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1. Introduction

Metric spaces are playing an increasing role in mathematics and the applied sciences.
Over the past two decades the development of fixed point theory in metric spaces has

attracted considerable attention due to numerous applications in areas such as variational
and linear inequalities, optimization, and approximation theory.

Different generalizations of the notion of a metric space have been proposed by Gahler
[1, 2] and by Dhage [3, 4]. However, HA et al. [5] have pointed out that the results obtained
by Gahler for his 2 metrics are independent, rather than generalizations, of the corresponding
results in metric spaces, while in [6]the current authors have pointed out that Dhage’s notion
of a D-metric space is fundamentally flawed and most of the results claimed by Dhage and
others are invalid.

In 2003 we introduced a more appropriate and robust notion of a generalized metric
space as follows.

Definition 1.1 (see [7]). Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), forall x, y ∈ X, with x /=y,
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(G3) G(x, x, y) ≤ G(x, y, z), forall x, y, z ∈ X, with z/=y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically a G-metric on X, and
the pair (X,G) is called a G-metric space.

Example 1.2 (see [7]). Let (X, d) be a usual metric space, then (X,Gs) and (X,Gm) areG-metric
space, where

Gs

(
x, y, z

)
= d

(
x, y

)
+ d

(
y, z

)
+ d(x, z), ∀x, y, z ∈ X,

Gm

(
x, y, z

)
= max

{
d
(
x, y

)
, d

(
y, z

)
, d(x, z)

}
, ∀x, y, z ∈ X.

(1.1)

Wenow recall some of the basic concepts and results forG-metric spaces that were introduced
in ([7]).

Definition 1.3. Let (X,G) be a G-metric space, let (xn) be a sequence of points of X, we say
that (xn) is G-convergent to x if limn,m→∞G(x, xn, xm) = 0; that is, for any ε > 0, there exists
N ∈ N such that G(x, xn, xm) < ε, for all n,m ≥ N (throughout this paper we mean by N the

set of all natural numbers). We refer to x as the limit of the sequence (xn) and write xn
(G)−−−→ x.

Proposition 1.4. Let (X,G) be a G-metric space then the following are equivalent.

(1) (xn) is G-convergent to x.

(2) G(xn, xn, x) → 0, as n → ∞.

(3) G(xn, x, x) → 0, as n → ∞.

Definition 1.5. Let (X,G) be a G-metric space, a sequence (xn) is called G-Cauchy if given
ε > 0, there isN ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N that is if G(xn, xm, xl) → 0
as n,m, l → ∞.

Proposition 1.6. In a G-metric space (X,G), the following are equivalent.

(1) The sequence (xn) is G-Cauchy.

(2) For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ N.

Definition 1.7. Let (X,G) and (X′, G′) be G-metric spaces and let f : (X,G) → (X′, G′) be a
function, then f is said to beG-continuous at a pointa ∈ X if given ε > 0, there exists δ > 0 such
that x, y ∈ X; G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A function f is G-continuous
on X if and only if it is G-continuous at all a ∈ X.

Proposition 1.8. Let (X,G), (X′, G′) be G-metric spaces, then a function f : X → X′ is G-
continuous at a point x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever
(xn) is G-convergent to x, (f(xn)) is G-convergent to f(x).

Proposition 1.9. Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly continuous
in all three of its variables.
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Definition 1.10. AG-metric space(X,G) is said to beG-complete (or a completeG-metric space)
if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

2. The Main Results

We begin with the following theorem.

Theorem 2.1. Let (X,G) be a complete G-metric space and let T : X → X be a mapping which
satisfies the following condition, for all x, y, z ∈ X,

G
(
T(x), T

(
y
)
, T(z)

) ≤ kmax
{
G
(
x, y, z

)
, G(x, T(x), T(x)), G

(
y, T

(
y
)
, T

(
y
))
,

G(z, T(z), T(z)), G
(
x, T

(
y
)
, T

(
y
))
, G

(
y, T(z), T(z)

)
, G(z, T(x), T(x))

}
,

(2.1)

where k ∈ [0, 1/2). Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. Suppose that T satisfies condition (2.1), let x0 ∈ X be an arbitrary point, and define the
sequence (xn) by xn = Tn(x0), then by (2.1), we have

G(xn, xn+1, xn+1) ≤ kmax{G(xn−1, xn, xn), G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)} (2.2)

so,

G(xn, xn+1, xn+1) ≤ kmax{G(xn−1, xn+1, xn+1), G(xn−1, xn, xn)}. (2.3)

But, by (G5), we have

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1). (2.4)

So, (2.3) becomes

G(xn,xn+1,xn+1) ≤ kmax{G(xn−1, xn, xn) +G(xn, xn+1, xn+1), G(xn−1, xn, xn)}. (2.5)

So, it must be the case that

G(xn, xn+1, xn+1) ≤ k{G(xn−1, xn, xn) +G(xn, xn+1, xn+1)}, (2.6)

which implies

G(xn, xn+1, xn+1) ≤ k

1 − k
G(xn−1, xn, xn). (2.7)
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Let q = k/1 − k, then q < 1 and by repeated application of (2.7), we have

G(xn, xn+1, xn+1) ≤ qnG(x0, x1, x1). (2.8)

Then, for all n,m ∈ N, n < m, we have by repeated use of the rectangle inequality and (2.8)
that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · · +G(xm−1, xm, xm)

≤
(
qn + qn+1 + · · · + qm−1

)
G(x0, x1, x1)

≤ qn

1 − q
G(x0, x1, x1).

(2.9)

Then, lim G(xn, xm, xm) = 0, as n,m → ∞, since lim qn/1 − q G(x0, x1, x1) = 0, as n,m →
∞. For n,m, l ∈ N (G5) implies that G(xn, xm, xl) ≤ G(xn, xm, xm) + G(xl, xm, xm), taking limit
as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is G-Cauchy a sequence. By completeness
of (X,G), there exists u ∈ X such that (xn) is G-converges to u. Suppose that T(u)/=u, then

G(xn, T(u), T(u)) ≤ kmax

{
G(xn−1, u, u), G(xn−1, xn, xn), G(u, T(u), T(u))

G(xn−1, T(u), T(u)), G(u, xn, xn)

}

, (2.10)

taking the limit as n → ∞, and using the fact that the function G is continuous on its
variables, we have G(u, T(u), T(u)) ≤ kG(u, T(u), T(u)), which is a contradiction since 0 ≤
k < 1/2. So, u = T(u). To prove uniqueness, suppose that v /=u is such that T(v) = v, then
(2.1) implies thatG(u, v, v) ≤ kmax{G(u, v, v), G(v, u, u)}, thusG(u, v, v) ≤ kG(v, u, u) again
by the same argument we will find G(v, u, u) ≤ kG(u, v, v), thus

G(u, v, v) ≤ k2G(u, v, v) (2.11)

which implies that u = v, since 0 ≤ k < 1/2. To see that T is G-continuous at u, let (yn) ⊆ X be
a sequence such that lim(yn) = u, then

G
(
T
(
yn

)
, T(u), T

(
yn

)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G
(
yn, u, yn

)
, G

(
yn, T

(
yn

)
, T

(
yn

))
,

G(u, T(u), T(u)), G
(
yn, T(u), T(u)

)
,

G
(
u, T

(
yn

)
, T

(
yn

))

⎫
⎪⎪⎬

⎪⎪⎭
, (2.12)

and we deduce that

G
(
T
(
yn

)
, u, T

(
yn

)) ≤ kmax

{
G
(
yn, u, yn

)
, G

(
yn, T

(
yn

)
, T

(
yn

))
,

G
(
yn, u, u

)

}

(2.13)
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but (G5) implies that

G
(
yn, T

(
yn

)
, T

(
yn

)) ≤ G
(
yn, u, u

)
+G

(
u, T

(
yn

)
, T

(
yn

))
(2.14)

and (2.13) leads to the following cases,

(1) G(T(yn), u, T(yn)) ≤ kG(yn, yn, u),

(2) G(T(yn), u, T(yn)) ≤ kG(yn, u, u),

(3) G(T(yn), u, T(yn)) ≤ qG(yn, u, u).

In each case take the limit as n → ∞ to see that G(u, T(yn), T(yn)) → 0 and so, by
Proposition 1.4, we have that the sequence (T(yn)) is G-convergent to u = Tu, therefor
Proposition 1.8 implies that T is G-continuous at u.

Remark 2.2. If the G-metric space is bounded (that is, for someM > 0 we have G(x, y, z) ≤ M
for all x, y, z ∈ X) then an argument similar to that used above establishes the result for
0 ≤ k < 1.

Corollary 2.3. Let (X,G) be a complete G-metric spaces and let T : X → X be a mapping which
satisfies the following condition for some m ∈ N and for all x, y, z ∈ X:

G
(
Tm(x), Tm(y

)
, Tm(z)

) ≤ kmax

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G
(
x, y, z

)
, G(x, Tm(x), Tm(x)),

G
(
y, Tm

(
y
)
, Tm

(
y
))
, G(z, Tm(z), Tm(z)),

G
(
x, Tm

(
y
)
, Tm

(
y
))
, G

(
y, Tm(z), Tm(z)

)
,

G(z, Tm(x), Tm(x)),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (2.15)

where k ∈ [0, 1/2), then T has a unique fixed point (say u), and Tm is G-continuous at u.

Proof. From the previous theorem, we have that Tm has a unique fixed point (say u), that is,
Tm(u) = u. But T(u) = T(Tm(u)) = Tm+1(u) = Tm(T(u)), so T(u) is another fixed point for Tm

and by uniqueness Tu = u.

Theorem 2.4. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping which
satisfies the following condition for all x, y, z ∈ X :

G
(
T(x), T

(
y
)
, T(z)

) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[
G
(
x, T

(
y
)
, T

(
y
))

+G
(
y, T(x), T(x)

)]
,

[
G
(
y, T(z), T(z)

)
+G

(
z, T

(
y
)
, T

(
y
))]

,

[G(x, T(z), T(z)) +G(z, T(x), T(x))]

⎫
⎪⎪⎬

⎪⎪⎭
, (2.16)

where k ∈ [0, 1/2), then T has a unique fixed point (say u), and T is G-continuous at u.
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Proof. Suppose that T satisfies the condition (2.16), let x0 ∈ X be an arbitrary point, and define
the sequence (xn) by xn = Tn(x0), then by (2.16)we get

G(xn, xn+1, xn+1) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[G(xn−1, xn+1, xn+1) + G(xn, xn, xn)],

[G(xn, xn+1, xn+1) + G(xn, xn+1, xn+1)],

[G(xn−1, xn+1, xn+1) +G(xn, xn, xn)]

⎫
⎪⎪⎬

⎪⎪⎭

= kmax{G(xn−1, xn+1, xn+1), 2G(xn, xn+1, xn+1)},

(2.17)

since 0 ≤ k < 1/2, then it must be the case that

G(xn, xn+1, xn+1) ≤ kG(xn−1, xn+1, xn+1) (2.18)

but from (G5), we have

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1), (2.19)

so (2.18) implies that

G(xn, xn+1, xn+1) ≤ k

1 − k
G(xn−1, xn, xn), (2.20)

let q = k/1 − k, then q < 1 and by repeated application of (2.20), we have

G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1). (2.21)

Then, for all n,m ∈ N, n < m, we have, by repeated use of the rectangle
inequality, G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2) + G(xn+2, xn+3, xn+3) + · · · +
G(xm−1, xm, xm) ≤ (qn + qn+1 + · · · + qm−1)G(x0, x1, x1) ≤ qn/1 − q G(x0, x1, x1). So,
lim G(xn, xm, xm) = 0, as n,m → ∞ and (xn) is G-Cauchy sequence. By the completeness
of (X,G), there exists u ∈ X such tha(xn) is G-convergent to u.Suppose that T(u)/=u, then

G(xn, T(u), T(u)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[G(xn−1, T(u), T(u)) + G(u, xn, xn)],

[G(u, T(u), T(u)) + G(u, T(u), T(u))],

[G(xn−1, T(u), T(u)) +G(u, xn, xn)]

⎫
⎪⎪⎬

⎪⎪⎭
. (2.22)

Taking the limit as n → ∞, and using the fact that the function G is continuous in its
variables, we get

G(u, T(u), T(u)) ≤ kmax{2G(u, T(u), T(u)), G(u, T(u), T(u))}, (2.23)
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since 0 ≤ k < 1/2, this contradiction implies that u = T(u).To prove uniqueness, suppose that
v /=u such that T(v) = v, then

G(u, v, v) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[G(u, v, v) +G(v, u, u)],

[G(v, v, v) +G(v, v, v)],

[G(u, v, v) + G(v, u, u)]

⎫
⎪⎪⎬

⎪⎪⎭
, (2.24)

so we deduce that G(u, v, v) ≤ k[G(u, v, v) + G(v, u, u)]. This implies that G(u, v, v) ≤
(k/1 − k)G(v, u, u) and by repeated use of the same argument we will find G(v, u, u) ≤
(k/1 − k)G(u, v, v). Therefor we get G(u, v, v) ≤ (k/1 − k)2G(v, u, u), since 0 < k/1 − k < 1,
this contradiction implies that u = v. To show that T is G-continuous at u let (yn) ⊆ X be a
sequence such that lim(yn) = u in (X,G), then

G
(
T
(
yn

)
, T(u), T(u)

) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[
G
(
yn, T(u), T(u)

)
+G

(
u, T

(
yn

)
, T

(
yn

))]
,

[G(u, T(u), T(u)), G(u, T(u), T(u))]
[
G
(
yn, T(u), T(u)

)
+G

(
u, T

(
yn

)
, T

(
yn

))]

⎫
⎪⎪⎬

⎪⎪⎭
. (2.25)

Thus, (2.25) becomes

G
(
T
(
yn

)
, u, u

) ≤ k
[
G
(
yn, u, u

)
+G

(
u, T

(
yn

)
, T

(
yn

))]
(2.26)

but by (G5) we have G(u, T(yn), T(yn)) ≤ 2G(T(yn), u, u), therefor (2.26) implies that
G(T(yn), u, u) ≤ kG(yn, u, u) + 2kG(T(yn), u, u) and we deduce that

G
(
T
(
yn

)
, u, u

) ≤ k

1 − 2k
G
(
yn, u, u

)
. (2.27)

Taking the limit of (2.27) as n → ∞, we see that G(T(yn), u, u) → 0 and so, by
Proposition 1.8, we have T(yn) → u = Tuwhich implies that T is G-continuous at u.

Corollary 2.5. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping which
satisfies the following condition for some m ∈ N and for all x, y, z ∈ X :

G
(
Tm(x), Tm(y

)
, Tm(z)

) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[
G
(
x, Tm

(
y
)
, Tm

(
y
))

+G
(
y, Tm(x), Tm(x)

)]
,

[
G
(
y, Tm(z), Tm(z)

)
+ G

(
z, Tm

(
y
)
, Tm

(
y
))]

,

[G(x, Tm(z), Tm(z)) +G(z, Tm(x), Tm(x))]

⎫
⎪⎪⎬

⎪⎪⎭
, (2.28)

where k ∈ [0, 1/2), then T has a unique fixed point (say u), and Tm is G-continuous at u.

Proof. The proof follows from the previous theorem and the same argument used in
Corollary 2.3.



8 Fixed Point Theory and Applications

Theorem 2.6. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping which
satisfies the following condition, for all x, y ∈ X,

G
(
T(x), T

(
y
)
, T

(
y
)) ≤ kmax

{[
G
(
y, T

(
y
)
, T

(
y
))

+ G
(
x, T

(
y
)
, T

(
y
))]

,
[
2G

(
y, T(x), T(x)

)]

}

, (2.29)

where k ∈ [0, 1/3), then T has a unique fixed point, say u, and T is G-continuous at u.

Proof. Suppose that T satisfies the condition (2.29). Let x0 ∈ X be an arbitrary point, and
define the sequence (xn) by xn = Tn(x0), then by (2.29), we have

G(xn, xn+1, xn+1) ≤ kmax

{
[ G(xn, xn+1, xn+1) + G(xn−1, xn+1, xn+1)],

[2G(xn, xn, xn)],

}

, (2.30)

thus G(xn, xn+1, xn+1) ≤ kG(xn, xn+1, xn+1) + kG(xn−1, xn+1, xn+1) and so

G(xn, xn+1, xn+1) ≤ k

1 − k
G(xn−1, xn+1, xn+1). (2.31)

But by (G5)we have

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1). (2.32)

Let p = k/1 − 2k, then p ∈ [0, 1) since k ∈ [0, 1/3) and from (2.31)we deduce that

G(xn, xn+1, xn+1) ≤ pG(xn−1, xn, xn). (2.33)

Continuing this procedure we get G(xn, xn+1, xn+1) ≤ pnG(x0, x1, x1). Then, for all n,m ∈
N, n < m, we have by repeated use of the rectangle inequality that G(xn, xm, xm) ≤
G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) +G(xn+2, xn+3, xn+3) + · · · +G(xm−1, xm, xm) ≤ (pn + pn+1 +
· · · + pm−1) G(x0, x1, x1) ≤ pn/1 − p G(x0, x1, x1).Thus, lim G(xn, xm, xm) = 0, as n,m → ∞,
so, (xn) is G-Cauchy a sequence. By completeness of (X,G), there exists u ∈ X such that (xn)
is G-convergent to u. Suppose that T(u)/=u, then

G(xn, T(u), T(u)) ≤ kmax

{
[G(u, T(u), T(u)) +G(xn−1, T(u), T(u))],

[2G(u, xn, xn)]

}

, (2.34)

taking the limit as n → ∞, and using the fact that the function G is continuous in its
variables, we obtain G(u, T(u), T(u)) ≤ 2kG(u, T(u), T(u)). Since 0 < k < 1/3 this is a
contradiction so, u = T(u). To prove uniqueness, suppose that v /=u is such that T(v) = v,
then

G(u, v, v) ≤ kmax

{
[G(v, v, v) +G(u, v, v)],

[2G(v, u, u)],

}

, (2.35)
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thus G(u, v, v) ≤ kmax{G(u, v, v), 2G(v, u, u)} and we deduce that

G(u, v, v) ≤ 2kG(v, u, u). (2.36)

By the same argument we get

G(v, u, u) ≤ 2k G(u, v, v), (2.37)

hence, G(u, v, v) ≤ 4k2 G(u, v, v) which implies that u = v ( since 0 ≤ k < 1/3 ⇒ 0 ≤ 4k2 < 1).
To show that T is G-continuous at u, let (yn) ⊆ X be a sequence such that limyn = u, then

G
(
T(u), T

(
yn

)
, T

(
yn

)) ≤ kmax

{[
G
(
yn, T

(
yn

)
, T

(
yn

))
+G

(
u, T

(
yn

)
, T

(
yn

))]
,

[
2G

(
yn, T(u), T(u)

)]

}

, (2.38)

therefore, (2.38) implies two cases.

Case 1. G(u, T(yn), T(yn)) ≤ 2kG(yn, u, u).

Case 2. G(u, T(yn), T(yn)) ≤ (k/1 − k)G(yn, T(yn), T(yn)).

But, by (G5) we have G(yn, T(yn), T(yn)) ≤ G(yn, u, u) + G(u, T(yn), T(yn)), so case 2
implies that G(u, T(yn), T(yn)) ≤ pG(yn, u, u). In each case taking the limit as n → ∞, we
see that G(u, T(yn), T(yn)) → 0 and so, by Proposition 1.8, we have T(yn) → u = Tu which
implies that T is G-continuous at u.

Corollary 2.7. Let (X,G) be a complete G-metric spaces, and let T : X → X be a mapping which
satisfies the following condition for some m ∈ N and for all x, y ∈ X :

G
(
Tm(x), Tm(y

)
, Tm(y

)) ≤ kmax

{[
G
(
y, Tm

(
y
)
, Tm

(
y
))

+ G
(
x, Tm

(
y
)
, Tm

(
y
))]

,
[
2G

(
y, Tm(x), Tm(x)

)]

}

, (2.39)

where k ∈ [0, 1/3), then T has a unique fixed point, say u, and Tm is G-continuous at u.

Proof. The proof follows from the previous theorem and the same argument used in
Corollary 2.3. The following theorem has been stated in [8] without proof, but this can be
proved by using Theorem (2.6) as follows.
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Theorem 2.8 (see [8]). Let (X,G) be a complete G-metric space and let T : X → X be a mapping
which satisfies the following condition, for all x, y, z ∈ X,

G
(
T(x), T

(
y
)
, T(z)

) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

[
G(z, T(x), T(x)) +G

(
y, T(x), T(x)

)]
,

[
G
(
y, T(z), T(z)

)
+G(x, T(z), T(z))

]
,

[
G
(
x, T

(
y
)
, T

(
y
))

+G
(
z, T

(
y
)
, T

(
y
))]

⎫
⎪⎪⎬

⎪⎪⎭
, (2.40)

where k ∈ [0, 1/3), then T has a unique fixed point, say u, and T is G-continuous at u.

Proof. Setting z = y in condition (2.40), then it reduced to condition (2.29), and the proof
follows from Theorem (2.6).
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