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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product
(-,+) and norm ||-||, respectively, C is a nonempty closed convex subset of H. Let¢ : C — Rbe
a real-valued function and let © : CxC — R be an equilibrium bifunction, that is, ©(u, u) =0
for each u € C. Ceng and Yao [1] considered the following mixed equilibrium problem:

Find x* € C such that ©(x*,y) + ¢(y) > p(x*), VyeC. (1.1)

The set of solutions of (1.1) is denoted by MEP(O, ¢). It is easy to see that x* is a solution of
problem (1.1) implies that x* € dom ¢ = {x : p(x) < +o0}.
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In particular, if ¢ = 0, the mixed equilibrium problem (1.1) becomes the following
equilibrium problem:

Find x* € C such that ©(x*,y) >0, VyeC. (1.2)

The set of solutions of (1.2) is denoted by EP(©).
Ifp=0and O(x,y) = (Bx,y—x) > 0forall x,y € C, where B is a mapping form C into
H, then the mixed equilibrium problem (1.1) becomes the following variational inequality:

Find x* € C such that (Bx*,y —x*) >0, VyeC. (1.3)

The set of solutions of (1.3) is denoted by VI(B,C). The variational inequality has been
extensively studied in literature. See, for example, [2-13] and the references therein.

The problem (1.1) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games and others; see for instance, [1, 2, 14, 15].

First we recall some relevant important results as follows.

In 1997, Combettes and Hirstoaga [14] introduced an iterative method of finding
the best approximation to the initial data when EP(O) is nonempty and proved a strong
convergence theorem. Subsequently, S. Takahashi and W. Takahashi [16] introduced an
iterative scheme by the viscosity approximation method for finding a common element of the
set of solutions of EP(©) and the set of fixed point points of a nonexpansive mapping. Using
the idea of S. Takahashi and W. Takahashi [16], Plubtieng and Punpaeng [17] introduced an
the general iterative method for finding a common element of the set of solutions of EP(Q)
and the set of fixed points of a nonexpansive mapping which is the optimality condition for
the minimization problem in a Hilbert space. Furthermore, Yao et al. [11] introduced some
new iterative schemes for finding a common element of the set of solutions of EP(©) and
the set of common fixed points of finitely (infinitely) nonexpansive mappings. Very recently,
Ceng and Yao [1] considered a new iterative scheme for finding a common element of the set
of solutions of MEP(©) and the set of common fixed points of finitely many nonexpansive
mappings in a Hilbert space and obtained a strong convergence theorem which used the
following condition:

(E) K : C — R s g-strongly convex and its derivative K’ is sequentially continuous
from the weak topology to the strong topology.

Their results extend and improve the corresponding results in [6, 11, 14]. We note that
the condition (E) for the function K : C — R is a very strong condition. We also note that
the condition (E) does not cover the case K(x) = ||x[|?/2 and 7(x,y) = x — y. Motivated
by Ceng and Yao [1], Peng and Yao [18] introduced a new iterative scheme based on only
the extragradient method for finding a common element of the set of solutions of a mixed
equilibrium problem, the set of fixed points of a family of finitely nonexpansive mappings
and the set of the variational inequality for a monotone Lipschitz continuous mapping. They
obtained a strong convergence theorem without the condition (E) for the sequences generated
by these processes.
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We recall that a mapping B : C — H is said to be:

(i) monotone if (Bx - By, x —y) >0, forall x, y € C,

(ii) L-Lipschitz if there exists a constant L > 0 such that ||Bx — By|| < Ll|x -
y||, forall x, y € C,

(iii) a-inverse-strongly monotone [19, 20] if there exists a positive real number a such
that

(Bx—By,x—y) 2a||Bx—By||2, Vx,y € C. (1.4)

It is obvious that any a-inverse-strongly monotone mapping B is monotone and Lipschitz
continuous. Recall that a mapping T : C — C is called a k-strictly pseudocontractive
mapping if there exists a constant 0 < k < 1 such that

|Tx = Ty|)* < ||x - y||* + k|| (I - T)x - I -T)y|*, Vx,yeC. (1.5)

Note that the class of k-strictly pseudocontractive mappings strictly includes the class of
nonexpansive mappings which are mappings T on C such that

|[Tx-Ty| < |lx-y|, VYxyeC (1.6)

That is, T is nonexpansive if and only if T is O-strictly pseudocontractive. We denote by
F(T) := {x € C: Tx = x} the set of fixed points of T.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [21-24] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic function
over the set of the fixed points of nonexpansive mapping on a real Hilbert space:

O(x) = r&i(r:l%(Ax,x) —{(x,b), (1.7)

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping T,
and b is a given point in H. Recall that a linear bounded operator A is strongly positive if
there is a constant y > 0 with property

(Ax,x) >¥|x|* Vxe€H. (1.8)

Recently, Marino and Xu [25] introduced the following general iterative scheme based on the
viscosity approximation method introduced by Moudafi [26]:

Xne1 = (I =g A)Txy, + any f(x,), n>1, (1.9)
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where A is a strongly positive bounded linear operator on H. They proved that if the
sequence {a,} of parameters satisfies appropriate conditions, then the sequence {x,}
generated by (1.9) converges strongly to the unique solution of the variational inequality

((A-yf)x*,x-x*)>0, x€C, (1.10)

which is the optimality condition for the minimization problem
o1
min=(Ax, x) — h(x), (1.11)
xeC 2

where h is a potential function for yf(i.e., H'(x) = yf(x) for x € H).

Recall that the construction of fixed points of nonexpansive mappings via Manns
algorithm [27] has extensively been investigated in literature; see, for example [27-32]
and references therein. If T is a nonexpansive self-mapping of C, then Mann’s algorithm
generates, initializing with an arbitrary x; € C, a sequence according to the recursive manner

Xpi1 = AnXy + (1 —a,)Tx,, Yn>1, (1.12)

where {a,} is a real control sequence in the interval (0, 1).

If T : C — Cisanonexpansive mapping with a fixed point and if the control sequence
{an} is chosen so that X7 a,(1 — a,) = oo, then the sequence {x,} generated by Manns
algorithm converges weakly to a fixed point of T. Reich [33] showed that the conclusion also
holds good in the setting of uniformly convex Banach spaces with a Fréhet differentiable
norm. It is well known that Reich’s result is one of the fundamental convergence results.
However, this scheme has only weak convergence even in a Hilbert space [34]. Therefore,
many authors try to modify normal Mann’s iteration process to have strong convergence;
see, for example, [35-40] and the references therein.

Kim and Xu [36] introduced the following iteration process:

Yn = ,ann + (l - ﬂn)Txn/

Xpi1 = gt + (1= an)yn, n2>1,

(1.13)

where T is a nonexpansive mapping of C into itself and u € C is a given point. They proved
the sequence {x,} defined by (1.13) strongly converges to a fixed point of T provided the
control sequences {a,} and {f,} satisfy appropriate conditions.

In [41], Yao et al. also modified iterative algorithm (1.13) to have strong convergence
by using viscosity approximation method. To be more precisely, they considered the
following iteration process:

Yn = ﬁnxn + (1 - ﬂn)Txn/

X1 = Onf (Xn) + (L= an)yn, n>1,

(1.14)
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where T is a nonexpansive mapping of C into itself and f is an f-contraction. They proved
the sequence {x,} defined by (1.14) strongly converges to a fixed point of T provided the
control sequences {a,} and {f,} satisfy appropriate conditions.

Very recently, motivated by Acedo and Xu [35], Kim and Xu [36], Marino and Xu [42],
and Yao et al. [41], Marino et al. [43] introduced a composite iteration scheme as follows:

Yn = ﬂnxn + (1 - ﬂn)Txnr

Xni1 = Ay f(xn) + (I =, A)y,, n2>1,

(1.15)

where T is a k-strictly pseudocontractive mapping on H, f is an f-contraction, and A is
a linear bounded strongly positive operator. They proved that the iterative scheme {x,}
defined by (1.15) converges to a fixed point of T, which is a unique solution of the variational
inequality (1.10) and is also the optimality condition for the minimization problem provided
{an} and {B,} are sequences in [0, 1] satifies the following control conditions:

(Cl) limy ooty =0, Xoorq =00, Doty |Ane1 — An| < 00,
(C2)0<k<pPn<e<lforalln>0and 37, |Bus1 — Pul < co.

Moreover, for finding a common element of the set of fixed points of a k-strictly
pseudocontractive nonself mapping and the set of solutions of an equilibrium problem in
a real Hilbert space, Liu [44] introduced the following iterative scheme:

x1 = x € C chosen arbitrarily,

1
O(un,y) + —(y —un,uy—x,) >0, VyeC,
( ) rn< > (1.16)

Yn = ﬂnun + (1 - ﬁn)Tunr

Xp+1 = aan(xn) + (I - anA)yn/ n>1,

where T is a k-strictly pseudocontractive mapping on H, f is an a-contraction and, A is a
linear bounded strongly positive operator. They proved that the iterative scheme {x,} defined
by (1.16) converges to a common element of F(T) N EP(©), which solves some variation
inequality problems provided {a,}, {f.}, and {r,} are sequences in [0, 1] satifies the control
conditions (C1) and the following conditions:

(C2) 0<k<Py<e<lforalln>1,lim,_ofn =¢ and 32 |fur1 — Pul < oo;
(C3) iminf, ooy >0, Doy [Tne1 — 1] <O.

All of the above bring us the following conjectures?

Question 1. (i) Could we weaken or remove the control condition Yo  [n1 — ay| < o0 on
parameter {a,} in (C1)?

(ii) Could we weaken or remove the control condition 3,2, [Bn+1 — fn] < oo on
parameter {f,} in (C2) and (C'2)?

(iii) Could we weaken or remove the control condition lim,, _, .., = € on the parameter
(Ba) in (C'2)?

(iv) Could we weaken the control condition (C3) on parameters {r,}?
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(v) Could we construct an iterative algorithm to approximate a common element of
F(T)nVI(B,C) nMEP(©, ¢)?

It is our purpose in this paper that we suggest and analyze an iterative scheme
for finding a common element of the set of fixed points of a k-strictly pseudocontractive
mapping, the set of solutions of a variational inequality and the set of solutions of a mixed
equilibrium problem in the framework of a real Hilbert space. Then we modify our iterative
scheme to finding a common element of the set of common fixed points of two finite families
of k-strictly pseudocontractive mappings, the set of solutions of a variational inequality and
the set of solutions of a mixed equilibrium problem. Application to optimization problems
which is one of the motivation in this paper is also given. The results in this paper generalize
and improve some well-known results in [17, 36, 41, 43, 44].

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (:,-) and let C be a closed
convex subset of H. We denote weak convergence and strong convergence by notations —
and —, respectively. It is well known that for any A € [0, 1],

A+ (1= Dy |* = Mxl?+ A=Wy -ra-D|lx-y|>, VxyeH. (2.1)

For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such that
|x - Pex|| < ||[x-y| VyeC. (2.2)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

(x -y, Pcx — Pcy) > || Pex - Pcy”2 (2.3)
for every x,y € H. Moreover, Pcx is characterized by the following properties: Pcx € C and

(x = Pcx,y — Pex) <0,

) 5 (2.4)
[l = ylI" = llx = Pex|* + ||y = Pex||",
forall x € H, y € C. Itis easy to see that the following is true:
ueVI(B,C) = u=Pc(u—-ABu), A>0. (2.5)

A set-valued mapping S : H — 2! is called monotone if for all x,iy € H, f € Sx and
g € Sy imply (x-vy, f — g) > 0. A monotone mapping S : H — 2! is maximal if the graph of
G(S) of S is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping S is maximal if and only if for (x, f) € HxH, (x—y, f —g) > 0 for
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every (y,g) € G(S) implies f € Sx. Let B be a monotone map of C into H and let Ncv be the
normal cone to C atv € C, thatis, Ncov = {w € H: (u—v,w) >0, Yu € C} and define

Sv = (2.6)

Buv+ Ncv, veC,
0, v¢C.

Then S is the maximal monotone and 0 € Sv if and only if v € VI(B, C); see [45].
The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 ([46]). Assume {a,} is a sequence of nonnegative real numbers such that

aps1 < (1 - an)an +o0, n2>1, (27)

where {a,} is a sequence in (0,1) and {0, } is a sequence in R such that
(1) X2 an = oo
(2) limsup, _,_(0x/a,) <0o0r 371 |0n| < o0.
Then lim,, _, xa, = 0.
Lemma 2.2 ([47]). Let {x,} and {1,,} be bounded sequences in a Banach space E and let {f,} be a

sequence in [0,1] with 0 < liminf, , f, < limsup, , B, < 1. Suppose x,1 = (1 = Bn)ly + Pnxn
for all integers n > 1 and limsup, _,__ (|Iln+1 = Lnll = |%ne1 — x4 |) < 0. Then, limy, _, o5 |1y — x| = 0.

Lemma 2.3 ([42, Proposition 2.1]). Assume that C is a closed convex subset of Hilbert space H,
andlet T : C — C be a self-mapping of C,

(i) if T is a k-strictly pseudocontractive mapping, then T satisfies the Lipscchitz condition

1
ITx-Ty| < =[x -yl Vxyec. 28)

(ii) if T is a k-strictly pseudocontractive mapping, then the mapping I — T is demiclosed(at 0).
That is, if {x, } is a sequence in C such that x, — X and (I-T)x, — 0, then (I-T)x = 0.

(iii) if T is a k-strictly pseudocontractive mapping, then the fixed point set F(T) of T is closed
and convex so that the projection Pr(ry is well defined.

Lemma 2.4 ([25]). Assume A is a strongly positive linear bounded operator on a Hilbert space H
with coefficient y > 0and 0 < p < ||A||™Y. Then ||I - pAl| < 1 - pY.

The following lemmas can be obtained from Acedo and Xu [35, Proposition 2.6] easily.

Lemma 2.5. Let H be a Hilbert space, C be a closed convex subset of H. For any integer N > 1,
assume that, foreach 1 <i < N, T; : C — H is a k;-strictly pseudocontractive mapping for some
0 < ki < 1. Assume that {&}~, is a positive sequence such that YN, & = 1. Then 3N, &T; is a
k-strictly pseudocontractive mapping with k = max{k; : 1 <i < N}.
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Lemma 2.6. Let (T;}~, and (&)Y, be as in Lemma 2.5. Suppose that {T;}~, has a common fixed
point in C. Then F(XN, &T;) = NN, F(T)).
For solving the mixed equilibrium problem, let us give the following assumptions for

a bifunction ©, ¢ and the set C:

(A1) ©(x,x) =0forall x € C;

(A2) O is monotone, that is, O(x,y) + O(y,x) <0 forall x,y € C;

(A3) for each x,y,z € C,lim;,0O(tz + (1 - t)x,y) < O(x, y);

(A4) for each x € C,y — O(x, y) is convex and lower semicontinuous;

(B1) For each x € H and r > 0, there exists a bounded subset D, C C, and y, € C such
that for any z € C \ Dy,

(= y) + 9lye) + 3 {ye—2,2- %) < 9(2), 29)

(B2) C is a bounded set.

By similar argument as in [48, proof of Lemma 2.3], we have the following result.

Lemma 2.7. Let C be a nonempty closed convex subset of H. Let © : C x C — R be a bifunction
satifies (A1)—(A4) and let ¢ : C — RU {+oo} be a proper lower semicontinuous and convex function.
Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping T, : H — C as
follows:

Tr(x) = {z €eC:0(z,y)+o(y) + %(y—z,z—x} >¢(z), Yy € C} (2.10)

forall x € H. Then, the following conditions hold:
(i) foreach x € H, T,(x) #0;

(ii) T, is single- valued;

(iii) T is firmly nonexpansive, that is, for any x,y € H, ||T,x - T,y||> < (T,x - T,y, x - y);
(iv) F(T;) = MEP(©, p);

(v) MEP(©, ¢) is closed and convex.

3. Main Results

In this section, we derive a strong convergence of an iterative algorithm which solves the
problem of finding a common element of the set of solutions of a mixed equilibrium problem,
the set of fixed points of a k-strictly pseudocontractive mapping of C into itself and the set
of the variational inequality for an a-inverse-strongly monotone mapping of C into H in a
Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let © be a bifunction
from C x C to R satifies (A1)—(A4) and ¢ : C — R U {+oo} be a proper lower semicontinuous and
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convex function. Let T be a k-strictly pseudocontractive mapping of C into itself. Let f be a contraction
of C into itself with coefficient p € (0,1), B an a-inverse-strongly monotone mapping of C into H
such that Q := F(T) N VI(B,C) N MEP(©, ¢) #(. Let A be a strongly bounded linear self-adjoint
operator with coefficient y > 0 and 0 < y < y/p. Assume that either (B1) or (B2) holds. Given the
sequences {an}, {Pn}, {6n}, {An}, and {r,} in [0,1] satisfyies the following conditions

(D1) limy, ooy =0, D7 @y = 0;

(D2) 0 < liminf, , 6, <limsup,_, 6, <1;

(D3)0<k< ﬂn <e<1foralln>0,and lim,_, o|fne1 — Pnl =

(D4) {A,} C [a,b] for some a,bwith0 < a < b < 2a, and hmnémmnﬂ -l =0;
)

(D5) lim 1nfn_,oorn >0, imy,— o|tus1 — 1al =

Let {x,}, {un}, and {y,} be sequences generated by
x1 = x € C chosen arbitrarily,

1
O (un, +o _(P(un) +— —Up, Uy —Xn) 20, Vye(,
(e, y) + () Ay ) y o)

Yn = ﬂnun + (1 - ﬂn)Tun/
X1 = Y f (Xn) + 6uXn + (1 = 6,)] — 4, A)Pc(yn — \uBy,), n>1.

Then {x,}, {u,}, and {y,} converge strongly to a point z € Q which is the unique solution of the
variational inequality

((A-yf)z,z-x)<0, VxeQ. (3.2)

Equivalently, one has z = Po(I — A+ yf)(z).

Proof. Since lim,,_, @, = 0, we may assume, without loss of generality, that a,, < || A||~! for all
n. By Lemma 2.4, we have ||I - a,A| <1 - a,y. We will assume that ||[I — A|| <1 -7. Observe
that Po(I — A + yf) is a contraction. Indeed, for all x,y € C, we have

[Pa(I-A+yf)(x)-Pa(I-A+yf)(W)| < [T-A+yf)(x)-T-A+yf) )]
<= Allflx =y + [l f ) = FW)]
<@=-Pllx-yll +rBllx -yl
=(1-0-rA)lx-vll

(3.3)

Since H is complete, there exists a unique element z € C such that z = Po(I - A+ yf)(z). On
the other hand, since A is a linear bounded self-adjoint operator, one has

[All = sup{[(Ax, x)[ : x € H, ||x|| = 1}. (3.4)
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Observing that
(=61 -a,A)x,x)=1-6, —a,(Ax,x)

>1-6, - an| Al (3.5)

20,

we obtain (1 - 6,)I — a, A is positive. It follows that
(1= 6u)I - ayAll =sup{{((1 -6, -a,A)x,x) : x € H,||x|| =1}

=sup{l-6,—a,(Ax,x):x€ H,||x|| =1} (3.6)

31_671_“71?‘

Next, we divide the proof into six steps as follows.

Step 1. First we prove that I — ,,B is nonexpansive. For all x,y € C and \,, € [0,2a],

1 = 4:B)x = (I = LBy |* = || (x = y) = 4u(Bx - By)||*
= x =yl - 20u(x -y, Bx - By) + 22| Bx - By|*  (3)

< Jlx =y II” + Ay — 20)[| Bx ~ By,

which implies that I — 1,,B is nonexpansive.
Step 2. Next we prove that {x,}, {y.}, {u.}, {Bx,}, {By.} and {Bu,} are bounded. Indeed,

pick any p € Q. From (2.5), we have p = Pc(p — A, Bp). Setting v,, = Pc(y» — A+By,), we obtain
from the nonexpansivity of I — A, B that

lon = pll = | Pc(yn = AnByn) = Pc(p = LuBp) ||

(3.8)
< [1(yn = aByn) = (p = uBp) || < [y - I
From (2.1), we have
=PI = 1BuCitn = p) + (1= Pu) (T = p) |
, ) (3.9)
< ﬂn”un _P” - (1 _ﬂn)ﬁnnun - Tunllz + (1 _ﬁn) ”Tun _P”
so, by (3.9) and the k-strict pseudocontractivity of T, it follows that
lyn =PI < llan = pII* = (1= Bu) (B = k)l = Tt
(3.10)

< Jlua =PI,
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that is,
[y =Pl < llwn =pll- (3.11)
Observe that
llen =PIl = Tr, 0 = Trpll < llxn = p- (3.12)
From (3.8), (3.11) and the last inequality, we have
lon =Pl < llx: = plI (3.13)

It follows that
”x"+1 _P” = ”‘X"Yf(xn) +0pxy + (1= 6n) — a, A)vy —P”
= [Jan(yf (xn) = Ap) + 64 (xn = p) + (1 = 62)] = ay A) (vu — p)||
< ||y f (xn) = Ap|| + 6u|2n = p| + (1= 6n — anY) [|on - p|

< any||f(xn) = fF(P) || + anlly f(p) = Ap|l + (1 = aa¥) || 2n ~ P (3.14)
= [1-au (¥ = yB)]llxn - pll + anllyf (p) - Ap||
= -~ 0)] - pl - ) LA

Y-yP

By simple induction, we have

, |lAp-vf ()|l } (3.15)

X5, — <maxjy [|x] — —
o=l < max{ 1, 1222
which gives that the sequence {x,} is bounded, so are {y,}, {u,}, {Bx.}, {By,}, and {Bu,}.

Step 3. Next we claim that
im [|x0 = x| = 0. (3.16)

Notice that

lon = vn-all = || P (Yn = 1uBYn) = Pc(Yn-1 = Au-1Byn-1) |
< || (¥ = 1uByn) = (¥n-1 = Ln1Byn-a) |
= || (¥n = AuByn) = (Yn-1 = AuByn-1) + (An1 = X) By | (3.17)
< || (yn = AuBYn) = (Y1 = 2aByaa) || + Anct = Aul || By |
< lyn = v [l + 14ns = Aal|| Byna ||
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Next, we define

V= (1= )T + Bl (3.18)

As shown in [19], from the k-strict pseudocontractivity of T and the conditions (D4), it
follows that V;, is a nonexpansive maping for which F(T) = F(V,,).
Observing that

Yn = Vi,
(3.19)

Yna = Vi,

we have

lyn = yntl| = 1 Vatn = Vicrttna |
<|[Vatn = Vb1 || + [Vttt = Vieruna ||
< Nlun = un-a || + [|Vattn-1 = Vi utna ||
= |lun — tna |l + || (Battn-1 + (1 = ) Tttna) = (Buatin + (1= Buo1) Tun—) ||

< ”un - un—l” + M, |ﬂn - ﬂn—l'z
(3.20)

where M, is an appropriate constant such that My > sup,.; {|[unl|, [ Tun||}. Substituting (3.20)
into (3.17), we obtain

|on — vnt| < ”]/n - ]/n—l” + A1 = -)Ln|”B]/n—1 ”

(3.21)
< lwn = upall + My |,6n - ﬁn—ll + A1 = /\n”lByn—l ”

On the other hand, from u,, = T, x, € dom ¢ and u,.1 =T,

o Xne1 € dom ¢, we note that

1
O(un,y) +9(y) — p(un) + r—(y —Up, Uy —Xn) 20 Yy eC, (3.22)
1
@(un+1/ y) + (P(y) - (zo(un+1) + o <y — Un+1, Un+1 — xn+1> >0 V]/ eC. (323)
n+

Putting v = 1,41 in (3.22) and y = u, in (3.23), we have

1
O(Up, Uns1) + Q(Uni1) — () + T—<un+1 — Uy, Uy — Xpn) 20,
! (3.24)

e(um—l/ un) + (P(un) - (P(un+1) + <un — Up+1, Un+1 — xn+1> > 0.

T+l
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So, from (A2) we have

Up —Xn Upyl — Xt
<un+1 — Up, - > > 0, (325)
n Tn+1
and hence
Tn
Uptl — Up, Up — Uil + Uyl — Xy — r_(un+1 - xn+1) > 0. (326)
n+1

Without loss of generality, let us assume that there exists a real number c such that r,, > ¢ > 0
for all n € N. Then, we have

r
|7 un”2 < <un+1 —Up, Xn+1 — Xp + <1 o )(un+l - xn+1)>

Tn+1
(3.27)
.
< It —un||{||xn+1 —tall # 1= e —xn+1||},
Tn+l
and hence
[ttns1 — v || < ||%ns1 — x| + p [Tns1 = Tlllttns1 = xXpaa |
1

" (3.28)

1
< xpsr = Xl + Elrn+1 — 1| My,
where M, = sup{||u, — x,| : n € N}. It follows from (3.21) and the last inequality that
1
lon = vn-1ll < [|xns1 — xall + M(zlrnﬂ — Tyl + |ﬂn — Pn- |> + Ay — ./\n|”Byn_1 ”, (3.29)

where M = max{Mj, M,}.
Define a sequence {I,} such that

Xps1 = (1= 6)ly + 6nxn, Vn > 1. (3.30)
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Then, we have

_ X2 — Oni1Xns1 _ Xn+l T OnXn

ln+1 - ln = 1- 6n+1 1= 6n
_ fxn+1Yf(xn+1) + (1= 6p1)] = aps1 A)vpin
- 1- 6n+1
_ any f(xn) + (1= 6n)] — anA)vy, (3.31)
1-06,
Ay Xy
=1 5:+1 (rf (enia) = Avpaa) + -6, (Avy =y f(xn))
+ Up+1 — Oy

It follows from (3.29) that

et = Lnll = 1120 = Xt ]| € —2 Iy f (e1) = Avpar |
1- 6n+1
+ 1 i‘n(s ”Avn - Yf(xn)” +|Uns1 = Onll = |20 = Xpaa |
n
An+l An (3:32)
< [ f (nt) = A || + | 4wy =y f ()|
1- 6n+1 1- 6"

1
+ M<E|rn+1 il + |- ﬁn_1|) et = Al By ||

Observing the conditions (D1), (D3), (D4), (D5), and taking the superior limitas n — oo, we
get

limsup ([l = Inll = 1Xn = xnsa]) 0. (3.33)

We can obtain lim,, . o, ||, — x| = 0 easily by Lemma 2.2. Observing that
Xpi1 — X = (1= 6,) (1 — xp), (3.34)
we obtain

lim [lxps1 = x| = 0. (3.35)

Hence (3.16) is proved.

Step 4. Next we prove that

lim [[Tv, -0, = 0. (3.36)
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(a) First we prove that lim, _, o ||x, — v,|| = 0. Observing that

Xn —Un = Xn = Xn+1 t Xn+1 — Op
= Xp — Xpi1 + AV f(Xn) + OnXy + ((1 = 64)] — apA)v, — 0, (3.37)
= Xy — Xni1 + U (Y f (xn) = AVn) + 64 (X — V),
we arrive at
(3.38)

(1= 6) (xn = vy) = X — X1 + An (Y f(x0) — Avy),

which implies that
(3.39)

(1 =06u)llxn — vull < [lxn = xpaa |l + an”Yf(xn) - Avn”-

Therefore, it follows from (3.16), (D1), and (D2) that
(3.40)

lim ||x,, — vy,]| = 0.
(b) Next, we will show that lim,, _, .|| By, — Bp|| = 0 for any p € Q. Observe that

||xn+1 - P”Z = ”((1 —6n)] —a,A) (v, - P) +6p(xn — P) + an(Yf(xn) - AP)HZ

= (0= 61 = 24 A) @y = p) + Bu(xu = P |I* + @2 Iy f () = Ap]|*
+ 26,0, (X0 — P, Y f (x2) = Ap) + 20, (1 = 6,)] — a4 A) (Vs — p), ¥ f (xn) — Ap)

< (1= 6= auT) [[ow = pl| + Bullen = pI)* + |y f () = Ap|”
+ 26, (X0 — P, Y £ (Xn) = Ap) + 2, (1 = 8)] — 2 A) (00 = p), Y f (xa) — Ap)
= (1= 8, = au))’[lon —p|* + 83 [l x. — I’
+2(1 = 6n = ax¥) 6ul|vn = pll |20 = p|| + cn
< (1= 85— an)) [lon — | + 83 [lx: — I’
+ (165 = a)u(on I+ [0 = p) +cn

= [ - @) =21 - @7) 6, + 8| [lon — pI|* + 8210 - pI|*

+ ((1=2:)80=8) (low=pIP + s =p) +c,
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= (1= ) lon=plI* = (1 = &P Bullwn - plI* + (1 = @¥)6ullxn — p|I* + e
= (1 - an]_/) (1 - 671 - an?)llvﬂ - P||2 + (1 - “n?)‘sn”xn _P“2 +Cn
< (1-a,7)(1 -6, - any) [||(yn = AuByn) = (p — XuBp) ||2]
+ (1= a)8ullxa - plF +cn
< (1= ) (1= 6, = 1) [lyn = PII* + 2o = 2) || By, - Bp||’]
+ (1= ay7)6al|xn — || + ca
< |lxa = p|I* + b(b - 20) || By, = Bp||* + c,
(3.41)
where
cn = ay|lvf () = Ap||* + 26uaul|x — Pl I f (xa) - Ap| 642
+ 20, || (1 = 61 = @A) (vn = p) ||y f (xn) = Ap]|-
This implies that
~b(b—24) || By = Bp||” < [|xn = p||* = |1 = p|* + <
(3.43)
< lxw — xn+1||(“x" —P” + ||x"+1 —P”) + Cn.
It is easy to see that lim,_, ,.c, = 0 and then from (3.16), we obtain
lim || By, - Bp|| = 0. (3.44)

(c) Next we prove that lim,, _, o || X, — || = 0. From (2.3), we have

20 =PI = | Pe(¥n — 2uBya) - Pe(p — 1uBp) |

< ((yn = AuByn) = (p = AuBp),vu = p)
1
= E{ ”(yn - )LnB]/n) - (P - /\nBP)HZ + ”vn _p”2
~ | = 2uBya) = (p = 1uBp) — (0u = p) |’}
1 2 2 2
< 5{llyn =PI + llow = pI* = | v = 20) = 1u(Bys ~ Bp) |}
1

= 5{ lva=pIP+ l0a=PI = lva=onl*+ 22 (v~ s, Byu~Bp)~3| By, - Bp||*},
(3.45)
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so, we obtain
1on = pI” < lyn = pI* = 1y = 0all” + 20(¥s = 0, By~ Bp) = X | By ~ Bp|".  (346)
It follows that
lenr = plI* < (1= @) (1= 60 = ) [on = I + (1= )6l = I +
< (1-a,§) (1- 6, - a,7)
% [llyn=pII* = lyn = oall* + 200(yn = ©n, Byw — Bp) = 3By, - Bp|’]
b (- aP)6ull - plF +cn
< (1= atny) || - P”2 = (1= ) (1= 6 = atuY) ||y - Uﬂ”2
+ 245 (1= @ny) (1= 6 = anY) [lyn = oul|[| By - Bp|

~22(1 - au¥) (1 = 64 — au¥) || By = Bp||” + cu,
(3.47)

which implies that

(1= @n¥) (1= 64 = V) ||y = 0al|* < [|200 = P|I* = |01 = p||*
+ 24, (1= a,¥) (1= 65 = Y |y — 0a ||| By — Bp||
= 2 (1= any) (1= 6, = auY) | Byn = Bp||* + cu
< lxen = xpat | (fl2en = I + (|21 = pII)
+ 245 (1= a¥) (1 = 85 = au¥) |yn — va ||| By - Bp||
= 2 (1 - a¥) (1= 6, — au¥) | Byn = Bp||* + ca.
(3.48)

Applying (3.16), (3.44), limsup,, _, 6, <1,and lim, _, ¢, = 0 to the last inequality, we obtain
that

im [|y, = va]| = 0. (3.49)
It follows from (3.40) and (3.49) that
ln = |l < llxn = nll + ||on = yu|| — 0 as n — co. (3.50)

Then it follows from (D1), (3.49) and (3.50) that

|1 = Yl = llan (v f (x0) = Ayn) + 60 (2 = yn) + (1 = 6)T = n A) (00 = ) ||

- (3.51)
< aul|yf(xn) = Ayal| + 6nl|xn = yu |l + (1= 60 = n¥) [[0n = yu|| — 0.
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For any p € Q, we have from Lemma 2.7,

”un - P”z = ”Trnxn - Tr,,p |2 < <Trnxn - Trnp/ Xn — P>

. i : (3.52)
= (n = p,xu = p) = 5 (lun = pI* + = pII” = 10 = ).

Hence

N[t = P11 < (|20 =PI = 1130 = 0l (3.53)

From (3.41) we observe that

s =PI < (1= 60— ) o~ p + 8210 I
+2(1 -6, - ) 6ullow — p[1xn ~ pl| + s
< (1= 6n = ) |t = p||* + 63| — pI”
+2(1 =6, — ayY)6n|un — p||xn —pll + cu
< (1= 60— ) [en — p|* + 820 ~ |
+ (1= 60— )6 ([|un = pI* + [l = pII”) + cn
= ((1-a7)* = 26,(1 = @) + 63 ) [[un = p|I* + 62|~
+ (=) 8l = pI + 100 = 1) =8 (lew = I + 1o = pI) +
= (1= @)’ ~26,(1 - auT) + 83 + (1= a7)6, ~ 82 [1en — p|I* + 62120~ pII
+ (1= @) 6ul|2n = p|I* = 63 |xn = p|I” + ca
= (1= @) = 6,1~ ) ) e =PI + (1= 27600~ > + s
< (1= ) (1= @y = 62) (10 = pII* = I = wal®) + (1 = @F)6nl| 0 = p|* + €2
= (1= @)% =PI = (1 = @) (1 = @ = 62) 10 — el +
= (1=2a7 + (@)*) en = pI* = (1= @¥) (1 - @ = 6) 12w = ] + s

< lxa = pI* + () llw = pII” = (1= ) (1= ¥ = 60) ot = tal* + .
(3.54)
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Hence
(1= ) (1= ¥ = B0l = wnll® < |0 = pII” = otwr = plI* + () [l = I +
= (lxn =Pl = lloenea = 1) Clloen =PIl + 1201 =[]
@)l pIP
< llatw = 2wt [ ([l = Pl + |1 = pII)

+ (@)’ [ = pII” + o

(3.55)
Using (D1), (D2) and (3.16), we obtain
Jim [|u, — x| = 0. (3.56)
(d) Next we prove that lim,, _, ;||x, — Tx,|| = 0. Using Lemma 2.3 (i), we have
”Txn - xn” < ||xn - xn+1” + ”xn+1 - yn” + ”yn - Txn”
< ”xn - xn+l” + ”xn+l - yn” +,Bn||un - Txn” + (1 —ﬂn)||Tun - Tan
(3.57)

< ||xn - xn+1” + ”xn+1 - yn” + ,Bn”un - xn” + ﬂn”xn - Txn”
1+k
+ (1 - ﬂn)m”un — X4,
which implies that

(1 - ﬂn)”Txn = x|l < %0 = Xpsa || + ||xn+1 - yn||

(3.58)
# (T Au(1- 1o ) Yl = 3all =0 a5 — oo

1-k 1-k
By (3.16), (3.51), and (3.56), we have
,}LII;:OHTX" —xn|| =0. (3.59)

Observing that

1xn1 = Onll < ||an(y f(xn) = AVp) + 8 (0 — vn) ||
(3.60)
< a"”Yf(xn) _Avn” +5n||xn —"(Jn” — 0 asn— oo.

Using (3.40) and the last inequality, we obtain that

llxn = Onll < |0 = Xps1ll + |Xns1 —onll — 0 as n— oo (3.61)
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From Lemma 2.3(i), (3.59), and (3.61), we have

ITon = vnll < I Ton = Txull + [ITxn = x|l + || — vl

< <1+ 1ti>||vn—xn||+||Txn—xn||—>O as n — oo. (362
Hence (3.36) is proved.
Step 5. We claim that
liI:lj::p((A -yf)z,z—-v,) <O0. (3.63)
We choose a subsequence {vy,} of {v,} such that
Jim (A= 7f)z,2 - 0,) = imsup( (A - )z, 2~ o). 64)

n— oo

Since {vy,} is bounded, there exists a subsequence {v""f } of {v,,} which converges weakly to
geC.
Next, we show that g € Q := F(T) n VI(B, C) n MEP(©, p).

(a) We first show g € F(T). In fact, using Lemma 2.3(ii) and (3.36), we obtain that

q € F(T).
(b) Next, we prove q € VI(B,C). For this purpose, let S be the maximal monotone
mapping defined by (2.6):
Bv+ Ncv, veC;
Sv = (3.65)
0, v¢gC.

For any given (v, w) € G(S), hence w — Bv € N¢(v). Since v, € C, we have

(v—-v,,w-Bv) >0. (3.66)

On the other hand, from v, = Pc(y, — 1,By,), we have
(v = 0n,0n = (Yn — uByn)) >0 (3.67)

that is,

<v o, U")L_ Yn | Byn> > 0. (3.68)
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Therefore, we obtian

On; = Yn
1,

i

(v —vp, w) > (v—-"2vy,Bv) >(v-"v,,Bv) - <v—vni,

B <U — Un,, BU = By, — Um.l_ - >
0

i

+ B]/n,->

= (v = vy, Bv — Buy,) + (v — vy, Buy, — Byy,) — <v — Uy, v"")t_ Yu > (3.69)

i

> <U ~ Oni»s an,-> - <7) ~ Ony»y U"i): I + Bl‘/ni>
n

i

A

i

Noting that ||v,, — y,,]| — 0asi — oo and B is Lipschitz continuous, hence from (3.69), we
obtain

(v-q,w)>0. (3.70)

Since S is maximal monotone, we have g € S710, and hence g € VI(B, C).

(c) We show g € MEP (O, ¢). In fact, by u,, = T}, x, € dom ¢, and we have,

O(un,v) +9(y) — p(un) + %(y —Up, Uy —Xy) 20, VyeC. (3.71)
n
From (A2), we also have
1
o (y) - p(un) + r—(y —Up, Up — Xn) > O(y,uy), VyeC, (3.72)

and hence

Up, — Xn,
o(y) — @(un) + <y —tn, — > >0O(y,un), YyeC (3.73)

ni
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From |lu, — x4|| — 0, ||[x, —Tv,|| — 0, and ||[Tv, — v,|| — 0, we get u,, — g. It follows from
(A4), (un, — xpn,)/1n, — 0, and the lower semicontinuous of ¢ that

Oy, z) +9(q) —¢(y) <0 VyeC. (3.74)

FortwithO<t<landy e C, lety; =ty+(1-t)q.Since y € C and g € C, we have y; € C and
hence ©(y;, q) + ¢(q) — ¢(y:) < 0. So, from (A1) and (A4) and the convexity of ¢, we have

0=0y,yt) +o(yi) — 9 (y1)
<tO(yr,y) + (1-1)O(y1,q) + tp(y) + (1 -1)p(q) — ¢(yr) (3.75)
<Oy y) +o(y) —o(wr)]-

Dividing by t, we have
O y) +9(y) —9(y) 20, VyeC (3.76)
Letting t — 0, it follows from the weakly semicontinuity of ¢ that

O(qy) +9(y) -¢(q) 20, VYyeC. (3.77)

Hence g € MEP(O, ). Therefore, the conclusion g € Q := F(T) n VI(B,C) n MEP(©, ¢) is
proved.
Consequently

limsup((A-yf)z,z-0,) = lim (A~ )z 2-0,) = (A= 1)z 2-0) <0 (375

n—oo
as required. This together with (3.40) implies that

limsup(yf(z) - Az, x, — z) = limsup(yf(z) — Az, (xn — Vn) + (v; — 2))

n— oo n—oo

<limsup(yf(z) - Az, v, - z) (3.79)

n—oo

<0.
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Step 6. Finally, we show that x, — z, y, — z, u, — z.Indeed, we note that

%1 = 2II* =

IN

IN

<

lletny £ (3n) + 600 + (1 = 6,)I = ay A)vy - z||°
[[((1 = 6 = awA) (0 = 2) + 64 (xn — 2) + au(y f (xa) - A2) |*
1((1 = 61 = @A) vy = 2) + 6u(xn — 2)|* + 2|y f (xn) - Az]|?
+ 26nan<xn -z, 7f(xy) - Az)
+ 20, (1= 62) =y A) (0 — 2), Y f (xa) — Az)
(1= 6 = @aD)[vn = 2l + Eullxa — 2I1)° + a3 ||y f (xa) — Az
+ 26,0,y (Xn — 2, f (xn) — f(2)) + 2600 (xn — 2,7 f (2) — A(2))
+2(1=6p)yan(vn — z, f (xn) — f(2)) +2(1 = 6p)an{vy — 2,7 f(z) — AzZ)
-2a%(A(v, - z),7f(z) - Az)
(1= 65 — ) l1n = 2l + Ballx = 211)* + @2 ||y £ (xa) = A2)|[*
+ 26,y || X0 — Z|* + 26,00 (x — 2,y f(q) — AZ)
+2(1 = &) yanal|x, — z|* + 2(1 = 8,)an{vn — 2,y f (z) — AzZ)
~202(A(v, - 2),Yf(q) - Az)
(1 - aF)? + 26,y +2(1 = 6)yana] v — 21 + @2l f () - Az
+ 26,00 (%0 — 2,V f(2) — AZ) + 2(1 = 6p)an(vn — 2,7 f(2) — AzZ)
- 22 (A(vu - ), 7f(2) - Az)
[1-2(F - any) ] 12 = 2117 + P2l = 211 + 2|y f () - Az]|?
+26p0(xn — 2,y f(z) — Az) + 2(1 = 6p)an(vn — 2,7 f(2) — Az)
+2a%)| Ao, - 2) |||y f(2) - Az
[1-2(F - any) ] I = 21
+an{ o (Pl = 21 + Iy f () - Az
+ 2l A@ - 2)IYf(2) - Azl]) +26, (x, - 2,1 f(2) - Az)

+2(1-6,)(vn - 2,y f(2) - Az) }
(3.80)

Since {x,}, {f(x,)}, and {v,} are bounded, we can take a constant K > 0 such that

Pllxw = 217 + |y f () = Az||* + 2| A0, - 2) |y f(2) - Az|| < K (3.81)
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for all n > 0. It then follows that
I2tn1 = 2I* < [1=2(F - any) ] 0 = 2II* + anoy, (3.82)

where
On =26,(xn — 2,yf(2) = Az) + 2(1 - 6,)(vn — 2,y f (2) — Az) + a,K (3.83)

Using (D1), and (3.79), we get limsup, , 6, < 0. Now applying Lemma 2.1 to (3.82), we
conclude that x, — z. From ||x, — y,|| — Oand ||x, — u,|| — 0, we obtainy, — z,u, — z.
The proof is now complete.

O

By Theorem 3.1, we can obtain some new and interesting strong convergence
theorems. Now we give some examples as follows.
Setting ¢ = 0 in Theorem 3.1, we have the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let © be a bifunction
from C x C to R satifies (A1)—(A4). Let T be a k-strictly pseudocontractive mapping of C into
itself. Let f be a contraction of C into itself with coefficient p € (0,1), B an a-inverse-strongly
monotone mapping of C into H such that Q := F(T) N VI(B,C) N EP(®) #0. Let A be a strongly
bounded linear self-adjoint operator with coefficient y > 0 and 0 < y < y/p. Given the sequences
{an}, {Bn}, {60}, {Au}, and {r,} in [0,1] satisfies the following conditions

(D1) limy, o, =0, D72 @y = 0;
(D2) 0 < liminf, _, 6, < limsup, 6, <1;
(D3) 0<k <Py <e<1foralln>0,and limy,_,o|Bns1 — Pn] = 0;
(D4) {A,} C [a,b] for some a,bwith0 < a < b <2a, and limy, _, 5| Ap1 — Ay =0
(D5) liminf, _, 7, > 0,lim,, _, oo |r;41 — 72| = 0.
Let {x,}, {u,}, and {y,} be sequences generated by

x1 = x € C chosen arbitrarily,

1
O(un,y) + —(y —tn, un—x,) 20, VyeC,
T (3.84)

Yn = ﬂnun + (1 - ﬁn)Tunr
X1 = Y f (Xn) + 6u%n + (1 = 6,)] = 0y A)Pc(yn — \nByy), n>1.

Then {x,},{u,} and {y,} converge strongly to a point z € Q which is the unique solution of the
variational inequality

((A-yf)z,z-x) <0, VxeQ. (3.85)

Equivalently, one has z = Po(I - A+ yf)(z).
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Setting © = 0, r, = 1 and ¢ = 0 in Theorem 3.1, we have x,, = u,, then the following
result is obtained.

Corollary 3.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a k-strictly
pseudocontractive mapping of C into itself. Let f be a contraction of C into itself with coefficient p €
(0,1), B an a-inverse-strongly monotone mapping of C into H such that Q := F(T) N VI(B,C) #0.
Let Abea strongly bounded linear self-adjoint operator with coefficient’y > 0and 0 <y <y /p. Given
the sequences {a,}, {Pn}, } and {A,} in [0, 1] satifies the following conditions

(D1) limy, o, =0, D07 ay = 00;

(D2) 0 <liminf, , 6, < limsup,_, 6, <1;

(D3) 0<k < Pp<e<lforalln>0,and limy,_,o|Bns1 — Pnl = 0;

(D4) {1} C [a,b] for some a,b with0 < a < b < 2a and lim, _, | Ay41 — Ly = 0.

Let {x,,} and {y,} be sequences generated by

x1 = x € C chosen arbitrarily,
Yn = Puxn + (1= ) Txn, (3.86)
X1 = Ay f (%) + Ep2n + (1 = 64)1 — 4, A)Pc(yn — AnByn), n>1.

Then {x,} and {y,} converge strongly to a point z € Q which is the unique solution of the variational
inequality

((A-yf)z,z-x)<0, VxeQ. (3.87)

Equivalently, one has z = Po(I - A+ yf)(2).

Remark 3.4. (i) Since the conditions (C1) and (C2) have been weakened by the conditions
(D1) and (D3) respectively. Theorem 3.1 and Corollary 3.2 generalize and improve [44,
Theorem 3.2].

(ii) We can remove the control condition lim,_, .3, = € on the parameter {f3,} in (C'2).

(iii) Since the conditions (C1) and (C2) have been weakened by the conditions (D1)
and (D3) respectively. Theorem 3.1 and Corollary 3.3 generalize and improve [43, Theorem
2.1].

Setting ¢ = 0, , = 0, B = 0 and T is nonexpansive in Theorem 3.1, we have the
following result.

Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let © be a bifunction
from C x C to R satifies (A1)-(A4). Let T be a nonexpansive mapping of C into itself. Let f be a
contraction of C into itself with coefficient p € (0,1) such that Q = F(T) N EP(©) #0. Let A be
a strongly bounded linear self-adjoint operator with coefficient y > 0 and 0 < y < y/p. Given the
sequences {ay}, {6, ), and {r,} in [0, 1] satifies the following conditions

(D1) limy, oy, =0, >7q @y = 0;
(D2) 0 <liminf, _, 6, <limsup, , 6, <1;

(D3) liminf, 7, > 0,lim, _, |11 — 74| = 0.
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Let {x,}, {u,}, and {y,} be sequences generated by

x1 = x € C chosen arbitrarily,
O(un,y) + rl<y —Up,Un = Xn) 20, YyeC, (3.88)
Xn+1 = nY f(Xn) + 6nxn + (1 = 64)I — 2, A)Tu,, n>1.

Then {x,}, {u,} and {y,} converge strongly to a point z € Q which is the unique solution of the
variational inequality

((A-yf)z,z-x) <0, VxeQ. (3.89)

Equivalently, one has z = Po(I — A+ yf)(z).

Remark 3.6. Since the conditions Y77, |y41 — ay| < oo and X2, [rue1 — ] < oo have been
weakened by the conditions lim,, _, oo |1 — ay| = 0 and lim,, , o, |ry+1 — 74| = O, respectively.
Hence Corollary 3.5 generalize, extend and improve [17, Theorem 3.3].

4. Applications

First, we will utilize the results presented in this paper to study the following optimization
problem:

r;eigw(y), (4.1)

where C is a nonempty bounded closed convex subset of a Hilbert space and ¢ : C — RU
{+00} is a proper convex and lower semicontinuous function. We denote by Argmin(¢p) the
set of solutions in (4.1). Let ©(x,y) = Oforallx,y € C,y =1, A=I, T =1and f = x
in Theorem 3.1, then MEP(O, ¢) = Argmin(gp). It follows from Theorem 3.1 that the iterative
sequence {x,}is defined by

x1 = x € C chosen arbitrarily,
. 1 2
w, = argmin{ (v) + 5~y - %}, 42
yeC n

Xps1 = o X + Oy + (1= 6, — ay) Pc(uy — AyBuy), n>1,

where {a,}, {6,} C [0,1], {A4}, {rn} C (0,1) satisfy the conditions (D1)—-(D5) in Theorem 3.1.
Then the sequence {x,} converges strongly to a solution z = Pyi(a,c)nArgmin(p) X-
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LetO(x,y) =0forallx,ye C,T=1,y=1, A=1I, f:=xand B =0in Theorem 3.1,
then MEP(©, ¢) = Argmin(¢p). It follows from Theorem 3.1 that the iterative sequence {x,}
defined by

x1 = x € C chosen arbitrarily,
. 1 2
u, = argminy ¢(y) + ?”y — x| ¢ (4.3)
yeC n
Xpi1 = X + Opxy + (1 =6, —ay)u,, Yn>1,

where {a,},{6,} € [0,1], and {r,} C (0,00) satisfy the conditions (D1), (D2) and (D5),
respectively in Theorem 3.1. Then the sequence {x,} converges strongly to a solution z =
PArgmin(qJ)x'

We remark that the algorithms (4.2) and (4.3) are variants of the proximal method for
optimization problems introduced and studied by Martinet [49], Rockafellar [45], Ferris [50]
and many others.

Next, we give the strong convergence theorem for finding a common element of the
set of common fixed point of a finite family of strictly pseudocontractive mappings, the
set of solutions of the variational inequality problem and the set of solutions of the mixed
equilibrium problem in a Hilbert space.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let © be a bifunction
from C x C to R satifies (A1)—(A4) and ¢ : C — R U {+oo} be a proper lower semicontinuous
and convex function. For each i = 1,2,..., N, let T; be a k;-strictly pseudocontractive mapping of
C into itself for some 0 < k; < 1. Let f be a contraction of C into itself with coefficient p € (0,1),
B an a—inverse-strongly monotone mapping of C into H such that Q = NN, F(T;) n VI(B,C) N
MEP(©, ¢) #0. Let A be a strongly bounded linear self-adjoint operator with coeﬁﬁ'cient 7 > 0 and
0 <y < y/P. Assume that either (B1) or (B2) holds. Given the sequences {an}, {fn}, {6n}, {An}
and {ry,} in [0, 1] satifies the following conditions

(D1) limy, o, =0, D07 ay = 00;

(D2) 0 < liminf, .6, < limsup, 6, <1;

(D3) 0< max{ki 2i=1,2,..., N} <Py <p<1foralln>0,and lim,_, |fn+1 — Pul = 0;

(D4) {An} C [a,b] for some a,bwith0 < a <b < 2a and lim,, _, 5| 4ps1 — Ly = 0;

)

(D5) lim 1nfn_>oorn >0, limy,— 5|ns1 — 7| = 0.

Let {x,}, {un} and {y,} be sequences generated by
xo = x € C chosen arbitrarily,

1
O(un y) +9(y) = ) + = (y = st = X2) 20, Vy €C,
N (4.4)
Yn = ﬂnun + (1 - ﬂn)ZﬂiTium
i=1

X1 = Y f (Xn) + 60X + (1 = 6,)] — 4y A)Pc(yn — \yBy,), n>1,
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where n; is a positive constant such that 11 + 12 + --- + yn = 1. Then both {x,}, {u,} and {y,}
converge strongly to a point z € Q which is the unique solution of the variational inequality

((A-yf)z,z-x)<0, xeQ. (4.5)

Equivalently, one has z = Po(I - A+ yf)(z).

Proof. Let {1;}Y; € (0,1) such that 3%, #; = 1 and define Tx = 3V, #;Tix. By Lemmas 2.5 and
2.6, we conclude that T : C — Cis a k-strictly pseudocontractive mapping with k = max{k; :
1<i<N}and F(T) = F(Zﬁl nil;) = mf.‘le(Ti). From Theorem 3.1, we can obtain the desired
conclusion easily. i

Finally, we will apply the main results to the problem for finding a common element
of the set of fixed points of two finite families of k-strictly pseudocontractive mappings, the
set of solutions of the variational inequality and the set of solutions of the mixed equilibrium
problem.

Let S; : C — H be a k;-strictly pseudocontractive mapping for some 0 < k; < 1. We
define a mapping B = I - SN &S;: C — H where { §,~}f\:]1 is a positive sequence such that
SN, & =1, then Bis a (1 - k)/2-inverse-strongly monotone mapping with k = max{k; : 1 <
i < N}. In fact, from Lemma 2.5, we have

2 2

N N N N
Zgisix - Z;lSly < ||x - y”Z +k <I - Z§i5i>x - <I - Z§151>y ,  Vx, VAS C.
i=1 i=1 i=1 i=1
(4.6)
That is
11 - B)x - (1 - Byy||* < ||x - y||* + k|| Bx - By]|". (4.7)
On the other hand
|- Byx— (1= Byl = llx— vl ~2(x -y, Bx—By) + [Bx~By|’.  (48)
Hence we have
1-k 2
(x-vy,Bx-By) > T”Bx—By” . (4.9)

This shows that B is (1 — k) /2-inverse-strongly monotone.

Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let © be a bifunction
from C x C to R satifies (A1)—(A4) and ¢ : C — R U {+oo} be a proper lower semicontinuous and
convex function. Let {T1,T», ..., Tn'} be a finite family of k! -strictly pseudocontractive mapping of
C into itself and {S1,S,,...,Sn} be a finite family of k?-strictly pseudocontractive mapping of C
into H for some kI, kiS € (0,1) such that Q := ﬂf\:]lF(Ti) N ﬂf-\:]lF(Si) NMEP(©, ) #0. Let f bea
contraction of C into itself with coefficient p € (0,1). Let A be a strongly bounded linear self-adjoint
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operator with coefficient y > 0 and 0 < y < y/p. Assume that either (B1) or (B2) holds. Given the
sequences {a,}, {Pn}, {60}, {An} and {r,} in [0,1] satifies the following conditions

(D1) limy, o, =0, >2q n = 0;

(D2) 0 <liminf, 6, <limsup, 6, <1;

(D3) 0 < maX1§ist1T <SPp<Pp<land0 < max1§i§NkiS <Pp<P<lforalln>0,and

limy, ool st = Pul = 0;
(D4) {A,} C [a,b] for some a,bwith0 < a < b <2a and lim, _, | Ays1 — An| = 0;
(D5) liminf, 7, >0, lim, |71 — 7| = 0.

Let {x,}, {u,} and {y,} be sequences generated by

x1 = x € C chosen arbitrarily,

1
O(un, y) +@(y) — p(un) + r—(y —Up, Uy —Xn) 20, YyeC,

N (4.10)
Yn = ﬁnun + (1 - ﬁn)ZﬂiTiunr
i=1

N
Xn+l = aan(xn) + 6nxn + ((1 - 6n)1 - anA)PC <(1 - -/\n)yn - -)antgisiyn>/ n2z 1/

i=1

where n; and & are positive constants such that YN 1 = 1 and YV, & = 1, respectively. Then
{xn}, {un}and {y,} converge strongly to a point z € Q which is the unique solution of the variational
inequality

((A-yf)z,z-x)<0, xeQ. (4.11)

Equivalently, we have z = Po(I — A +y f)(2).

Proof. Taking B = [ — XN, &S; : C — H in Theorem 4.1, we know that B : C — H is a-
inverse strongly monotone with « = (1-k)/2. Hence, B is a monotone L-Lipschitz continuous
mapping with L = 2/(1 - kT). From Lemma 2.6, we know that 3N, &S, is a k-strictly
pseudocontractive mapping with k” = max{k] : 1 <i < N} and then F (SN, &S;) = VI(B,C)
by Lemma 2.6. Observe that

N
Pc(Yn — AByy) = Pc <(1 ~ )Y — AnZgisiyn> : (4.12)
i=1
The conclusion can be obtained from Theorem 4.1. O
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