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1. Introduction

Recently, Huang and Zhang in [1] generalized the concept of metric spaces by considering
vector-valued metrics (cone metrics) with values in an ordered real Banach space. They
proved some fixed point theorems in cone metric spaces showing that metric spaces really
doesnot provide enough space for the fixed point theory. Indeed, they gave an example of a
cone metric space (X, d) and proved existence of a unique fixed point for a selfmap T of X
which is contractive in the category of conemetric spaces but is not contractive in the category
of metric spaces. After that, cone metric spaces have been studied by many other authors (see
[1–9] and the references therein).

Regarding the concept of coupled fixed point, introduced by Bhaskar and Laksh-
mikantham [10], we consider the corresponding definition for the mappings on complete
cone metric spaces and prove some coupled fixed point theorems in the next section. First,
we recall some standard notations and definitions in cone metric spaces.

A cone P is a subset of a real Banach space E such that

(i) P is closed, nonempty and P /= {0};
(ii) if a, b are nonnegative real numbers and x, y ∈ P , then ax + by ∈ P ;

(iii) P ∩ (−P) = {0}.
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For a given cone P ⊆ E, the partial ordering ≤ with respect to P is defined by x ≤ y if and
only if y − x ∈ P . The notation x � y will stand for y − x ∈ intP , where intP denotes the
interior of P . Also, we will use x < y to indicate that x ≤ y and x /=y.

The cone P is called normal if there exists a constantM > 0 such that for every x, y ∈ E
if 0 ≤ x ≤ y then ||x|| ≤ M||y||. The least positive number satisfying this inequality is called the
normal constant of P (see [1]). The cone P is called regular if every increasing (decreasing)
and bounded above (below) sequence is convergent in E. It is known that every regular cone
is normal (see [1], or [7, Lemma 1.1]).

Huang and Zhang defined the concept of a cone metric space in [1] as follows.

Definition 1.1 (see [1]). Let X be a nonempty set and let E be a real Banach space equipped
with the partial ordering ≤ with respect to the cone P ⊆ E. Suppose that the mapping
d : X ×X → E satisfies the following conditions:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2 (see [1]). Let (X, d) be a cone metric space, x ∈ X and {xn}n≥1 be a sequence in
X. Then

(i) {xn}n≥1 converges to x, denoted by limn→∞xn = x, if for every c ∈ E with 0 � c
there exists a natural number N such that d(xn, x) � c for all n ≥ N;

(ii) {xn}n≥1 is a Cauchy sequence if for every c ∈ E with 0 � c there exists a natural
number N such that d(xn, xm) � c for all n,m ≥ N.

A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is
convergent in X. If for any sequence {xn} in X there exists a subsequence {xni} of {xn} such
that {xni} is convergent inX, then the cone metric space (X, d) is called sequentially compact.
Clearly, every sequentially compact cone metric space is complete. Huang and Zhang in
[1] investigated the existence and uniqueness of the fixed point for a selfmap T on a cone
metric space (X, d). They considered different types of contractive conditions on T . They
also assumed (X, d) to be complete when P is a normal cone, and (X, d) to be sequentially
compact when P is a regular cone. Later, in [7], Rezapour and Hamlbarani improved some of
the results in [1] by omitting the normality assumption of the cone P , when (X, d) is complete.
See [4, 6, 7, 9] for more related results about (complete) cone metric spaces and fixed point
theorems for different types of mappings on these spaces.

In the rest of this paper, we always suppose that E is a real Banach space, P ⊆ E is a
cone with intP /= ∅ and ≤ is partial ordering with respect to P . We also note that the relations
P + intP ⊆ intP and λ intP ⊆ intP (λ > 0) always hold true.

2. Main Results

For a given partially ordered set X, Bhaskar and Lakshmikantham in [10] introduced the
concept of coupled fixed point of a mapping F : X ×X → X. Later in [11] Lakshmikantham
and Ćirić investigated some more coupled fixed point theorems in partially ordered sets. The
following is the corresponding definition of coupled fixed point in cone metric spaces.
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Definition 2.1. Let (X, d) be a cone metric space. An element (x, y) ∈ X × X is said to be a
coupled fixed point of the mapping F : X ×X → X if F(x, y) = x and F(y, x) = y.

In the next theorems of this section, we investigate some coupled fixed point theorems
in cone metric spaces.

Theorem 2.2. Let (X, d) be a complete cone metric space. Suppose that the mapping F : X ×X → X
satisfies the following contractive condition for all x, y, u, v ∈ X:

d
(
F
(
x, y

)
, F(u, v)

) ≤ kd(x, u) + ld
(
y, v

)
, (2.1)

where k, l are nonnegative constants with k + l < 1. Then F has a unique coupled fixed point.

Proof. Choose x0, y0 ∈ X and set x1 = F(x0, y0), y1 = F(y0, x0), . . . , xn+1 = F(xn, yn), yn+1 =
F(yn, xn). Then by (2.1) we have

d(xn, xn+1) = d
(
F
(
xn−1, yn−1

)
, F

(
xn, yn

))

≤ kd(xn−1, xn) + ld
(
yn−1, yn

)
,

(2.2)

and similarly,

d
(
yn, yn+1

)
= d

(
F
(
yn−1, xn−1

)
, F

(
yn, xn

))

≤ kd
(
yn−1, yn

)
+ ld(xn−1, xn).

(2.3)

Therefore, by letting

dn = d(xn, xn+1) + d
(
yn, yn+1

)
, (2.4)

we have

dn = d(xn, xn+1) + d
(
yn, yn+1

)

≤ kd(xn−1, xn) + ld
(
yn−1, yn

)
+ kd

(
yn−1, yn

)
+ ld(xn−1, xn)

≤ (k + l)
(
d(xn−1, xn) + d

(
yn−1, yn

))

= (k + l)dn−1.

(2.5)

Consequently, if we set δ = k + l then for each n ∈ N we have

0 ≤ dn ≤ δdn−1 ≤ δ2dn−2 ≤ · · · ≤ δnd0. (2.6)
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If d0 = 0 then (x0, y0) is a coupled fixed point of F. Now, let d0 > 0. For each n ≥ m we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm),

d
(
yn, ym

) ≤ d
(
yn, yn−1

)
+ d

(
yn−1, yn−2

)
+ · · · + d

(
ym+1, ym

)
.

(2.7)

Therefore,

d(xn, xm) + d
(
yn, ym

) ≤ dn−1 + dn−2 + · · · + dm

≤
(
δn−1 + δn−2 + · · · + δm

)
d0

≤ δm

1 − δ
d0,

(2.8)

which implies that {xn} and {yn} are Cauchy sequences in X, and there exist x∗, y∗ ∈ X such
that limn→∞xn = x∗ and limn→∞yn = y∗. Let c ∈ E with 0 � c. For every m ∈ N there exists
N ∈ N such that d(xn, x

∗) � c/2m and d(yn, y
∗) � c/2m for all n ≥ N. Thus

d
(
F
(
x∗, y∗), x∗) ≤ d

(
F
(
x∗, y∗), xN+1

)
+ d(xN+1, x

∗)

= d
(
F
(
x∗, y∗), F

(
xN, yN

))
+ d(xN+1, x

∗)

≤ kd(xN, x∗) + ld
(
yN, y∗) + d(xN+1, x

∗)

� (k + l)
c

2m
+

c

2m
≤ c

m
.

(2.9)

Consequently, d(F(x∗, y∗), x∗) � c/m for all m ≥ 1. Thus, d(F(x∗, y∗), x∗) = 0 and hence
F(x∗, y∗) = x∗. Similarly, we have F(y∗, x∗) = y∗ meaning that (x∗, y∗) is a coupled fixed point
of F.

Now, if (x′, y′) is another coupled fixed point of F, then

d
(
x′, x∗) = d

(
F
(
x′, y′), F

(
x∗, y∗)) ≤ kd

(
x′, x∗) + ld

(
y′, y∗),

d
(
y′, y∗) = d

(
F
(
y′, x′), F

(
y∗, x∗)) ≤ kd

(
y′, y∗) + ld

(
x′, x∗),

(2.10)

and therefore,

d
(
x′, x∗) + d

(
y′, y∗) ≤ (k + l)

(
d
(
x′, x∗) + d

(
y′, y∗)). (2.11)

Since k + l < 1, (2.11) implies that d(x′, x∗) + d(y′, y∗) = 0. Hence, we have (x′, y′) = (x∗, y∗)
and the proof of the theorem is complete.

It is worth noting that when the constants in Theorem 2.2 are equal we have the
following corollary.
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Corollary 2.3. Let (X, d) be a complete cone metric space. Suppose that the mapping F : X×X → X
satisfies the following contractive condition for all x, y, u, v ∈ X:

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
(
d(x, u) + d

(
y, v

))
, (2.12)

where k ∈ [0, 1) is a constant. Then F has a unique coupled fixed point.

Example 2.4. LetE = R
2, P = {(x, y) ∈ R

2 : x, y ≥ 0} ⊆ R
2, andX = [0, 1]. Define d : X×X → E

with d(x, y) = (|x − y|, |x − y|). Then (X, d) is a complete cone metric space. Consider the
mapping F : X ×X → X with F(x, y) = (x + y)/6. Then F satisfies the contractive condition
(2.12) for k = 1/3, that is,

d
(
F
(
x, y

)
, F(u, v)

) ≤ 1
6
(
d(x, u) + d

(
y, v

))
. (2.13)

Therefore, by Corollary 2.3, F has a unique coupled fixed point, which in this case is (0, 0).
Note that if the mapping F : X × X → X is given by F(x, y) = (x + y)/2, then F satisfies the
contractive condition (2.12) for k = 1, that is,

d
(
F
(
x, y

)
, F(u, v)

) ≤ 1
2
(
d(x, u) + d

(
y, v

))
. (2.14)

In this case, (0, 0) and (1, 1) are both coupled fixed points of F and hence the coupled fixed
point of F is not unique. This shows that the condition k < 1 in corollary (2.12) and hence
k + l < 1 in Theorem 2.2 are optimal conditions for the uniqueness of the coupled fixed point.

Theorem 2.5. Let (X, d) be a complete cone metric space. Suppose that the mapping F : X ×X → X
satisfies the following contractive condition for all x, y, u, v ∈ X:

d
(
F
(
x, y

)
, F(u, v)

) ≤ kd
(
F
(
x, y

)
, x

)
+ ld(F(u, v), u), (2.15)

where k, l are nonnegative constants with k + l < 1. Then F has a unique coupled fixed point.

Proof. Choose x0, y0 ∈ X and set x1 = F(x0, y0), y1 = F(y0, x0), . . . , xn+1 = F(xn, yn), yn+1 =
F(yn, xn). Then by applying (2.15) we get

d(xn, xn+1) ≤ δd(xn, xn−1),

d
(
yn, yn+1

) ≤ δd
(
yn, yn−1

)
,

(2.16)

where δ = k/(1 − l) < 1. This implies that {xn} and {yn} are Cauchy sequences in (X, d)
and therefore by the completeness of X, there exist x∗, y∗ ∈ X such that limn→∞xn = x∗ and
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limn→∞yn = y∗. Letm ∈ N and choose a natural numberN such that d(xn, x
∗) = ((1− l)/4m)c

for all n ≥ N. Thus,

d
(
F
(
x∗, y∗), x∗) ≤ d

(
xN+1, F

(
x∗, y∗)) + d(xN+1, x

∗)

= d
(
F
(
xN, yN

)
, F

(
x∗, y∗)) + d(xN+1, x

∗)

≤ kd
(
F
(
xN, yN

)
, xN

)
+ ld

(
F
(
x∗, y∗), x∗) + d(xN+1, x

∗),

(2.17)

which implies that

d
(
F
(
x∗, y∗), x∗) ≤ k

1 − l
d(xN+1, xN) +

1
1 − l

d(xN+1, x
∗) � c

m
. (2.18)

Since m ∈ N was arbitrary, d(F(x∗, y∗), x∗) = 0 or equivalently F(x∗, y∗) = x∗. Similarly, one
can get F(y∗, x∗) = y∗ showing that (x∗, y∗) is a coupled fixed point of F.

Now, if (x′, y′) is another coupled fixed point of F, then by applying (2.15) we have

d
(
x′, x∗) = d

(
F
(
x′, y′), F

(
x∗, y∗))

≤ kd
(
F
(
x′, y′), x′) + ld

(
F
(
x∗, y∗), x∗) = 0,

(2.19)

and therefore x′ = x∗. Similarly, we can get y′ = y∗ and hence (x′, y′) = (x∗, y∗).

Theorem 2.6. Let (X, d) be a complete cone metric space. Suppose that the mapping F : X ×X → X
satisfies the following contractive condition for all x, y, u, v ∈ X,

d
(
F
(
x, y

)
, F(u, v)

) ≤ kd
(
F
(
x, y

)
, u

)
+ ld(F(u, v), x), (2.20)

where k, l are nonnegative constants with k + l < 1. Then F has a unique coupled fixed point.

Proof. First, note that the uniqueness of the coupled fixed point is an obvious result of k+ l < 1
in (2.20). To prove the existence of the fixed point, let x0, y0 ∈ X and choose the sequence
{xn} and {yn} like in the proof of Theorem 2.5, that is x1 = F(x0, y0), y1 = F(y0, x0), . . . , xn+1 =
F(xn, yn), yn+1 = F(yn, xn). Then by applying (2.20) we have

d(xn, xn+1) = d
(
F
(
xn−1, yn−1

)
, F

(
xn, yn

))

≤ kd
(
F
(
xn−1, yn−1

)
, xn

)
+ ld

(
F
(
xn, yn

)
, xn−1

)

≤ l
(
d
(
F
(
xn, yn

)
, xn

)
+ d(xn, xn−1)

)
,

(2.21)

which implies

d(xn, xn+1) ≤ l

1 − l
d(xn, xn−1). (2.22)
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Similarly, one can get

d
(
yn, yn+1

) ≤ l

1 − l
d
(
yn, yn−1

)
. (2.23)

Therefore, {xn} and {yn} are Cauchy sequences in (X, d) and hence by the completeness of
X, there exist x∗, y∗ ∈ X such that limn→∞xn = x∗ and limn→∞yn = y∗. Let c ∈ E with 0 � c
and for each m ∈ N choose a natural number N such that d(xn, x

∗) � ((1 − l)/4m)c for all
n ≥ N. Thus,

d
(
F
(
x∗, y∗), x∗) ≤ d

(
xN+1, F

(
x∗, y∗)) + d(xN+1, x

∗)

= d
(
F
(
xN, yN

)
, F

(
x∗, y∗)) + d(xN+1, x

∗)

≤ kd
(
F
(
xN, yN

)
, x∗) + ld

(
F
(
x∗, y∗), xN

)
+ d(xN+1, x

∗),

(2.24)

which implies

d
(
F
(
x∗, y∗), x∗) ≤ 1 + k

1 − l
d(xN+1, x

∗) +
l

1 − l
d(xN, x∗) � c

m
. (2.25)

Since m ∈ N was arbitrary, d(F(x∗, y∗), x∗) = 0 or equivalently F(x∗, y∗) = x∗. Similarly, one
can get F(y∗, x∗) = y∗ and hence (x∗, y∗) is a coupled fixed point of F.

When the constants in Theorems 2.5 and 2.6 are equal, we get the following corollaries.

Corollary 2.7. Let (X, d) be a complete cone metric space. Suppose that the mapping F : X×X → X
satisfies the following contractive condition for all x, y, u, v ∈ X:

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
(
d
(
F
(
x, y

)
, x

)
+ d(F(u, v), u)

)
, (2.26)

where k ∈ [0, 1) is a constant. Then F has a unique coupled fixed point.

Corollary 2.8. Let (X, d) be a complete cone metric space. Suppose that the mapping F : X×X → X
satisfies the following contractive condition for all x, y, u, v ∈ X:

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
(
d
(
F
(
x, y

)
, u

)
+ d(F(u, v), x)

)
, (2.27)

where k ∈ [0, 1) is a constant. Then F has a unique coupled fixed point.

Remark 2.9. Note that in Theorem 2.5, if the mapping F : X ×X → X satisfies the contractive
condition (2.15) for all x, y, u, v ∈ X, then F also satisfies the following contractive condition:

d
(
F
(
x, y

)
, F(u, v)

)
= d

(
F(u, v), F

(
x, y

))

≤ kd(F(u, v), u) + ld
(
F
(
x, y

)
, x

)
.

(2.28)
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Consequently, by adding (2.15) and (2.28), F also satisfies the following:

d
(
F
(
x, y

)
, F(u, v)

) ≤ k + l

2
d
(
F
(
x, y

)
, x

)
+
k + l

2
d(F(u, v), u), (2.29)

which is a contractive condition of the type (2.26) in Corollary 2.7 (with equal constants).
Therefore, one can also reduce the proof of general case (2.15) in Theorem 2.5 to the special
case of equal constants. A similar argument is valid for the contractive conditions (2.20) in
Theorem 2.6 and (2.27) in Corollary 2.8.
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[6] S. Radenović, “Common fixed points under contractive conditions in cone metric spaces,” Computers
and Mathematics with Applications, vol. 58, no. 6, pp. 1273–1278, 2009.

[7] Sh. Rezapour and R. Hamlbarani, “Some notes on the paper “Cone metric spaces and fixed point
theorems of contractive mappings”,” Journal of Mathematical Analysis and Applications, vol. 345, no. 2,
pp. 719–724, 2008.

[8] Sh. Rezapour and R. H. Haghi, “Fixed point of multifunctions on cone metric spaces,” Numerical
Functional Analysis and Optimization, vol. 30, no. 7-8, pp. 825–832, 2009.

[9] Sh. Rezapour and M. Derafshpour, “Some common fixed point results in cone metric spaces,” to
appear in Journal of Nonlinear and Convex Analysis.

[10] T. G. Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and
applications,” Nonlinear Analysis: Theory, Methods & Applications, vol. 65, no. 7, pp. 1379–1393, 2006.
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