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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product
(+,-) and norm || - ||, respectively, C is a nonempty closed convex subset of H, and P is the
metric projection of H onto C. In the following, we denote by — strong convergence and by
— weak convergence. Recall that a mapping T : C — C is called nonexpansive if

|[Tu-To|| <|ju-v|, VYuoveC. (1.1)

We denote by F(T) the set of fixed points of T. Recall that a mapping B : C — H is said to
be
(i) monotone if (Bu — Bv,u—v) >0, forall u,v € C;

(ii) L-Lipschitz if there exists a constant L > 0 such that ||Bu — Bv|| < L|ju — ||, for all
u,veC;
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(iii) a-inverse-strongly monotone [1, 2] if there exists a positive real number a such that

(Bu-Bv,u-v) > al|Bu-Bv|?, VYu,veC. (1.2)

Remark 1.1. It is obvious that any a-inverse-strongly monotone mapping B is monotone and
(1/a)-Lipschitz continuous.

Let B: C — H be a mapping. The classical variational inequality problem is to find a
u € C such that

(Bu,v-u)>0, VYveC. (1.3)

The set of solutions of variational inequality (1.3) is denoted by VI(B,C). The variational
inequality has been extensively studied in the literature; see, for example, [3, 4] and the
references therein.

A self-mapping f : C — C s a contraction if there exists a constant a € (0, 1) such that

| f(w) - f@)|| <allu-ol, Yu,veC (1.4)

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [5-8] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic function
over the set of the fixed points a nonexpansive mapping on a real Hilbert space:

0(x) = r){leig%(Ax,x) -(x,b), (1.5)

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping
T, and b is a given point in H. Let H be a real Hilbert space. Recall that a linear bounded
operator B is strongly positive if there is a constant y > 0 with property

(Ax,x) >¥|x|?>, Vxe€H. (1.6)

Recently, Marino and Xu [9] introduced the following general iterative scheme based on the
viscosity approximation method introduced by Moudafi [10]:

Xpi1 = (I — a4, A)Txy + ayy f(x,), n>0, (1.7)

where A is a strongly positive bounded linear operator on H. They proved that if the
sequence {a,} of parameters satisfies appropriate conditions, then the sequence {x,}
generated by (1.7) converges strongly to the unique solution of the variational inequality

(A-yf)x*,x-x*)>0, xeC, (1.8)
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which is the optimality condition for the minimization problem
o1
min = (Ax, x) — h(x), (1.9)
xeC 2

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).

On the other hand, two classical iteration processes are often used to approximate a
fixed point of a nonexpansive mapping. The first one is introduced by Mann [11] and is
defined as follows:

x1 = x € C chosen arbitrary,
(1.10)
Xpe1 = (1= an)xn + ayTx,, n>1,

where the sequence {a,} is in the interval (0, 1).
The second iteration process is referred to as Ishikawa’s iteration process [12] which is
defined recursively by

x1 = x € C chosen arbitrary,

Yn = BuXn + (1= )Ty, (1.11)

Xn+1 = (1 - an)xn +a, Ty, n2>1,

where {a, } and {f,} are sequences in the interval (0, 1). However, both (1.16) and (1.11) have
only weak convergence in general (see [13], e.g.). Very recently, Qin and Cho [14] introduced
a composite iterative algorithm {x,} defined as follows:

x1 = x € C chosen arbitrary,
Zn = YnXn t+ (1 - Yn)Txn/
Yn = ﬁnxn + (1 - pn)Tan
Xni1 = @Y f (xn) + OnXn + ((1 = 6u)] —anA)yn, n21,

(1.12)

where f is a contraction, T is a nonexpansive mapping, and A is a strongly positive linear
bounded self-adjoint operator, proved that, under certain appropriate assumptions on the
parameters, {x,} defined by (1.12) converges strongly to a fixed point of T, which solves
some variational inequality and is also the optimality condition for the minimization problem
(1.9).

On the other hand, for finding an element of F(T) N VI(B,C), under the assumption
that a set C C H is nonempty, closed, and convex, a mapping T : C — C is nonexpansive
and a mapping B : C — H is a-inverse-strongly monotone, Takahashi and Toyoda [15]
introduced the following iterative scheme:

x1 = x € C chosen arbitrary, (1.13)
Xn1 = AnXp + (1 - an)TPC (x" - Tl"Bx")’ nx1, .
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where {a,} is a sequence in (0, 1), and {7, } is a sequence in (0, 2a). They proved that if F(T)N
VI(B, C) # &, then the sequence {x,} generated by (1.13) converges weakly to some z € F(T)N
VI(B, C). Recently, liduka and Takahashi [16] proposed another iterative scheme as follows

x1 = x € C chosen arbitrary, (1.14)
X1 = nX + (1 - a,)TPc(xy — 11,Bx,), n>1, '

where B is an a-inverse strongly monotone mapping, {a,} C (0,1) and {\,} C (0,2a) satisty
some parameters controlling conditions. They showed that if F(T) N VI(B,C) is nonempty,
then the sequence {x,} generated by (1.14) converges strongly to some z € F(T) N VI(B, C).

The existence of common fixed points for a finite family of nonexpansive mappings has
been considered by many authors (see [17-20] and the references therein). The well-known
convex feasibility problem reduces to finding a point in the intersection of the fixed point
sets of a family of nonexpansive mappings (see [21, 22]). The problem of finding an optimal
point that minimizes a given cost function over the common set of fixed points of a family
of nonexpansive mappings is of wide interdisciplinary interest and practical importance (see
[18, 23]). A simple algorithmic solution to the problem of minimizing a quadratic function
over the common set of fixed points of a family of nonexpansive mappings is of extreme
value in many applications including set theoretic signal estimation (see [23, 24]).

In this paper, we study the mapping W, defined by

un,n+1 = Ir
un,n = ,unTnun,n+1 + (1 - //ln)I/
Uyna= ,un—lTn—lun,n + (1 - ,un—l)I/

Upie = Tl + (1 - pie) I, (1.15)
Uni1 = e Tl + (1= pr1) 1,

Upp = poTolly3+ (1 - o)1,
Wy =U,1 =Tl + (1 - )l

where {4} is a nonnegative real sequence with 0 < y; <1, foralli > 1, Ty, T, ..., form a family
of infinitely nonexpansive mappings of C into itself. Nonexpansivity of each T; ensures the
nonexpansivity of W,,. Such a W, is nonexpansive from C to C and it is called a W-mapping
generated by T1,To, ..., T, and py, po, . . ., .

In this paper, motivated and inspired by Su et al. [25], Marino and Xu [9], Takahashi
and Toyoda [15], and liduka and Takahashi [16], we will introduce a new iterative scheme:

x1 = x € C chosen arbitrary,
Zn = YnXn + (1 - Yn)ann/

Yn = ,ann + (1 - ,Bn)wnznz
X1 = Y f () + 6pxn + (1 = 64)I — 2, A)Pc(Yn — XuByn),

(1.16)
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where W, is a mapping defined by (1.15), f is a contraction, A is strongly positive linear
bounded self-adjoint operator, B is a a-inverse strongly monotone, and we prove that under
certain appropriate assumptions on the sequences {a,}, {f.}, {y»}, and {5,}, the sequences
{x,} defined by (1.16) converge strongly to a common element of the set of common fixed
points of a family of {T,} and the set of solutions of the variational inequality for an

inverse-strongly monotone mapping, which solves some variational inequality and is also
the optimality condition for the minimization problem (1.9).

2. Preliminaries
Let H be a real Hilbert space. It is well known that for any . € [0, 1]
[[Ax + (1= Vy||* = Al + 1 = Vlly P - A1 - D)l - > (2.1)

Let C be a nonempty closed convex subset of H. For every point x € H, there exists a unique
nearest point in C, denoted by Pcx, such that

||x = Pex|| < llx-vyl, VyeC. (2.2)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

(x —y,Pex — Pcy) > ||Pex - Pey || (2.3)
for every x,y € H. Moreover, Pcx is characterized by the following properties: Pcx € C and

(x=Pcx,y - Pcx) <0,

(2.4)
2 2
ll2c = ylI* > [|c = Pex||” + ||y = Pex||",
forall x € H, y € C. It is easy to see that the following is true:
u e VI(B,C) & u=Pc(u—ABu), A>0. (2.5)

A Banach space X is said to satisfy the Opial’s condition if for each sequence {x,} in
X which converges weakly to a point x € X, we have

lim inf||x, — x|| < iminf||x, - y||, y#x. (2.6)

It is well known that each Hilbert space satisfies the Opial’s condition.

A set-valued mapping T : H — 2! is called monotone if for all x,yy € H, f € Tx and
g € Tyimply (x-vy, f —g) > 0. A monotone mapping T : H — 2 is maximal if the graph of
G(T) of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f) € HxH, (x—y, f —g) > 0 for
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every (y,g) € G(T) implies f € Tx. Let B be a monotone map of C into H and let Ncv be the
normal cone to C atv € C, thatis, Nco = {w € H: (u—v,w) >0, for all u € C} and define

Bv + Nco, C;
To < v+ Ncv, vE 2.7)
, v¢gC.

Then T is the maximal monotone and 0 € Tv if and only if v € VI(B, C); see [26].
Now we collect some useful lemmas for proving the convergence result of this paper.

Lemma 2.1. In a Hilbert space H. Then the following inequality holds

lx + yl? < llx|* +2(y, (x +y)), Vx,y€H. (2.8)

Lemma 2.2 (see [27]). Let {x,} and {z,} be bounded sequences in a Banach space E and let {f,,} be
a sequence in [0,1] with 0 < liminf, ., B, <limsup, ., P, < 1. Suppose xn1 = (1= Pn)zn+PnXn
forall integers n > 1 and lim Supn—>oo(||zn+1 = zZn|| = [|%n+1 = xnl) < 0. Then, limy, -, oo||zn — x| = 0.

Lemma 2.3 (see [28]). Assume {ay,} is a sequence of nonnegative real numbers such that

Apy1 < (1 - Yn)“n + 671/ n>1, (29)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that
(1) ZZi¥n=c0
(2) limsup,, _,  (64/Yn) <001 3571164] < 0.

Then lim,, _, . a, = 0.

Lemma 2.4 (see [9]). Assume that A is a strongly positive linear bounded self-adjoint operator on a
Hilbert space H with coefficient y > 0 and 0 < p < ||A||™L. Then ||I - pAl|| < 1 - py.

Throughout this paper, we will assume that 0 < y,, < u < 1, for all n > 1. Concerning
W, defined by (1.15), we have the following lemmas which are important to prove our main
result.

Lemma 2.5 (see [29]). Let C be a nonempty closed convex subset of a Hilbert space H, let T; : C —
C be a family of infinitely nonexpansive mapping with (2, F (T;) # @, and let {p;} be a real sequence
such that 0 < y; < pu <1, foralli > 1. Then
(1) W, is nonexpansive and F(W,) = ", F(T;) for each n > 1;
(2) for each x € C and for each positive integer k, the limit lim,, _, o, U, kX exists;
(3) the mapping W : C — C define by
Wx := lim Wyx = lim U,1x, x€C, (2.10)

n—oo

is a nonexpansive mapping satisfying F(W) = N2, F(T;) and it is called the W-mapping generated
byT,Ty,...,and p1, py, . ...
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Lemma 2.6 (see [30]). Let C be a nonempty closed convex subset of a Hilbert space H, let {T; :
C — C} be a family of infinitely nonexpansive mappings with (21 F (T;) # @, and let {p;} be a real
sequence such that 0 < p; < u <1, forall i > 1. If K is any bounded subset of C, then

lim sup||[Wx - W,x|| = 0. (2.11)

n—=%0 yeK

3. Main Results
Now we are in a position to state and prove the main result in this paper.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H, let f be a contraction of C
into itself, let B be an a-inverse strongly monotone mapping of C into H, and let {T; : C — C} bea
family of infinitely nonexpansive mappings with F := ;-1 F(T;) N VI(B, C) # @. Let A be a strongly
positive linear bounded self-adjoint operator with the coefficient y > 0 such that ||A|| < 1. Assume
that 0 < y < y/a. Let {an}, (B}, {yn}, and {6,} be sequences in [0,1] satisfying the following
conditions:

(C1) lim, o, =0, 02y = 00,

(C2) 0 < liminf, . 6, < limsup,_, 6, <1,

(C3) (1 + Bu)yn — 2P > d for some d € (0,1),

(C4) hmn—>oo|ﬂn+1 - ﬂnl = limn—>oo|)’n+l - Ynl =0,

(C5) >4y = Apoa| < 00 and {A,} C [a,b] for some a,b € (0,2a).

Then the sequence {x,} defined by (1.16) converges strongly to q € F, where g = Pr(yf + (I — A))q
which solves the following variational inequality:

(rf(9) -Ap,p-q) <0, VpeF. (3.1)

Proof. Since a, — 0 as n — oo by the condition (C1), we may assume, without loss of
generality that a,, < (1-6,)||A||"! for all n > 0. First, we will show that I -, B is nonexpansive.
Indeed, for all x,y € C and A, € [0, 2],

(I = 1uB)x = (I - LB)y||* = || (x - y) - Au(Ax - Ay)||?
= lx -yl - 2u(x - y, Ax - Ay) + A}|| Ax - Ay|?

(3.2)
<l = yl* + (X, = 22) || Ax — Ayl

2
<l =yl

which implies that I — A,,B is nonexpansive. Noticing that A is a linear bounded self-adjoint
operator, one has

| All = sup {|{Ax,x)| : x € H, ||x]| = 1}. (3.3)
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Observing that

(((1=6p)I-ayA)x,x) =1-06, - a,(Ax, x)
S 1 - 611 - an“A”
<0,

we obtain (1 - 6,)I — a, A is positive. It follows that

(1 =61 - an Al = sup {(((1-6,)T - @y A)x,x) : x € H, ||x]| = 1)
=sup {1 -6, - a,(Ax,x): x € H, ||x| = 1}
<1-6,—ayy.

Next, we observe that {x,} is bounded. Indeed, pick p € N2, F(T;) N VI(B, C) and notice that

Iz =PIl < yallw =PIl + (1= v) [Wata = p| < [l =PI,
lyn =PIl < Bullxn —pll + (1= Bu) [[Wazn - p||
< Bullxn =pll + (1= Bu) |20 - Pl
< |l = pl|-

(3.4)

It follows that

l|xner =PIl = letny f (xn) + 6ntn + (1 = 62)I = 20 A) Pc(yn = AByn) - p|
= ||an(yf (xn) = Ap) + 6n(xn = p) + ((1 = 6n)I = anA)Pc(yn — AByn) - p||
< aulyf(xn) = Ap|| + 6ul|xn = pl| + (1 = 6n = au¥) |y —p|
< auy||f (en) = FO| + aullyf(0) = Ap|l + (1= aaT) [l xn — | (3:5)
= [1-an(y - ya)||xu = p|| + aullyf(p) - Ap|

_ ) - Apll
= 1_ n - n - n - - = -
(1= an (7 =yl = pll + a7 = yo) ===

By simple induction, we have

(3.6)

7

| Ap - vf ()| }

Xn — < max X0 — —
e~ < o -, 12222

which gives that the sequence {x,} is bounded, and so are {y,} and {z,}.
Next, we claim that

r}ijrgo||xn+1 - x,|| =0. (3.7)
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Since T; and U,,; are nonexpansive, we have

(|[Waxtn = Wi, || = ||Unaxn — Un-11%4]|
= || Talp 2%, — (1= p1) X — pr Til o1 250 — (1 = pn) x|
< 1 || U2 — U1 o2 |
= w1 ||peTol 33, — (1 = p2) % — pa ol o1 3% — (1 — pi2) x|

< /41#2||Un,3xn = Up-1,3%n ” (3.8)

n
< <H ,ul> ”un,nxn - un—l,nxn”
i=1

<M, <Hﬂi>;
i=1

where M; > 0is a constant such that ||U,, ,x, — Up-1,,Xs|| < M;. Similarly, there exists M, > 0
such that ”un,nyn - un—l,nyn” < M.
Observing that

Zy = YnXy + 1- n ann/
YuXn + (1 =) 39)
Zn-1 = Yn-1Xn-1 t+ (1 - Yn—l)Wn—lxn—lr

we obtain that
Zn—Zp-1 = (1 - Yn) (ann - anlxnfl) +Yn (xn - xnfl) + (Ynfl - Yn) (anlxnfl _xnfl) . (310)
It follows that

20 = 2l € (= 1) [ Wt = Wacaea 4yl = 2t |+ it = [ Wt = 0
< (U= 1) Wk = W | + (1= 32) [ W16 = Wi |
il = ]+ [t = ol [ Wkt =t |
< (U= 1) Wt = Woata | + (1= 32) 00— 2
il = el [t = ol [ Wkt =t |

= (1= y) [Watn = Waoaxal| + [0 = x| + [yt = vl [Watn-t = x|

< (U= yu) Ma] T i+ llxn = xna |+ a1 = Yo W1 = x|
i=1
(3.11)
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Noticing that

Yn = ,ann + (1 - ,Bn)wnznz

(3.12)
Yn-1 = ,anlxnfl + (1 - ,anl)wnflznflr

we obtain

Yn —Yna1 = (1 - ﬂn) (ann - Wn—lzn—l) + ﬂn (xn - xn—l) + (Wn—lzn—l - xn—l) (ﬁn—l - ﬁn)
(3.13)

It follows that

v = ynall < (1= Bu) [Wazn = Waznaa || + Bulxn = Xna || + [|Wnzna = X1 || |1 = B
< (1= B0) [Wazn = Waaaza|| + (1 = Bu) [|[Wa-120 — W1z ||
+ Bullxen = xna || + [Worznr = xna || Bur = ]
< (1= )Wz~ Woazall + (1= B) 20 -2

# Bull s = Xua | + [ Wacs 2 = 20t [[Bos — ol
n

< (U= )M L pe+ (1= )20 = zoca | + s = 0|
i=1

+ ”Wn—lzn—l — Xn-1 ” |ﬂn—1 - ﬂnl
(3.14)

Substituting (3.11) into (3.14), we get

lyn = yuall < (1 - ﬁn)le_il[ pit (1=pn)(1- Yn)lel[#i

+ (=B e = 2wl + (1= Bo) [ynt = Yo [Wia2na = 2|
+ Bullxn = Xnall + |Ber = B [[Wna 201 = 20 | (3.15)

= (- p)M] T+ (=) (1 5) M T g+ [l — 0|
i=1 i=1

+ M3 ((1 = Bu) [Yn-1 = Yu| + |Bu-1 = Bul),

where M3 is an appropriate constant such that

M3 > max {sup”Wn_lxn_l — Xp-1 ||, sup||[Wa-1zn-1 — %1 || } (3.16)
n>1 n>1

Putting I,, = (xy41 — 6nxn) /(1 = 65), we get, X1 = (1 = 6,)1; + Opxy.
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Now, we compute .1 — I,. Observing that

a"+1Yf<xn+l) + ((1 - 6n+1)I - an+1A)PC (]/n+1 - /\n+1B]/n+1)
1- 6n+1
~anyf(xn) + (1= 60)1 = awA) Pc(Yn = AnByn)
1-6,

(yf (xns1) = APc (Yns1 — Ans1 BYns))

ln+1 - ln =

__fwn (3.17)
1- 6n+1

an

s (APc(Yn = AuByn) = vf (xn))

+ Pc (yn+1 - )ln+1Byn+1) - Pc (]/n - )LnB]/n)-

It follows from (3.15) that

Xl
1- 6n+1

an
AP (v~ aByn) = G| + s =

”ln+1 - ln” < ”Yf (xn+1) - APc (ym—l - )‘n+1Byn+1) ”

+

< 1?"—(;:[“||Yf(xn+1) — AP (Y1 — M1 By || 518)
&y '

+ 75 AP (yn = AuByn) =y £ (on) |
+(1 —ﬂn)lei[ﬂi +(1=Pa) (1~ Yn)Mlli[”f

+ 2w = xnca | + Ma (1= Bu) [Yuo1 = Y| + |Bus = Bul)-

It follows that
Antl
Lyvi — L - - x| € ——
” n+l "” ”x" Xn 1” = 1-6u11

an

+1=g AP (yn = LuBya) =y f ()|

”Yf(xnﬂ) - APc (yn+1 - )tn+1Byn+1) ”

. ) (3.19)
+ (1= Bu)Mo] Tri+ (1= B (A=) Mi] [ i
i=1 -1

+ M ((1= Bu) [Yn-1 = Ya| + |Bua = Bul)-
Observing the conditions (C1) and (C4) and taking the superior limit as n — oo, we get

lim sup (||lns1 = In|| = ||2%n = 20 ||) < 0. (3.20)

We can obtain lim,, _, ., ||l — x,|| = 0 easily by Lemma 2.2 since

X1 = Xn = (1= 64) (In — xp), (3.21)
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one obtains that (3.7) holds. Setting t,, = Pc(y,, — Auyn), we have
X1 = 0 f (%) + 6p2xn + (1= 6,)1 — a, Aty (3.22)
Observing that

Xp— bty =Xy — Xpp1 + Xpy1 — Iy
=Xy — Xpa1 + AnY f (Xn) + 62y + (1= 6,)] — ay Aty — ty (3.23)
=Xp — X1 + A (Y f (%n) — Aty) + 6, (%0 — tn),

we arrive at
(1=64) (xn —tn) = xn — X1 + an(yf (xn) — Aty). (3.24)
This implies
(1= 62 % = bl < [0 | + @ullyf (52) - At (3:25)
From (3.7) and (C1) we obtain that

lim ||x, — t,]| = 0. (3.26)

n—oo

Next, we will show that ||By, — Bp|| — 0asn — oo for any p € F. Observe that

2ner = Pl = | (1 = 6a)T = @wA) (tn = ) + 6 (x = p) + an(yf (xn) = Ap)|I®
= (1= 8,1 = @y A) (ts = p) + 60 (xn = P) |* + k|l f (xa) - Ap|?
+ 26nan(xn = p, ¥ f (xn) = Ap) + 20 (((1 = 62)T - an A) (ta = p), Y f (xn) = Ap)
< ((1=6u =) ||t = pll + 8allxn =PI + @i [ly f (xa) - Ap|
+ 280t (Xn = P, Y f (Xn) = Ap) + 20 (((1 = 84)I = 2w A) (ta = p), Y f (xn) — Ap)
= (1= 6u~ @)’ [lta = pl* + &2 l|x0 ~pII”
+2(1= 6 = an¥) 6n|tn = plll| 20 = Pl + cn
< (1= 60— ay)’[Ita = pl* + &3 l|x —pII”
+ (1= 64— a)6u (tn — pI* + 2~ pII”) + s
= [ - a1)* =201 - @) 6, + 8] |t = pII* + 82| ~ pII°
+ (1= )80 = 82) (|t = pIP + |2 = pII*) +

= (1= a?)’|lta = PI* = (1 = @¥)ul|t - p|I* + (1 = a¥) 8|0 — p||* + cn
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= (1= ) (1= 6, = ) [1tw = pII* + (1 = @) Bul|x0 = p|I” + s
< (1= auF) (1= 64 = @) || (v = 1uByn) = (p = AaBp) ]
- (- a5l -l + oo
< (1= a7) (1= 60 = @) [lyn =PI + Au (4 = 20) || By, — Bp]|]
+ (- aP)6ull - plF +cn
< len = plI* + b(b - 2) || By — Bp|* + cu,

where

cn = a2y f (xen) = Ap||* + 265n {0 = p, Y f (3tn) = Ap)
+2a,(((1 = 60)1 = anA) (ta = p), Y f (xn) = Ap).

This impies that

~b(b - 2a)||Bys — Bp||* < ||xu - p|I” = | xwe1 = p||* + ca

< [l = 2w [ (l2n = pll + 2 = I + cn

Since lim,, _, .¢,, = 0 and from (3.7), we obtain

lim || By, - Bp|| =0.

From (2.3), we have

llta = PII” = [|Pc (¥ = AuByn) = Pc(p - AuBp)||®
<{(Yn = \uByn) = (p = \uBp), tn = p)

1
= {11 = 1aBya) = (p = 1uBp) [ + |t - p|I
~[| (¥ = 1uBya) = (p = AuBp) = (ta = p)I*}

< S{Iya =PI+ ltn =PI = 1| = ) = 2By - Bp) I’}

NI~ N

so, we obtain

tn =PI < lyn = PII” = 10 = tull* + 22 (Yn = tn, By — Bp) = A2|| By, — Bp||*.

13

(3.27)

(3.28)

(3.29)

(3.30)

{lyn = pI” + [t = I = 1 = tall” + 240y = tn, By — Bp) = X3 | Bys - B[},

(3.31)

(3.32)
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It follows that

201 = PI* < (1= a¥) (1= 6 = @al) 1t = p || + (1 = @a})6ul| % = p||* + e
< (1= 7)1 - 60 - o)
<[l =pII* = [y = tall* + 22 (yn = ta, Byn = Bp) = 42| By, - Bp|’]
+ (1= @)l Pl + o
< (1=an)|lx = pl* = (1= @) (1= 65 = @) [ yn — tall”
+ 24 (1 = anY) (1 = 65 = @u¥) [y = tul| | Byn - Bp|
= 25 (1 = ) (1= 6 = aa]) | Bys = Bp||* + cn,

(3.33)
which implies that
(1= ) (1= 6 = aa¥) [y~ tal
< [loen = pII” = st = pII” + 200 (1 = a¥) (1 = 65 = ) |y = tal[| By — Bp|
)‘n(l aTlY) (1 6" aTlY) ”Byn BP” +Cn (334)
< loen = x| ([lxn = p || + [[xnea = pll)
# 20, (1= ) (1 6, - ) |y~ ol By - B
= 15(1 = ai¥) (1 = 65— aa)) | Bya - Bp||* + c.
Applying (3.7), (3.30), and lim,,_. .c,, = 0 to the last inequality, we obtain that
lim ||y, — t,]| = 0. (3.35)
It follows from (3.26) and (3.35) that
l2cn = vul| < ||xn = ta|| + ||tn = || — 0 as n— co. (3.36)
On the other hand, one has
Waxn = xull < [|20 =yl + [y = Wau|
< lxn = yull + llyn = Waza| + [Wazn = Waa|
< lxn = yall + Bullxn = Waza | + ||z — x|
< %0 =yl + Bulln = Waa || + Bul|Warn = Woza|| + |20 = x| (3:37)

< [l%n = yall + Bulloen = Waal| + (1 + Ba) |20 = 2|
< [lxn = all + ulloen = Wil + (1 + B) (1 =) [ W = 2|
= [l%n = ynll = [(1+ ) Yo = 2B = 1] [ Waxn = x

7



Fixed Point Theory and Applications 15

which implies
[(1 +ﬁ7’l)Yn _zﬁn] ”ann_xn” < ”xn_yn”- (338)
From the conditions (C3), it follows that

lim ||W,x, — x,|| = 0. (3.39)

Applying Lemma 2.6 and (3.39), we obtain that

Wi = 2a| < |Wotn = Wit + | W = 2|

sup |[[Wx = Wyx|| + ||Waxy — xu|| — 0 as n— oo.
x€{xn}

ININ

(3.40)

It follows from (3.26) and (3.40) that

Wiy = tal] < [[Wa = Waea || + [[Woxn = 2| + [| 00 = ]

(3.41)
<2||tn = xu|| + |Wxp — xu|| — 0 as n— co.

We observe that Pr(yf + (I — A)) is a contraction. Indeed, for all x, y € H, we have

1P (yf + (I = A)(x) = Pe(yf + (I - A) (v) |
<N Gf+UT-A))) - (Gf+UT-A))W
<yllf ) = F@ I+ I = Allllx -y (3.42)
<vallx =yl + (1-7)llx - yll
<rllx -yl

Banach’s Contraction Mapping Principle guarantees that Pr(y f + (I — A)) has a unique fixed
point, say g € H. Thatis, g = Pr(yf + (I - A))(q).
Next, we claim that

limsup(yf(q) - Ag,t. —q) <0. (3.43)

n— oo
Indeed, we choose a subsequence {t,,} of {t,} such that

limsup(yf(q) - Aq, Wi, = q) = lim (yf(q) - Aq, Wty = q). (3.44)

n— oo
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Since {t,,} is bounded, there exists a subsequence {t""i } of {t,,} which converges weakly to
z € C. Without loss of generality, we can assume that t,, — z. From ||Wt,, — t,] — 0, we
obtain Wt,, — z. Therefore, we have

limsup(yf(q) - Aq,Wt, — q) = lim(yf(q) - Aqg, Wt,, —q)
n—oo i~ (3.45)

=(yf(q) - Agq,z-q).

Next we prove that z € F := (2, F(T;) N VI(B, C).

First, we prove that z € F(W) = N2, F(T;).

Suppose the contrary, z ¢ F(W), that is, Wz # z. Since t,, — z, by the Opial’s condition
and (3.41), we have

lim inf||t,, — z|| < iminf||t,, - Wz||
1— 00 1— 00

< hminf{ ”t”i - Wt"i ” + ||thi - WZ”}

3.46
< liminf{ ||, = Wi || + ||t - 2|} 40

1—

= liminf||t,, - z||.
[o2]

1—

This is a contradiction, which shows that z € F(W) = N2, F(T;).
Next, we prove z € VI(B,C). For this purpose, let T be the maximal monotone
mapping defined by (2.7):

To = {1:+ch, Z:g (3.47)
For any given (v, w) € G(T'), hence w — Bv € N¢(v). Since t,, € C, we have
(v -ty,w—Bv) >0. (3.48)
On the other hand, from t,, = Pc(y, — 1,By,), we have
(v —=tu ty = (Yn — AuBya)) > 0, (3.49)

that is,

tn —Yn
<v _t,, Ty + Byn> > 0. (3.50)

n
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Therefore, we obtian

(v —ty, w) > (v —ty,, Bv)

th, — Yn,
> (v —t, Bu) — <v —tn,, n1A Iy Bym>
n;

th, — Yn
= <v—t,,i,Bv—Byni - "’A yn’>
"

i

= (v — ty, Bv = Bty,) + (v — ty,, Bty, = Byp, ) — <v —tn,,

tn,- —Yn > (351)
A,

i

th, — Yn
> (v - tn,.,Bt,,i> - <v —tu,, n')L Y + By,,i>
"

i

t, — .
= <ZJ - tni/Btni - By"i) - <U N tni, nl)t ynl >'
n

Noting that ||t,, — yn,|| — 0asn — oo and B is Lipschitz continuous, hence from (3.18), we
obtain

(v—-2z,w) >0. (3.52)

Since T is maximal monotone, we have z € T~!0, and hence z € VI(B, C).
The conclusion z € (2, F(T;) N VI(B, C) is proved.
Hence by (3.45), we obtain

limsup(yf(q) - Aq, Wt, - q) = (yf(q) - Aq,z—q) <0. (3.53)

n—oo

Since g = Prf(q), it follows from (3.39), (3.41), and (3.53) that

limsup(yf(q) — Aq, t, — q) = limsup(y f(q) - Aq, (t, = Wt,) + (Wt, - q))

n— oo n—oo

<limsup(yf(q) - Aq, Wt, - q) (3.54)

n—oo

<0.

Hence (3.43) holds. Using (3.26) and (3.54), we have

limsup(yf(q) - Aq, xu — q) = limsup(yf(q) - Aq, (xn — tn) + (t. — q))

n— oo n—oo

<limsup(yf(q) - Aq,t, —q) (3.55)

n—oo

<0.
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Now, from Lemma 2.1, it follows that

(B

IN

IN

IN

lleny f () + 8nn + (1= 80)1 = anA)tu - 4|
1((1 = 82)T = @nA) (tn = q) + (0 = q) + @a(vf (xn) - Ag)||”
(1= 6a)1 = @nA) (tn = q) +6n (xa = @) |” + a3 l|y f (xa) — Aq’
+ 2600 (xn = 4,7 f (xn) - Aq)
+ 20, (1= 6u)1 - anA) (tn = q), vf (xu) — Aq)
((1 =80 = @) [1ta = qll + 6ullxa = qll)* + 2| f () - Aq’
+ 26nany (Xn = q, f (xn) = (@) + 2602 (xn = q,7f(q) - A(q))
+2(1 = 6p)yetn(tn = q, f (xu) = f(q)) +2(1 = 6n) an(tn — q, 7 (9) - Aq)
=20, (A(ta = q), vf(9) - Aq)
((1 =8 = au)) [lxn = ql| + 6ullxn = 4l)° + @[y f (xa) - Aq|”
+ 28,anyal|xn = ql|” + 26.an(x0 — 4,7 (q) - Aq)
+2(1 = 8,) yanal|x, - ql|” +2(1 - 6,)an(ts - 4,7f(q) - Aq)
—2a,(A(tn = q), vf(9) - Aq)
(1= @) + 26 ,0ya +2(1 = 6,) yaua] | %0 — ql|” + @Iy f () - Aq]?
+20nan(xn = q,Yf(q) = Aq) +2(1 = 6n)an(tn — q,Yf (9) - Aq)
=20, (A(tn = q), vf(9) - Aq)
[1-2(7 - awp)an] [0 = qll* + P lu - qll” + a1y f (xa) - Aql?
+20nan(xn = q,Yf(q) = Aq) +2(1 = 6n)an(tn — q,Yf (9) - Aq)
+ 25 | Ata = 9) [l f () - Aq]
[1-2F - @) |0 -l
+an{an (P10 = qll* + Iy f (xa) - Aq]?

+2[|A(ta = @)y f (@) - Aql]) +264(xn — g, v (q) - Aq)

+2(1-6,)(ta = 4, 7f(9) - Aq) }.

(3.56)

Since {x,}, {f(x,)}, and t, are bounded, we can take a constant M5 > 0 such that

Vollan = all” + Iy f (xa) = Aql|* + 2[|A(ta - ) || Y £ (@) - Aq]| < Ms, (3.57)
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for all n > 0. It then follows that
it~ gl < [1-2F - )] - gl + a0, (3.58)
where
On =26,(xn—q,vf(q) — Aq) +2(1 = 6,){tn — 4, Y (q) — Aq) + a, M. (3.59)
Using (C1), (3.54), and (3.55), we get limsup,,_, 6, < 0. Now applying Lemma 2.3 to (3.58),

we conclude that x,, — g. This completes the proof. O

Remark 3.2. Theorem 3.1 mainly improve the results of Qin and Cho [14] from a single
nonexpansive mapping to an infinite family of nonexpansive mappings.

4. Applications
In this section, we obtain two results by using a special case of the proposed method.

Theorem 4.1. Let H be a real Hilbert space, let B be an a-inverse strongly monotone mapping on H,
let {T; : H — H} be a family of infinitely nonexpansive mappings with F := N2, F(T;)NB~1(0) # @.
Let f : H — H a contraction with coefficient a € (0,1), and let A be a strongly positive bounded
linear operator on H with coefficient y > 0 and 0 < y < y/a. Suppose the sequences {x,}, {y,}, and
{2} be generated by

x1 = x € H chosen arbitrary,
Zn = YnXn t+ (1 - Yn)ann/
Yn = ﬂnxn + (1 - ﬁn)wnznl
X1 = 0 f (%) + 6pxn + ((1 = 6,)I — 2y A) (Yn — \nByn),

(4.1)

where {an}, {Pn}, {yn}, and {\,} are sequences in [0, 1] satisfying the following conditions:
(C1) limy oy, =0, X074ty = 00,
(C2) 0 < liminf, 6, <limsup, , 06,<1,
(C3) (1 + Bu)yn — 2Py > a for some a € (0,1),
(C4) limy,— 0Bt — Pl = limy— oo |yns1 — ¥l = 0,
(C5) Xoiqlby = Apoa| < 00 and {A,} C [a,b] for some a,b € (0,2a).

Then {x,}, {yn}, and {z,} converge strongly to q = Pr(y f + (I — A))(q) which solves the variational
inequality:

((A-yf)q,q-z) <0, z€F. (42)

Proof. We have B1(0) = VI(B, H) and Py = I. Applying Theorem 3.1, we obtain the desired
result. O
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Next, we will apply the main results to the problem for finding a common element of
the set of fixed points of a family of infinitely nonexpansive mappings and the set of fixed
points of a finite family of k-strictly pseudocontractive mappings.

Definition 4.2. A mappings S : C — H is said to be a k-strictly pseudocontractive mapping if
there exists k € [0, 1) such that

I1Sx = Syll” < lx = I + k[[(T = S)x = (I = S)y|I*, vx,yeC. (4.3)

The following lemmas can be obtained from [31, Proposition 2.6] by Acedo and Xu,
easily.

Lemma 4.3. Let H be a Hilbert space, let C be a closed convex subset of H. For any integer N > 1
, assume that, foreach 1 <i < N, S; : C — H is a k;-strictly pseudocontractive mapping for some
0 < ki < 1. Assume that {q)i}f.\:]1 is a positive sequence such that 3N, ¢; = 1. Then 3N, ¢;S; is a

k-strictly pseudocontractive mapping with k = max{k; : 1 <i < N}.

Lemma 4.4. Let {S;}Y, and {(pi}g1 be as in Lemma 4.3. Suppose that {S;}~, has a common fixed
point in C. Then F(XN, ¢;S:) = NN, F(S)).

Let S; : C — H be a k;-strictly pseudocontractive mapping for some 0 < k; < 1. We
define a mapping A = I - 3, ¢;S; : C — H, where {¢;} i]\zfl is a positive sequence such that
SN @i =1, then Ais a ((1 - k)/2)-inverse-strongly monotone mapping with k = max{k; :

1 <i< N}.In fact, from Lemma 4.3, we have

2 2

N N N N
Z piSix — Z eiSiyl| <lx-yl+k ‘ <I - Z (p,-Si>x - (I - Z (piSi>y , VYx,yeC
i1 i1 i=1 =1
(4.4)
That is,
1T = A)x = (1 = Ayy|)* < llx - yI? + k|l Ax - Ay, (4.5)
On the other hand
(= A)x = (I - Ayy||* = llx - yII* - 2(x -y, Ax - Ay) + | Ax - Ay|/™. (4.6)
Hence, we have
1-k 2
(x-y Ax - Ay) 2 ——[lAx - Ayl (4.7)

This shows that A is ((1 — k) /2)-inverse-strongly monotone.

Theorem 4.5. Let C be a closed convex subset of a real Hilbert space H. For any integer N > 1,
assume that, for esch 1 < i < N, S; : C — H is a ki-strictly pseudocontractive mapping for
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some 0 < k; < 1. Let {T; : C — C} be a family of infinitely nonexpansive mappings with F :=
N2, F(T;) N ﬂglF(Si) #@. Let f : C — C a contraction with coefficient a € (0,1) and let A be a
strongly positive bounded linear operator with coefficient y > 0 and 0 < y < y/a. Let the sequences
{xn}, {yn}, and {z,} be generated by

x1 = x € H chosen arbitrary,
Zn = YnXn t (1 - Yn)wnxnr
Yn = ,ann + (]— - ,Bn)wnzn/ (48)
N
X1 = Y f () + 6pxy + ((1 - 6,)] — a, A) P <(1 - X)) Yn — Anz (piSiyn>,

i=1

where {an}, {Pn}, {yn}, and {A,} are the sequences in [0, 1] satisfying the following conditions:

(C1) limy— oty =0, 074 ay = 00,

(C2) 0 < liminf, ., 6, <limsup, ,_06,<1,

(C3) (1 + Bu)yn —2Pn > a for some a € (0,1),

(C4) limy,— oo| B = Pl = limy— ol Yne1 = yul = 0,

(C5) >oqlhn = Apoa| < 00 and {Ay,} C [a,b] for some a,b € (0,2a).

Then {x,}, {yn}, and {z,} converge strongly to q = Pr(y f + (I — A))(q) which solves the variational
inequality:

((A-yf)g,9-2)<0, z€F. (4.9)

Proof. Taking B = I - 3N, ¢:S; : C — H, we know that B : C — H is a-inverse strongly
monotone with & = (1 - k) /2. Hence, B is a monotone L-Lipschitz continuous mapping with
L = 2/(1 - k). From Lemma 4.4, we know that 3, ¢;S; is a k-strictly pseudocontractive
mapping with k = max{k; : 1 < i < N} and then F(3Y, ¢:S;) = VI(B,C) by Chang [30,
Proposition 1.3.5]. Observe that

N
Pc(yn — MByy) = Pc<(1 ~ ) Yn = A D, (piSiy,,). (4.10)

i=1

The conclusion of Theorem 4.5 can be obtained from Theorem 3.1. O

Remark 4.6. Theorem 4.5 is a generalization and improvement of the theorems by Qin and
Cho [14], liduka and Takahashi [16, Thorem 3.1], and Takahashi and Toyoda [15].
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