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1. Introduction

In the study of nonexpansive mappings and fixed point theory the domain of the map-
ping is usually assumed to be bounded or, as in certain approximation results (see, e.g.,
[20]), fixed points are assumed to exist. However in [21] Penot used uniform asymptotic
concepts which he had earlier introduced in [22] to extend the Browder-Göhde-Kirk the-
orem to unbounded sets. The term “asymptotic” is used in this context to describe the
behavior of the mapping at infinity rather than the behavior of its iterates. Precisely, we
have the following.

Definition 1.1. Let C be a subset of a Banach space X . A mapping f : C→ X is said to be
asymptotically contractive on C if there exists x0 ∈ C such that

limsup
x∈C,‖x‖→∞

∥
∥ f (x)− f

(

x0
)∥
∥

∥
∥x− x0

∥
∥

< 1. (1.1)

As Penot observed, it is easy to see that this definition is independent of the choice of
x0.

Penot proved that if f : C→ C is a nonexpansive and asymptotically contractive map-
ping defined on a closed convex subset C of a uniformly convex Banach space, then f has
a fixed point. To prove this result he used the well-known fact that I − f is demiclosed
on C for nonexpansive f . Since mappings defined on bounded sets are vacuously asymp-
totically contractive, this result contains the Browder-Göhde-Kirk [3, 12, 14] result as a
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2 Nonexpansive mappings

special case. However, as Penot himself observes, one can also deduce his result from the
Browder-Göhde-Kirk result by applying the latter to a sufficiently large ball.

Among other things, we show here that demiclosedness of I − f is not needed for
Penot’s result; in fact, a more general result holds under a weaker assumption on f .
We then turn to the question of commuting families of nonexpansive mappings defined
on unbounded domains. Finally, we consider non-self-mappings which satisfy Leray-
Schauder-type boundary conditions on unbounded domains.

2. Basic results

We first show that a result more general than Penot’s follows from three simple facts, the
third of which is implicit in [14] (cf., proof of the corollary).

Let X be a Banach space with C ⊆ X . For a mapping f : C→ X and δ > 0, let

Fδ( f )= {x ∈ C :
∥
∥x− f (x)

∥
∥≤ δ

}

. (2.1)

Lemma 2.1. Suppose f : C→ X is asymptotically contractive. Then for each δ > 0, Fδ( f ) is
bounded.

Proof. Suppose for some δ > 0, Fδ( f ) is nonempty and unbounded. Then there exists a
sequence (xn) in C such that ‖xn− f (xn)‖ ≤ δ for every n, while ‖xn‖ →∞ as n→∞. If
x0 is the point of Definition 1.1, we have

∥
∥xn− x0

∥
∥≤ ∥∥xn− f

(

xn
)∥
∥+

∥
∥ f
(

xn
)− f

(

x0
)∥
∥+

∥
∥ f
(

x0
)− x0

∥
∥. (2.2)

Dividing both sides by ‖xn − x0‖ and letting n→∞ leads to an obvious contradiction.
�

Lemma 2.2. Suppose C is a nonempty closed convex subset of X , and suppose f : C→ C is
nonexpansive. Suppose there exists δ > 0 for which Fδ( f ) is nonempty and bounded. Then
there exists p ∈ C such that ( f n(p)) is a bounded subset of C.

Proof. Since f is nonexpansive, for x ∈ Fδ( f ) we have

∥
∥ f (x)− f 2(x)

∥
∥≤ ∥∥x− f (x)

∥
∥≤ δ, (2.3)

so f : Fδ( f )→ Fδ( f ). Thus ( f n(x)) is bounded for x ∈ Fδ( f ). �

Lemma 2.3. With C as above, suppose f : C→ X is nonexpansive, and suppose ( f n(p)) is a
bounded subset of C for some p ∈ C. Then there is a nonempty bounded closed convex subset
K of X for which f (K ∩C) ⊆ K . In particular if f : C→ C, then there is a bounded closed
convex subset of C which is mapped into itself by f .

Proof. Let S= ( f n(p)) and choose r > 0 so that S⊆ B(p;r). Let

W =
∞
⋃

k=1

∞
⋂

n=k
B
(

f n(p);r
)

. (2.4)
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Clearly p ∈W , so W 	= ∅. If x ∈W ∩C, then there exists k ∈N such that ‖x− f n(p)‖ ≤
r for all n≥ k. Hence ‖ f (x)− f n(p)‖ ≤ r for all n≥ k+ 1, and so f : W ∩C→W . As the
union of an ascending sequence of convex sets, W is convex, so we can take K =W . �

A Banach space is said to have the FPP if each of its bounded closed convex subsets has
the fixed point property for nonexpansive self-mappings.

We now have the following generalization of [21, Corollary 3].

Theorem 2.4. Let X be a Banach space which has the FPP, let C be a closed convex subset
of X , and suppose f : C→ C is a nonexpansive mapping for which Fδ( f ) is nonempty and
bounded for some δ > 0. Then f has a fixed point.

Proof. By Lemma 2.2, ( f n(p)) is bounded for some p ∈ C, and by Lemma 2.3 some
bounded closed convex subset of C is mapped into itself by f . �

In view of Lemma 2.1 we now have the following corollary.

Corollary 2.5. Let X be a Banach space which has the FPP, let C be a closed convex subset
of X , and suppose f : C→ C is a nonexpansive mapping which is asymptotically contractive.
Then f has a fixed point.

Remark 2.6. The assumption that Fδ( f ) is nonempty and bounded is properly weaker
than the assumption that f is asymptotically contractive, even for nonexpansive map-
pings. For example, consider f :R→R defined by

f (x)=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x− 1 if x > 1,

0 if − 1≤ x ≤ 1,

1− x if x <−1.

(2.5)

Obviously Fδ( f ) is nonempty and bounded for δ ∈ (0,1). On the other hand for x0 ∈R,

∣
∣ f (x)− f

(

x0
)∣
∣

∣
∣x− x0

∣
∣

−→ 1 as x −→∞. (2.6)

As we have seen, if f : C→ X is asymptotically contractive, then for each δ > 0, Fδ( f )
is bounded. It is natural to ask whether there is a similar but weaker asymptotic condi-
tion which only implies the existence of some δ > 0 for which Fδ( f ) is nonempty and
bounded. For this it seems to be sufficient to assume there exists x0 ∈ C such that

inf
δ>0

{

limsup
‖x‖→∞,x∈C∩Fδ( f )

‖ f (x)− f
(

x0
)∥
∥

∥
∥x− x0

∥
∥

}

< 1. (2.7)

This condition is also independent of the choice of x0 ∈ C.
The preceding observations also yield an extension of Luc [18, Theorem 5.1]. For this

we need some definitions. A set C is said to be asymptotically compact (see, e.g., [19]) if for
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any sequence (xn) in C for which (‖xn‖)→∞, the sequence (xn/‖xn‖) has a convergent
subsequence. If C is asymptotically compact it is possible to weaken the asymptotic con-
dition imposed on C. A mapping f : C→ C is said to be radially asymptotically contractive
[18] if for some x0 ∈ C and for any u in the asymptotic cone

C∞ := limsup
t→∞

t−1C := {v ∈ X : ∃(tn
)−→∞,

(

vn
)−→ v, tnvn ∈ C ∀n} (2.8)

of C, one has

limsup
t→∞,x0+tu∈C

1
t

∥
∥ f
(

x0 + tu
)− f

(

x0
)∥
∥ < 1. (2.9)

In [21] it is shown that if C is asymptotically compact, then any radially asymptotically
contractive f : C→ C which is nonexpansive is asymptotically contractive. Thus the fol-
lowing is a consequence of Corollary 2.5.

Theorem 2.7. Let X be a Banach space which has the FPP. Let C be an asymptotically
compact closed convex subset of X , and let f : C→ C be a nonexpansive mapping which is
radially asymptotically contractive on C. Then f has a fixed point in C.

By using Corollary 2.5 above instead of [21, Corollary 3] one sees immediately that
[21, Theorem 12] also extends to Banach spaces which have the FPP.

3. Families of nonexpansive mappings

We now take up the question of common fixed points for families of nonexpansive map-
pings defined on unbounded domains, beginning with a generalization of Lemma 2.3.

Theorem 3.1. Let C be a closed convex subset of a Banach space X , let F be a finite com-
muting family of nonexpansive self-mappings of C, and suppose ( f n(p)) is bounded for some
p ∈ C and all f ∈ F. Then there is a nonempty bounded closed convex subset of C which is
mapped into itself by each member of F.

Proof. We prove the theorem in the case F = { f ,g}. The general case follows by induc-
tion.

First observe that ( f n ◦ gm(p))∞n,m=1 is bounded. Hence there exists r > 0 such that

f n ◦ gm(p)∈ B(p;r) (3.1)

for all m,n∈N. Now let

Sn,m := {u∈ C :
∥
∥u− f i ◦ g j(p)

∥
∥≤ r ∀i≥ n, j ≥m

}

, (3.2)

and let

S=
∞
⋃

n,m=1

Sn,m. (3.3)
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Since each of the sets Sn,m is convex and since the family (Sn,m)∞n,m=1 is directed upward
by ⊂, S is convex. Also, if u ∈ Sn,m, then f (u) ∈ Sn+1,m and g(u) ∈ Sn,m+1. Therefore S is
invariant under both f and g. It follows that S is bounded, closed, convex, and invariant
under both f and g. �

The preceding theorem shows that for mappings with bounded iterates, the question
of the existence of common fixed points for a finite commuting family of nonexpansive
mappings reduces to the bounded case. In particular, it shows that the assumption of
strict convexity is not needed in [7, Theorem 4]. In fact, we show below that if C is locally
weakly compact, it suffices to assume that only one of the mappings has a bounded orbit.

Bula [7] has observed that Theorem 3.1 does not hold for infinite families. In this case
we need the stronger assumption of Lemma 2.2, namely that an approximate fixed point
set is bounded.

Theorem 3.2. Let C be a closed convex locally weakly compact subset of a Banach space
X , and suppose the bounded closed convex subsets of C have the fixed point property for
nonexpansive self-mappings. Let F := { fα}α∈I be a family of commuting nonexpansive self-
mappings of C, and suppose Fδ( fα) is nonempty and bounded for some α ∈ I and δ > 0.
Then the common fixed point set of F is a nonempty nonexpansive retract of some bounded
closed convex subset of C.

Corollary 3.3. Under the assumptions of the above theorem, the common fixed point set of
F is a nonempty nonexpansive retract of some bounded closed convex subset of C whenever
one member of F is an asymptotic contraction.

Theorem 3.2 parallels a corresponding result due to R. E. Bruck in the bounded case,
and it relies heavily on results of Bruck.

A subset C of a Banach space has the fixed point property for nonexpansive mappings
(abbreviated FPP) if every nonexpansive f : C→ C has a fixed point, and C has the condi-
tional fixed point property for nonexpansive self-mappings (abbreviated CFPP) if every
nonexpansive f : C→ C satisfies CFP: either f has no fixed points in C, or f has a fixed
point in every nonempty bounded closed convex f -invariant subset of C. We use Fix( f )
to denote the fixed point set of a mapping f .

We will need the following results.

Theorem 3.4 [5]. If C is a closed convex locally weakly compact subset of a Banach space
X , and if f : C→ C is nonexpansive and satisfies CFP, then Fix( f ) is a nonexpansive retract
of C.

Lemma 3.5 [6]. Suppose C is a closed convex weakly compact subset of a Banach space X ,
and suppose C has both the FPP and CFPP. Then if R is any family of nonempty nonexpan-
sive retracts of C which is directed downward by ⊃,

⋂{R : R∈R} is a nonempty nonexpan-
sive retract of C.

Proof of Theorem 3.2. Suppose Fδ( fα) is nonempty and bounded for δ > 0. Then ( f nα (p))
is bounded for p ∈ Fδ( fα), so by Lemma 2.3 there is a nonempty bounded closed con-
vex subset H of C such that fα(H)⊂H . Since H has the FPP, F = Fix( fα) is a nonempty
subset of H . By Theorem 3.4 there exists a nonexpansive retraction r of H onto F. Since
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F is a commutative family, fβ : Fix( fγ) → Fix( fγ) for all β,γ ∈ I . In particular for β ∈
I we have fβ ◦ r : H → F. Since by assumption H has the FPP, Fix( fβ ◦ r) = Fix( fα)∩
Fix( fβ) 	= ∅. Moreover Fix( fβ ◦ r) is a nonexpansive retract of H . Now suppose F ∩
(
⋂

β∈J Fix( fβ)) is a nonempty nonexpansive retract of H whenever |J| = n, and sup-
pose J = {β1, . . . ,βn+1}. By assumption there exists a nonexpansive retraction r of H onto
G := F ∩ (

⋂n
i=1 Fix( fβi)), and by commutativity, fβn+1 : G→ G. Thus fβn+1 ◦ r : H → G, and

we conclude that Fix( fβn+1 ◦ r)= Fix( fβn+1 )∩G is a nonempty nonexpansive retract of H .
However

Fix
(

fβn+1

)∩G= F ∩
(n+1
⋂

i=1

Fix
(

fβi
)

)

. (3.4)

By induction we conclude that the fixed point set of every finite subfamily of F is a
nonempty nonexpansive retract of H . Lemma 3.5 now implies that the common fixed
point set of F is a nonempty nonexpansive retract of H . �

Remark 3.6. The preceding argument shows that the common fixed point set of F is a
nonempty nonexpansive retract of any bounded closed convex set which is left invariant
by some f ∈ F. The question remains whether it is a nonexpansive retract of C itself.

Remark 3.7. If the space X in Theorem 3.4 is assumed to be uniformly smooth, then
Fix( f ) is a sunny nonexpansive retract of C (see [11, Theorem 13.2]). (A retraction R
from C onto E ⊂ C is said to be sunny if

R
(

R(x) + t
(

x−R(x)
))= R(x) (3.5)

for all x ∈ C and t ≥ 0 for which R(x) + t(x−R(x)) ∈ C.) In their recent paper [2] (for
an update, see [1]), Aleyner and Reich show that under certain assumptions there is an
explicit algorithmic scheme for constructing the unique sunny nonexpansive retraction
onto the common fixed point set of a nonlinear semigroup of nonexpansive mappings.

It seems unlikely that the boundedness assumption on Fδ( fα) in Theorem 3.2 could be
replaced by the assumption that ( f nα (p)) is bounded for some p ∈ C and α∈ I . However
the following is true.

Theorem 3.8. Let C be a closed convex locally weakly compact subset of a Banach space
X , and suppose the bounded closed convex subsets of C have the fixed point property for
nonexpansive self-mappings. Let F := { fα}α∈I be a family of commuting nonexpansive self-
mappings of C, and suppose ( f nα (p)) is bounded for some (hence all) p ∈ C and all α ∈ I .
Then the common fixed point set of any finite subfamily of F is a nonempty nonexpansive
retract of C.

Proof. Let α∈ I . By Lemma 2.3 some bounded closed convex subset of C is mapped into
itself by fα, so F := Fix( fα) 	= ∅. By Theorem 3.4 there is a nonexpansive retraction r of
C onto F. Now let β ∈ I and consider the mapping fβ ◦ r. Given p ∈ C, ( fβ ◦ r)n(p) =
f nβ ◦ r(p) is bounded, so again by Lemma 2.3 some bounded closed convex subset is
mapped into itself by fβ ◦ r. It follows that Fix( fβ ◦ r) 	= ∅, and also that Fix( fβ ◦ r) is
a nonexpansive retract of C. However, since fβ : F → F and r : C → F, if fβ ◦ r(x) = x,
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then fβ ◦ r(x) = fβ(x). Therefore Fix( fβ ◦ r) = Fix( fα)∩ Fix( fβ). The conclusion follows
by induction. �

4. Boundary conditions

Several fixed point theorems for nonexpansive mappings involve mappings f : C→ X in
conjunction with boundary and inwardness conditions. It is customary in these results to
assume that the domain C is bounded. In this section we show that this assumption can
be replaced with the assumptions of Lemmas 2.2 and 2.3.

The following theorem was proved in [15].

Theorem 4.1 [15]. Let C be a bounded closed convex subset of a Banach space X , with
int(C) 	= ∅, and suppose C has the fixed point property for nonexpansive self-mappings.
Suppose f : C→ X is nonexpansive, and suppose

(i) there exists w ∈ int(C) such that

f (x)−w 	= λ(x−w) ∀x ∈ ∂C, λ > 1; (4.1)

(ii) inf{‖x− f (x)‖ : x ∈ ∂C and f (x) /∈ C} > 0.
Then f has a fixed point.

Theorem 4.2. Suppose C is a closed convex subset of a Banach space X , with int(C) 	=
∅, and suppose the bounded closed convex subsets of X have the fixed point property for
nonexpansive self-mappings. Suppose f : C→ X is a nonexpansive mapping for which Fδ( f )
is nonempty and bounded for some δ > 0. Suppose also

(i) there exists w ∈ Fδ( f )
⋂

int(C) such that

f (x)−w 	= λ(x−w) ∀x ∈ ∂C, λ > 1; (4.2)

(ii) inf{‖x− f (x)‖ : x ∈ ∂C and f (x) /∈ C} > 0.
Then f has a fixed point.

Proof. Assume f does not have a fixed point. Since Fδ( f ) is bounded, it is possible to
choose n so large that ‖x− f (x)‖ > δ if x ∈ C and ‖x−w‖ ≥ n. Let Hn = B(w;n)

⋂

C. We
now have

inf
{∥
∥x− f (x)

∥
∥ : x ∈ ∂Hn, f (x) /∈Hn

}

> 0, (4.3)

so by Theorem 4.1 there exists x ∈ ∂Hn such that

f (x)−w = λ(x−w) for some λ > 1. (4.4)

By (i) it must be the case that ‖x−w‖ = n; hence ‖x− f (x)‖ > δ. We now have

∥
∥x− f (x)

∥
∥= ∥∥ f (x)−w

∥
∥−‖x−w‖ = λn−n= (λ− 1)n. (4.5)
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Using the triangle inequality and the fact that ‖w− f (w)‖ ≤ δ we have

λn= ∥∥ f (x)−w
∥
∥≤ ∥∥ f (x)− f (w)

∥
∥+

∥
∥ f (w)−w

∥
∥≤ ‖x−w‖+ δ = n+ δ. (4.6)

Therefore we have the contradiction

δ < (λ− 1)n≤ n+ δ−n= δ. (4.7)

It follows that f has a fixed point. �

Corollary 4.3. Suppose C is a closed convex subset of a Banach space X , with int(C) 	=
∅, and suppose the bounded closed convex subsets of C have the fixed point property for
nonexpansive self-mappings. Suppose f : C → X is a nonexpansive mapping which is also
asymptotically contractive, and suppose

(i) there exists w ∈ int(C) such that

f (x)−w 	= λ(x−w) ∀x ∈ ∂C, λ > 1; (4.8)

(ii) inf{‖x− f (x)‖ : x ∈ ∂C and f (x) /∈ C} > 0.
Then f has a fixed point.

Proof. By Lemma 2.1 Fδ( f ) is bounded for each δ > 0, and w ∈ Fδ( f ) for δ = ‖w −
f (w)‖. �

If X is uniformly convex, Condition (ii) of Theorem 4.2 may be dropped. This is a
consequence of the following special case of a result of Petryshyn [23] (also see [10]).

Theorem 4.4 [23]. Let C be an open subset of a Banach space and let f : C → X be a
contraction mapping. Suppose there exists w ∈ C such that

f (x)−w 	= λ(x−w) ∀x ∈ ∂C, λ > 1. (4.9)

Then f has a fixed point.

Theorem 4.5. Suppose C is a closed convex subset of a uniformly convex Banach space
X , with int(C) 	= ∅. Suppose f : C → X is a nonexpansive mapping for which Fδ( f ) is
nonempty and bounded for some δ > 0. Suppose also that

(i) there exists w ∈ Fδ( f )
⋂

int(C) such that

f (x)−w 	= λ(x−w) ∀x ∈ ∂C, λ > 1; (4.10)

then f has a fixed point.

Proof. Let (tn) be a sequence in (0,1) with limn→∞ tn = 0 and define the mappings fn :
int(C)→ X by setting fn(x)= (1− tn) f (x) + tnw. Then each of the mappings fn is a con-
traction mapping which satisfies the conditions of Theorem 4.4, so for each n there exists
xn ∈ C such that fn(xn)= xn. Letting λn = 1/(1− tn) we now have

f
(

xn
)−w = λn

(

xn−w
)

with λn > 1. (4.11)
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Also,
∥
∥ f
(

xn
)−w

∥
∥−∥∥w− f (w)

∥
∥≤ ∥∥ f (xn

)− f (w)
∥
∥≤ ∥∥xn−w

∥
∥

= ∥∥ f (xn
)−w

∥
∥−∥∥xn− f

(

xn
)∥
∥.

(4.12)

Thus
∥
∥xn− f

(

xn
)∥
∥≤ ∥∥w− f (w)

∥
∥≤ δ. (4.13)

Therefore (‖xn‖) is bounded, and it follows that ‖xn − f (xn)‖ → 0 as n→∞. One now
concludes that f has a fixed point via the fact that I − f is demiclosed on C. �

Theorem 4.6. Suppose C is a closed convex subset of a uniformly convex Banach space X ,
with int(C) 	= ∅. Suppose f : C→ X is a nonexpansive mapping, and suppose ( f n(p)) is a
bounded subset of C for some p ∈ C. Suppose also that

(i) there exists w ∈ int(C) such that

f (x)−w 	= λ(x−w) ∀x ∈ ∂C, λ > 1; (4.14)

then f has a fixed point.

Proof. Define K as in Lemma 2.3, but choose r > 0 large enough to insure that w ∈ K . We
show that f satisfies the assumptions of Theorem 4.1 on K ∩C. Obviously (i) holds for
points x ∈ ∂(K ∩C)∩ ∂(C). On the other hand, if x ∈ ∂(K ∩C)\∂(C), then f (x)−w =
λ(x −w) for λ > 1 implies f (x) /∈ K , which is a contradiction. If inf{‖x − f (x)‖ : x ∈
∂(K ∩C) and f (x) /∈ K ∩C} > 0, the conclusion follows from Theorem 4.1. Otherwise
the conclusion follows from demiclosedness of I − f . �

Definition 4.7. A mapping f : C→ X is said to be pseudocontractive if for all x, y ∈ C and
r > 0,

‖x− y‖ ≤ ∥∥(1 + r)(x− y)− r
(

f (x)− f (y)
)∥
∥. (4.15)

The pseudocontractive mappings are clearly more general than the nonexpansive map-
pings. They arise in nonlinear analysis via the fact that a mapping f : C→ X is pseudo-
contractive if and only if the mapping T = I − f is accretive; thus for every x, y ∈ C there
exists j ∈ J(x− y) such that

〈

T(x)−T(y), j
〉≥ 0, (4.16)

where J : X → 2X
∗

is the normalized duality mapping [4, 13].
The following theorem is proved in [17].

Theorem 4.8 [17]. Let C be a bounded closed subset of a Banach space X . Suppose f : C→
X is a continuous pseudocontractive mapping, and suppose there exists z ∈ int(C) such that

∥
∥z− f (z)

∥
∥ <

∥
∥x− f (x)

∥
∥ ∀x ∈ ∂C. (Δ)

Then inf{‖x− f (x)‖ : x ∈ C} = 0. If, in addition, C has the fixed point property for nonex-
pansive mappings, f has a fixed point.
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The condition that Fδ( f ) is nonempty and bounded for some δ > 0 seems to be the
natural condition needed for an unbounded analogue of Theorem 4.8.

Theorem 4.9. Let C be a closed subset of a Banach space X . Suppose f : C→ X is a contin-
uous pseudocontractive mapping for which Fδ( f ) is nonempty and bounded for some δ > 0,
and suppose there exists z ∈ int(C) such that

∥
∥z− f (z)

∥
∥ <

∥
∥x− f (x)

∥
∥ ∀x ∈ ∂C. (Δ′)

Then inf{‖x− f (x)‖ : x ∈ C} = 0. If, in addition, the bounded closed convex subsets of C
have the fixed point property for nonexpansive mappings, then f has a fixed point.

Proof. Clearly we may assume z ∈ Fδ( f ). We may also assume C is unbounded. Other-
wise the result is subsumed by Theorem 4.8. For each n∈N, let Hn := B(0;n)

⋂

C. For n
large enough we can assume z ∈ int(Hn). Suppose that condition (Δ) fails on ∂Hn. Then
there exists xn ∈ ∂Hn such that

∥
∥xn− f

(

xn
)∥
∥≤ ∥∥z− f (z)

∥
∥≤ δ. (4.17)

Since ‖z − f (z)‖ < ‖x − f (x)‖ for all x ∈ ∂C, it must be the case that ‖xn‖ = n; thus
‖xn‖→∞ as n→∞. However this is a contradiction because xn ∈ Fδ( f ). Therefore there
exists N such that HN satisfies the boundary condition (Δ). The conclusion now follows
upon applying Theorem 4.8 to HN . �

Remark 4.10. In all the preceding results the condition that Fδ( f ) is nonempty and
bounded for some δ > 0 could be replaced by the stronger assumption that the mapping
is asymptotically contractive.

Further remarks. There is another approach to the existence of fixed points for mappings
defined on unbounded sets. The inward set IC(x) of x relative to C is the set

IC(x)= {x+ c(u− x) : u∈ C, c ≥ 1
}

. (4.18)

A mapping T : C→ X is said to be weakly inward if T(x) is in the closure IC(x) of IC(x) for
each x ∈ C. Caristi [8] proved that if a closed convex set C has the fixed point property for
nonexpansive self-mappings, then every weakly inward Lipschitzian pseudocontractive
mapping T : C → X has a fixed point. While C is not assumed to be bounded in this
result, the assumption that C has the fixed point property for unbounded closed convex
sets is very strong (and impossible in a Hilbert space). Thus one should require only
that bounded closed convex subsets of C have the fixed point property. It turns out that
this problem has already been solved, and it also includes the case when the mapping is
asymptotically contractive.

Theorem 4.11 [9]. Suppose the bounded closed and convex subsets of X have the fixed
point property for nonexpansive self-mappings. Let C be a closed convex subset of X and let
f : C→ X be a continuous pseudocontractive mapping which is weakly inward on C. Then
the following are equivalent.

(a) f has a fixed point in C.
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(b) There exist y0 ∈ C and R > 0 such that ‖x− y0‖ ≤ ‖(1 + s)x− s f (x)− y0‖ for all
x ∈ C with ‖x‖ ≥ R and for all s∈ [0,1].

(c) There exist y0 ∈ C and R > 0 such that if x ∈ C has ‖x‖ ≥ R, then there exists
j ∈ J(x− y0) satisfying

〈

x− f (x), j
〉≥ 0. (4.19)

(d) There exist y0 ∈ X and R > 0 such that if x ∈ C with ‖x‖ ≥ R, there exists j ∈
J(x− y0) satisfying

〈

x− f (x), j
〉≥ 0. (4.20)

(e) There exists a bounded sequence (xn) in C such that ‖xn− f (xn)‖→ 0 as n→∞.

Since every mapping f : C → C is trivially weakly inward, and since nonexpansive
mappings are pseudocontractive, (e) ⇒ (a) of the above theorem gives another proof of
Corollary 2.5. If f is asymptotically contractive, one can follow the proof of [21, Proposi-
tion 2] to obtain a bounded sequence (xn) for which ‖xn− f (xn)‖ → 0. In fact more can
be said. The only place that nonexpansiveness of f enters into the proof of [21, Proposi-
tion 2] is for the conclusion that the auxiliary mappings fn defined by

fn(x) := (1− tn
)

f (x) + tnx0 (4.21)

are contraction mappings having unique fixed points. However if f is continuous and
pseudocontractive, then the mappings fn are continuous and strongly pseudocontrac-
tive, and such mappings also have unique fixed points (see, e.g., [16, Corollary 4.5]).
Theorem 4.11 therefore implies that Corollary 2.5 actually holds for continuous pseudo-
contractive mappings.

Corollary 4.12. Let X be a Banach space which has the FPP, let C be a closed convex
subset of X , and suppose f : C → C is a continuous pseudocontractive mapping which is
asymptotically contractive. Then f has a fixed point.

We conclude with a question.

Question 4.13. Is it possible to add the following condition to the list in Theorem 4.11?
(f) Fδ( f ) is bounded for some δ > 0.
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Raksti, vol. 595, Latv. Univ., Riga, 1994, pp. 159–166.

[8] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Transactions of the
American Mathematical Society 215 (1976), 241–251.

[9] J. Garcı́a-Falset, Fixed points for mappings with the range type condition, Houston Journal of
Mathematics 28 (2002), no. 1, 143–158.

[10] J. A. Gatica and W. A. Kirk, Fixed point theorems for contraction mappings with applications to
nonexpansive and pseudo-contractive mappings, The Rocky Mountain Journal of Mathematics 4
(1974), 69–79.

[11] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, New
York, 1984.
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