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We consider the intuitionistic fuzzy stability of the quadratic functional equation f(kx+y)+f(kx−
y) = 2k2f(x) + 2f(y) by using the fixed point alternative, where k is a positive integer.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’s theorem was generalized by Aoki
[3] for additive mappings. In 1978, Rassias [4] generalized Hyers theorem by obtaining a
unique linear mapping near an approximate additive mapping.

Assume that E1 and E2 are real-normed spaces with E2 complete, f : E1 → E2 is a
mapping such that for each fixed x ∈ E1, the mapping t → f(tx) is continuous on R, and
there exist ε > 0 and p ∈ [0, 1) such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε

(‖x‖p + ∥
∥y

∥
∥
p) (1.1)

for all x, y ∈ E1. Then there is a unique linear mapping T : E1 → E2 such that

∥
∥f(x) − T(x)

∥
∥ ≤ 2ε

|2 − 2p| ‖x‖
p (1.2)

for all x ∈ E1.
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The paper of Rassias has provided a lot of influence in the development of what we
called the generalized Hyers-Ulam-Rassias stability of functional equations. In 1990, Rassias
[5] asked whether such a theorem can also be proved for p ≥ 1. In 1991, Gajda [6] gave
an affirmative solution to this question when p > 1, but it was proved by Gajda [6] and
Rassias and Semrl [7] that one cannot prove an analogous theorem when p = 1. In 1994,
Gavruta [8] provided a generalization of Rassias theorem in which he replaced the bound
ε(‖x‖p + ‖y‖p) by a general control function φ(x, y). Since then several stability problems for
various functional equations have been investigated by many mathematicians [9, 10].

In the following, we first recall some fundamental results in the fixed point theory.
Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X

if d satisfies (1) d(x, y) = 0 if and only if x = y; (2) d(x, y) = d(y, x) for all x, y ∈ X; (3)
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall the following theorem of Diaz and Margolis [11].

Theorem 1.1 (see [11]). Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant 0 < α < 1. Then for each x ∈ X, either

d
(

Jnx, Jn+1x
)

= ∞ (1.3)

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − α))d(y, Jy) for all y ∈ Y .

In 2003, Cadariu and Radu used the fixed-point method to the investigation of the
Jensen functional equation (see [12, 13]) for the first time. By using fixed point methods, the
stability problems of several functional equations have been extensively investigated by a
number of authors.

Using the idea of intuitionistic fuzzy metric spaces introduced by Park [14] and
Saadati and Park [15, 16], a new notion of intuitionistic fuzzy metric spaces with the help
of the notion of continuous t-representable was introduced by Shakeri [17]. We refer to [17]
for the notions appeared below.

Consider the set L∗ and the order relation ≤L∗ defined by

L∗ =
{

(x1, x2) : (x1, x2) ∈ [0, 1]2, x1 + x2 ≤ 1
}

,

(x1, x2)≤L∗
(

y1, y2
) ⇐⇒ x1 ≤ y1, x2 ≤ y2, ∀(x1, x2),

(

y1, y2
) ∈ L∗.

(1.4)

Then (L∗,≤L∗) is a complete lattice [18, 19].
A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-norm if it

satisfies the following conditions: (a) ∗ is associative and commutative; (b) ∗ is continuous;
(c) a∗1 = a for all a ∈ [0, 1]; (d) a∗b ≤ c∗dwhenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

An intuitionistic fuzzy set Aξ,η in a universal set U is an object Aξ,η = {(ξA(u), ηA(u)) :
u ∈ U}, where, for all u ∈ U, ξA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1] are called the membership
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degree and the nonmembership degree, respectively, of u ∈ Aξ,η and, furthermore, they
satisfy ξA(u) + ηA(u) ≤ 1.

A triangular norm (t-norm) on L∗ is a mapping T : (L∗)2 → L∗ satisfying the following
conditions: for all x, y, x′, y′, z ∈ L∗, (a) (T(x, 1L∗) = x) (boundary condition); (b) (T(x, y) =
T(y, x)) (commutativity); (c) (T(x, T(y, z)) = T(T(x, y), z)) (associativity); (d) (x ≤L∗x′ and
y ≤L∗y′ ⇒ T(x, y) ≤L∗T(x′, y′)) (monotonicity).

If (L∗,≤L∗ , T) is an abelian topological monoid with unit 1L∗ , then T is said to be a
continuous t-norm.

The definitions of an intuitionistic fuzzy normed space is given below (see [17]).

Definition 1.2. Let μ and v be the membership and the nonmembership degree of an
intuitionistic fuzzy set from X × (0,+∞) to [0, 1] such that μx(t) + vx(t) ≤ 1 for all x ∈ X
and t > 0. The triple (X, Pμ,v, T) is said to be an intuitionistic fuzzy normed space (briefly
IFN-space) if X is a vector space, T is a continuous t-representable, and Pμ,v is a mapping
X × (0,+∞) → L∗ satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(a) Pμ,v(x, 0) = 0L∗ ;

(b) Pμ,v(x, t) = 1L∗ if and only if x = 0;

(c) Pμ,v(ax, t) = Pμ,v(x, t/a) for all a/= 0;

(d) Pμ,v(x + y, t + s) ≥ T(Pμ,v(x, t), Pμ,v(y, s)).

In this case, Pμ,v is called an intuitionistic fuzzy norm. Here, Pμ,v(x, t) = (μx(t), vx(t)).

Throughout this paper, we assume that k is a fixed positive integer. The functional
equation

f
(

kx + y
)

+ f
(

kx − y
)

= 2k2f(x) + 2f
(

y
)

(1.5)

was considered in [20]. SupposeX and Y are vector spaces. It is proved in [20] that amapping
f : X → Y satisfies (1.5) if and only if it satisfies f(x + y) + f(x − y) = 2f(x) + 2f(y).

In this short note, we show the intuitionistic fuzzy stability of the functional equation
(1.5) by using the fixed point alternative.

2. Main Results

For a given mapping f : X → Y , we define

Df
(

x, y
)

= f
(

kx + y
)

+ f
(

kx − y
) − 2k2f(x) − 2f

(

y
)

(2.1)

for all x, y ∈ X.

Theorem 2.1. Let X be a linear space, (Z, P ′
μ,v,M) an IFN-space, and φ : X × X → Z a function

such that for some 0 ≤ α < 1,

P ′
μ,v

(

φ
(

kx, ky
)

, t
)≥L∗P ′

μ,v

(

αk2φ
(

x, y
)

, t
) (

x, y ∈ X, t > 0
)

, (2.2)

lim
n→∞

P ′
μ,v

(

φ
(

knx, kny
)

, k2nt
)

= 1L∗ (2.3)
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for all x, y ∈ X and t > 0. Let (Y, Pμ,v,M) be a complete IFN-space. If f : X → Y is a mapping such
that for all x, y ∈ X, t > 0,

Pμ,v

(

Df
(

x, y
)

, t
)≥L∗P ′

μ,v

(

φ
(

x, y
)

, t
)

, (2.4)

and f(0) = 0, then there is a unique quadratic mapping A : X → Y such that

Pμ,v

(

f(x) −A(x), t
)≥L∗P ′

μ,v

(

φ(x, 0),
(

2k2 − 2k2α
)

t
)

. (2.5)

Proof. Put y = 0 in (2.4), we have

Pμ,v

(
f(kx)
k2

− f(x), t
)

≥L∗P ′
μ,v

(
1
2k2

φ(x, 0), t
)

(2.6)

for all x ∈ X and t > 0. Consider the set E = {g : X → Y} and define a generalized metric d
on E by

d
(

g, h
)

= inf
{

c ∈ R+ : Pμ,v

(

g(x) − h(x), t
)≥L∗P ′

μ,v

(

cφ(x, 0), t
)

, ∀x ∈ X, t > 0
}

. (2.7)

It is easy to show that (E, d) is complete. Define J : E → E by Jg(x) = (1/k2)g(kx) for all
x ∈ X. It is not difficult to see that

d
(

Jg, Jh
) ≤ αd

(

g, h
)

(2.8)

for all g, h ∈ E. It follows from (2.6) that

d
(

f, Jf
) ≤ 1

2k2
< ∞. (2.9)

It follows from Theorem 1.1 that J has a fixed point in the set E1 = {h ∈ E : d(f, h) < ∞}. Let
A be the fixed point of J . It follows from limnd(Jnf,A) = 0 that

A(x) = lim
n→∞

1
k2n

f(knx) (2.10)

for all x ∈ X. Since d(f,A) ≤ 1/(2k2 − 2k2α),

Pμ,v

(

f(x) −A(x), t
)≥L∗P ′

μ,v

(

φ(x, 0),
(

2k2 − 2k2α
)

t
)

. (2.11)
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It follows from (2.4) that we have

Pμ,v

(
1
k2n

Df
(

knx, kny
)

, t

)

≥L∗P ′
μ,v

(

φ
(

knx, kny
)

, k2nt
)

. (2.12)

It follows from (2.3) and [20] that A is a quadratic mapping.
The uniqueness of A follows from the fact that A is the unique fixed point of J with

the property that

Pμ,v

(

f(x) −A(x), t
)≥L∗P ′

μ,v

(

φ
(

x, y
)

,
(

2k2 − 2k2α
)

t
)

. (2.13)

This completes the proof.

Corollary 2.2. Let 0 < p < 2. Let X be a linear space, (Z, P ′
μ,v,M) an IFN-space, and (Y, Pμ,v,M) a

complete IFN-space. Suppose z0 ∈ Z. If f : X → Y is a mapping such that for all x, y ∈ X, t > 0,

Pμ,v

(

Df
(

x, y
)

, t
)≥L∗P ′

μ,v

((‖x‖p + ∥
∥y

∥
∥
p)
z0, t

)

, (2.14)

and f(0) = 0, then there is a unique quadratic mapping A : X → Y such that

Pμ,v

(

f(x) −A(x), t
)≥L∗P ′

μ,v

(

‖x‖pz0,
(

2k2 − 2kp
)

t
)

. (2.15)

Proof. Let

φ
(

x, y
)

=
(‖x‖p + ∥

∥y
∥
∥
p)
z0 (2.16)

for all x, y ∈ X. The result follows from Theorem 2.1 with α = kp−2.

Theorem 2.3. Let X be a linear space, (Z, P ′
μ,v,M) an IFN-space, and φ : X × X → Z a function

such that for some 0 ≤ α < 1,

P ′
μ,v

(

φ
(

x, y
)

, t
)≥L∗P ′

μ,v

(
α

k2
φ
(

kx, ky
)

, t

)
(

x, y ∈ X, t > 0
)

,

lim
n→∞

P ′
μ,v

(

φ

(
x

kn
,
y

kn

)

,
1
k2n

t

)

= 1L∗

(2.17)

for all x, y ∈ X and t > 0. Let (Y, Pμ,v,M) be a complete IFN-space. If f : X → Y is a mapping such
that for all x, y ∈ X, t > 0,

Pμ,v

(

Df
(

x, y
)

, t
)≥L∗P ′

μ,v

(

φ
(

x, y
)

, t
)

, (2.18)
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and f(0) = 0, then there is a unique quadratic mapping A : X → Y such that

Pμ,v

(

f(x) −A(x), t
)≥L∗P ′

μ,v

(

φ(x, 0),
2k2 − 2k2α

α
t

)

. (2.19)

Proof. The proof is similar to that of Theorem 2.1 and we omit it.

Corollary 2.4. Let p > 2. Let X be a linear space, (Z, P ′
μ,v,M) an IFN-space, and (Y, Pμ,v,M) a

complete IFN-space. If f : X → Y is a mapping such that for all x, y ∈ X, t > 0,

Pμ,v

(

Df
(

x, y
)

, t
)≥L∗P ′

μ,v

((‖x‖p + ∥
∥y

∥
∥
p)
z0, t

)

, (2.20)

and f(0) = 0, then there is a unique quadratic mapping A : X → Y such that

Pμ,v

(

f(x) −A(x), t
)≥L∗P ′

μ,v

(

‖x‖pz0,
(

2kp − 2k2
)

t
)

. (2.21)

Proof. The proof is similar to that of Corollary 2.2.
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