be nonexpan-
sive mappings of C into itself satisfying condition (A2), and let {xn} be sequence defined
by (1.3) with

∑∞
n=1 γ

1
n <∞,

∑∞
n=1 γ

2
n <∞ and 0 < δ � α1

n, α2
n � 1− δ < 1 for all n ∈ N. If

F := F(S)∩F(T) �=∅, then {xn} converges strongly to a common fixed point of S and T .
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Theorem 3.6. Let E be a uniformly convex Banach space and let K be a nonempty closed
convex subset of E which is also a nonexpansive retract of E. Let T1,T2, . . . ,TN : K → E be
nonexpansive mappings. Suppose that one of the mappings in {Ti : i = 1,2, . . . ,N} is semi-
compact. Let {xn} be the sequence defined by (1.1) with

∑∞
n=1 γ

i
n <∞ and {αin} ⊆ [ε,1− ε]

for all i= 1,2, . . . ,N for some ε ∈ (0,1). If F :=⋂N
i=1F(Ti) �=∅, then {xn} converges strongly

to a common fixed point in F.

Proof. Suppose that Ti0 is semicompact for some i0 = 1,2, . . . ,N . By Lemma 3.1, we have
limn→∞‖xn − Ti0xn‖ = 0. So there exists a subsequence {xnj} of {xn} such that xnj →
x∗ ∈ K as j →∞. Now Lemma 3.2 guarantees that lim j→∞‖xnj − Tlxnj‖ = 0 for all l =
1,2, . . . ,N and so ‖x∗ − Tlx∗‖ = 0 for all l = 1,2, . . . ,N . This implies that x∗ ∈ F. By
Lemma 3.1, limn→∞‖xn− x∗‖ exists and then limn→∞‖xn− x∗‖ = lim j→∞‖xnj − x∗‖ = 0.
This completes the proof. �

Theorem 3.7. Let E be a uniformly convex Banach space satisfying the Opial’s condition
and K a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let
T1,T2, . . . ,TN : K → E be nonexpansive mappings and let {xn} be a sequence defined by (1.1)
with

∑∞
n=1 γ

i
n <∞ and {αin} ⊆ [ε,1− ε] for all i = 1,2, . . . ,N for some ε ∈ (0,1). If F :=⋂N

i=1F(Ti) �=∅, then {xn} converges weakly to a common fixed point in F.

Proof. Let x∗ ∈ F. Then as proved in Lemma 3.1, limx→∞‖xn− x∗‖ exists. Now we prove
that {xn} has a unique weak subsequential limit in F. To prove this, let xni ⇀ z1 and
xnj ⇀ z2 for some subsequences {xni}, {xnj} of {xn}. By Lemma 3.2,

lim
i→∞

∥∥xni −Tkxni
∥∥= 0= lim

j→∞
∥∥xnj −Tkxnj

∥∥ (3.11)

for all k = 1,2, . . . ,N and by Lemma 2.4 insures that I − Tk are demiclosed at zero for
all k = 1,2, . . . ,N . Therefore we obtain Tkz1 = z1 and Tkz2 = z2 for all k = 1,2, . . . ,N .
Then z1,z2 ∈ F. Next, we prove the uniqueness. Suppose that z1 �= z2, then by the Opial’s
condition limn→∞‖xn− z1‖ = limi→∞‖xni − z1‖ < limi→∞‖xni − z2‖ = lim j→∞‖xnj − z2‖ <
lim j→∞‖xnj − z1‖ = limn→∞‖xn − z1‖. This is a contradiction. Hence {xn} converges
weakly to a point in F. �

Lemma 3.8. Let E be a real uniformly convex Banach space and K a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1,T2, . . . ,TN : K → E be nonexpan-
sive mappings. From arbitrary x1 ∈ K , define the sequence {xn} by the recursion (1.1) with
for each i= 1,2, . . . ,N ,

∑∞
n=1 γ

i
n <∞. If F :=⋂N

i=1F(Ti) �=∅, then for all u,v ∈ F, the limit

lim
n→∞

∥∥txn + (1− t)u− v
∥∥ (3.12)

exists for all t ∈ [0,1].

Proof. By Lemma 3.1, we have limn→∞‖xn − x∗‖ exists for all x∗ ∈ F. This implies that
{xn} is bounded. Observe that there exists R > 0 such that {xn} ⊂ C := BR(0)∩K , and
hence C is a nonempty closed convex bounded subset of E. Let an(t) :=‖txn+(1−t)u−v‖.
Then limn→∞an(0)= ‖u− v‖, and from Lemma 3.1, limn→∞an(1)= limn→∞‖xn− v‖ ex-
ists. Without loss of generality, we may assume that limn→∞‖xn − u‖ = r > 0 and
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t ∈ (0,1). For any n� 1 and for all i= 1,2, . . . ,N , we define Ai
n : C→ C by

A1
n := P

(
α1
nT1 +β1

nI + γ1
nu

1
n

)
,

A2
n := P

(
α2
nT2A

1
n +β2

nI + γ2
nu

2
n

)
,

...
...

...

AN
n := P

(
αNn TNA

N−1
n +βNn I + γNn u

N
n

)
.

(3.13)

Thus, for all x, y ∈ K , we have ‖Ai
nx −Ai

ny‖ � αin‖Ai−1
n x −Ai−1

n y‖ + βin‖x − y‖ for all
i= 2, . . . ,N , and ‖A1

nx−A1
ny‖� α1

n‖x− y‖+β1
n‖x− y‖. This implies that

∥∥AN
n x−AN

n y
∥∥� ‖x− y‖. (3.14)

Set Sn,m := AN
n+m−1A

N
n+m−2 ···AN

n , m� 1, and bn,m := ‖Sn,m(txn + (1− t)u)− (tSn,mxn +
(1−t)Sn,mu)‖. It easy to see that AN

n xn=xn+1, Sn,mxn=xn+m, and ‖Sn,mx−Sn,my‖�‖x−y‖.
We show first that, for any x∗ ∈ F, ‖Sn,mx∗ − x∗‖ → 0 uniformly for all m � 1 as n→

∞. Indeed, for any x∗ ∈ F, we have

∥∥Ai
nx
∗ − x∗

∥∥� αin
∥∥Ai−1

n x∗ − x∗
∥∥+ γin

∥∥uin− x∗
∥∥ (3.15)

for all i= 2, . . . ,N , and ‖A1
nx
∗ − x∗‖� γ1

n‖u1
n− x∗‖. Therefore

∥∥AN
n x

∗ − x∗
∥∥� σ2

nγ
1
n

∥∥u1
n− x∗

∥∥+ σ3
nγ

2
n

∥∥u2
n− x∗

∥∥+ ···+ σNn γ
N−1
n

∥∥uN−1
n − x∗

∥∥

+ γNn
∥∥uNn − x∗

∥∥�M
N∑

i=1

γin,
(3.16)

for all n � 1, where M = max{supn�1{‖u1
n − x∗‖}, . . . , supn�1{‖uNn − x∗‖}} and σkn =∏N

i=k αin. Hence

∥∥Sn,mx
∗ − x∗

∥∥�
∥∥AN

n+m−1A
N
n+m−2 ···AN

n x
∗ −AN

n+m−1A
N
n+m−2 ···AN

n+1x
∗∥∥

+
∥∥AN

n+m−1A
N
n+m−2 ···AN

n+1x
∗ −AN

n+m−1A
N
n+m−2 ···AN

n+2x
∗∥∥

...
...

+
∥∥AN

n+m−1x
∗ − x∗

∥∥

�
∥∥AN

n x
∗ − x∗

∥∥+
∥∥AN

n+1x
∗ − x∗

∥∥+ ···+
∥∥AN

n+m−1x
∗ − x∗

∥∥

�M
N∑

i=1

(
γin + γin+1 + ···+ γin+m−1

)

�M
N∑

i=1

∞∑

k=n
γik := δx

∗
n .

(3.17)
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Since
∑∞

n=1 γ
i
n<∞, for all i=1,2, . . . ,N , we have δx

∗
n →0 as n→∞ and hence ‖Sn,mx∗−x∗‖→0

as n→∞. Observe that

an+m(t)= ∥∥tSn,mxn + (1− t)u− v
∥∥

�
∥∥tSn,mxn + (1− t)u− Sn,m

(
txn + (1− t)u

)∥∥

+
∥∥Sn,m

(
txn + (1− t)u

)− v
∥∥

= ∥∥tSn,mxn + (1− t)Sn,mu− Sn,m
(
txn + (1− t)u

)
+ (1− t)

(
u− Sn,mu

)∥∥

+
∥∥Sn,m

(
txn + (1− t)u

)− v
∥∥

� bn,m +
∥∥Sn,m

(
txn + (1− t)u

)− v
∥∥+ (1− t)

∥∥u− Sn,mu
∥∥

� bn,m +
∥∥Sn,m

(
txn + (1− t)u

)− Sn,mv
∥∥+

∥∥Sn,mv− v
∥∥

+ (1− t)
∥∥u− Sn,mu

∥∥

� bn,m + an(t) +
∥∥Sn,mv− v

∥∥+ (1− t)
∥∥u− Sn,mu

∥∥

� bn,m + an(t) + δvn + (1− t)δun .

(3.18)

By using [2, Theorem 2.3], we have

bn,m � ϕ−1(∥∥xn−u
∥∥−∥∥Sn,mxn− Sn,mu

∥∥)

= ϕ−1(∥∥xn−u
∥∥−∥∥xn+m−u+u− Sn,mu

∥∥)

� ϕ−1(∥∥xn−u
∥∥− (∥∥xn+m−u

∥∥−∥∥Sn,mu−u
∥∥)),

(3.19)

and so the sequence {bn,m} converges uniformly to 0 as n→∞ for all m� 1. Thus, fixing
n and letting m→∞ in (3.19), we have

limsup
m→∞

an+m(t) � ϕ−1
(∥∥xn−u

∥∥−
(

lim
m→∞

∥∥xm−u
∥∥− δun

))
+ an(t) + δvn + (1− t)δun

(3.20)

and again letting n→∞,

limsup
n→∞

an(t) � ϕ−1(0) + liminf
n→∞ an(t) + 0 + 0= liminf

n→∞ an(t). (3.21)

This completes the proof. �

Theorem 3.9. Let E be a real uniformly convex Banach space such that its dual E∗ has the
Kaded-Klee property and K a nonempty closed convex subset of E which is also a nonexpan-
sive retract of E. LetT1,T2, . . . ,TN : K → E be nonexpansive mappings with F :=⋂N

i=1F(Ti) �=
∅. From arbitrary x1 ∈ K , define the sequence {xn} by the recursion (1.1) with for each
i = 1,2, . . . ,N ,

∑∞
n=1 γ

i
n <∞ and αin ∈ [ε,1− ε] for some ε ∈ (0,1). Then {xn} converges

weakly to some fixed point of T .

Proof. Lemma 3.1 guarantees that {xn} is bounded. Since E is reflexive, there exists a
subsequence {xnj} of {xn} converging weakly to some x∗ ∈ K . By Lemma 3.2, we have
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lim j→∞‖xnj −Tixnj‖ = 0 for all i = 1,2, . . . ,N . Now Lemma 2.4 guarantees that I −Ti is
demiclosed at zero for all i= 1,2, . . . ,N . This implies that Tix∗ = x∗ for all i= 1,2, . . . ,N ,
hence this means that x∗ ∈ F. It remains to show that {xn} converges weakly to x∗. Sup-
pose {xni} is another subsequence of {xn} converging weakly to some y∗. Then y∗ ∈ K
and so x∗, y∗ ∈ ωw(xn)∩F. By Lemma 3.8, the limit

lim
n→∞

∥∥txn + (1− t)x∗ − y∗
∥∥ (3.22)

exists for all t ∈ [0,1]. By Lemma 2.3 we have x∗ = y∗. As a result, ωw(xn)∩F is a single-
ton, and so {xn} converges weakly to some fixed point of T . �

Corollary 3.10 (see [12, Theorem 3.5]). Let E be a real uniformly convex Banach space
such that its dual E∗ has the Kadec-Klee property and K a nonempty closed convex subset of
E which is also a nonexpansive retract of E. Let T : K → E be a nonexpansive mapping with
F(T) �=∅. Let {αn} and {βn} be sequences in [ε,1− ε] for some ε ∈ (0,1). From arbitrary
x1 ∈ K , define the sequence {xn} by the recursion (1.2). Then {xn} converges weakly to some
fixed point of T .
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