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We show the existence of a week solution inW
1,p(x)
0 (Ω) to a Dirichlet problem for −Δp(x)u = f(x, u)

in Ω, and its localization. This approach is based on the nonlinear alternative of Leray-Schauder.

1. Introduction

In this work, we consider the boundary value problem

−Δp(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ R
N,N ≥ 2, is a nonempty bounded open set with smooth boundary ∂Ω, Δp(x)u =

div(|∇u|p(x)−2∇u) is the so-called p(x)-Laplacian operator, and (CAR): f : Ω × R → R is a
Caratheodory function which satisfies the growth condition

∣
∣f(x, s)

∣
∣ ≤ a(x) + C|s|q(x)/q′(x) for a.e. x ∈ Ω and all s ∈ R, (1.1)

with C = const. > 0, 1/q(x) + 1/q′(x) = 1 for a.e. x ∈ Ω, and a ∈ Lq′(x)(Ω), a(x) ≥ 0 for a.e.
x ∈ Ω.

We recall in what follows some definitions and basic properties of variable exponent
Lebesgue and Sobolev spaces Lp(x)(Ω), W1,p(x)(Ω), and W

1,p(x)
0 (Ω). In that context, we refer

to [1, 2] for the fundamental properties of these spaces.
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Set

L∞
+ (Ω) =

{

p : p ∈ L∞(Ω), ess inf
x∈Ω

p(x) > 1
}

. (1.2)

For p ∈ L∞
+ (Ω), let p1 := ess infx∈Ωp(x) ≤ p(x) ≤ p2 := ess supx∈Ωp(x) < ∞, for a.e.

x ∈ Ω.
Let us define by U(Ω) the set of all measurable real functions defined on Ω. For any

p ∈ L∞
+ (Ω),we define the variable exponent Lebesgue space by

Lp(x)(Ω) =
{

u ∈ U(Ω) : ρp(x)(u) =
∫

Ω
|u(x)|p(x)dx < ∞

}

. (1.3)

We define a norm, the so-called Luxemburg norm, on this space by the formula

‖u‖p(x) = inf
{

δ > 0 : ρp(x)
(
u

δ

)

≤ 1
}

, (1.4)

and (Lp(x)(Ω), ‖ · ‖p(x)) becomes a Banach space.
The variable exponent Sobolev space W1,p(x)(Ω) is

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) :
∂u

∂xi
∈ Lp(x)(Ω), i = 1, . . . ,N

}

(1.5)

and we define on this space the norm

‖u‖ = ‖u‖p(x) + ‖∇u‖p(x) (1.6)

for all u ∈ W1,p(x)(Ω). The space W1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) inW1,p(x)(Ω).

Proposition 1.1 (see [1, 2]). If p ∈ L∞
+ (Ω), then the spaces Lp(x)(Ω), W1,p(x)(Ω), and

W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Proposition 1.2 (see [1, 2]). If u ∈ Lp(x)(Ω) and p2 < ∞, then we have

(i) ‖u‖p(x) < 1(= 1; > 1) ⇔ ρp(x)(u) < 1(= 1; > 1),

(ii) ‖u‖p(x) > 1 ⇒ ‖u‖p1
p(x) ≤ ρp(x)(u) ≤ ‖u‖p2

p(x),

(iii) ‖u‖p(x) < 1 ⇒ ‖u‖p2
p(x) ≤ ρp(x)(u) ≤ ‖u‖p1

p(x),

(iv) ‖u‖p(x) = a > 0 ⇔ ρp(x)(u/a) = 1.
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Proposition 1.3 (see [3]). Assume thatΩ is bounded and smooth. Denote by C+(Ω) = {h ∈ C(Ω) :
h1 > 1}.

(i) Let p, q ∈ C+(Ω). If

q(x) < p∗(x) =

⎧

⎪⎪
⎨

⎪⎪⎩

Np(x)
N − p(x)

if p(x) < N,

+∞ if p(x) ≥ N,

(1.7)

then (W1,p(x)
0 (Ω), ‖ · ‖) is compactly imbedded in Lq(x)(Ω).

(ii) (Poincaré inequality, see [1, Theorem 2.7]). If p ∈ C+(Ω), then there is a constant C > 0
such that

‖u‖p(x) ≤ C‖|∇u|‖p(x), ∀u ∈ W
1,p(x)
0 (Ω). (1.8)

Consequently, ‖u‖1,p(x) = ‖|∇u|‖p(x) and ‖u‖ are equivalent norms on W
1,p(x)
0 (Ω). In

what follows, W1,p(x)
0 (Ω), with p ∈ C+(Ω), will be considered as endowed with the norm

‖u‖1,p(x).

Lemma 1.4. Assume that r ∈ L∞
+ (Ω) and p ∈ C+(Ω). If |u|r(x) ∈ Lp(x)(Ω), then we have

min
{

‖u‖r1r(x)p(x), ‖u‖
r2
r(x)p(x)

}

≤
∥
∥
∥|u|r(x)

∥
∥
∥
p(x)

≤ max
{

‖u‖r1r(x)p(x), ‖u‖
r2
r(x)p(x)

}

. (1.9)

Proof. By Proposition 1.2 (iv), we have

1 =
∫

Ω

∣
∣
∣
∣
∣
∣
∣

|u|r(x)
∥
∥
∥|u|r(x)

∥
∥
∥
p(x)

∣
∣
∣
∣
∣
∣
∣

p(x)

dx

=
∫

Ω

∣
∣
∣
∣
∣

|u|
‖u‖r(x)p(x)

∣
∣
∣
∣
∣

r(x)p(x) ‖u‖r(x)p(x)r(x)p(x)
∥
∥
∥|u|r(x)

∥
∥
∥

p(x)

p(x)

dx

≤
∫

Ω

∣
∣
∣
∣
∣

|u|
‖u‖r(x)p(x)

∣
∣
∣
∣
∣

r(x)p(x)max
{

‖u‖r1p(x)r(x)p(x), ‖u‖
r2p(x)
r(x)p(x)

}

∥
∥
∥|u|r(x)

∥
∥
∥

p(x)

p(x)

dx.

(1.10)

By the mean value theorem, there exists ξ ∈ Ω such that

1 ≤
max

{

‖u‖r1p(ξ)r(x)p(x), ‖u‖
r2p(ξ)
r(x)p(x)

}

∥
∥
∥|u|r(x)

∥
∥
∥

p(ξ)

p(x)

∫

Ω

∣
∣
∣
∣
∣

|u|
‖u‖r(x)p(x)

∣
∣
∣
∣
∣

r(x)p(x)

dx (1.11)
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and we have

∥
∥
∥|u|r(x)

∥
∥
∥
p(x)

≤ max
{

‖u‖r1r(x)p(x), ‖u‖
r2
r(x)p(x)

}

. (1.12)

Similarly

1 ≥
min

{

‖u‖r1p(ξ)r(x)p(x), ‖u‖
r2p(ξ)
r(x)p(x)

}

∥
∥
∥|u|r(x)

∥
∥
∥

p(ξ)

p(x)

dx,

∥
∥
∥|u|r(x)

∥
∥
∥
p(x)

≥ min
{

‖u‖r1r(x)p(x), ‖u‖
r2
r(x)p(x)

}

.

(1.13)

Remark 1.5. If r(x) = r = const., then

∥
∥|u|r∥∥p(x) = ‖u‖rrp(x). (1.14)

For simplicity of notation, we write

X = W
1,p(x)
0 (Ω), X∗ =

(

W
1,p(x)
0 (Ω)

)∗
, Y = Lq(x)(Ω), Y ∗ = Lq′(x)(Ω),

‖·‖X = ‖·‖1,p(x), ‖·‖Y = ‖·‖q(x).
(1.15)

In [4], a topological method, based on the fundamental properties of the Leray-
Schauder degree, is used in proving the existence of a week solution in X to the Dirichlet
problem (P) that is an adaptation of that used by Dinca et al. for Dirichlet problems with
classical p-Laplacian [5]. In this work, we use the nonlinear alternative of Leray-Schauder and
give the existence of a solution and its localization. This method is used for finding solutions
in Hölder spaces, while in [6], solutions are found in Sobolev spaces.

Let us recall some results borrowed from Dinca [4] about p(x)-Laplacian and
Nemytskii operator Nf . Firstly, since q(x) < p(x) < p∗(x) for all x ∈ Ω, X is compactly
embedded in Y . Denote by i the compact injection of X in Yand by i∗ : Y ∗ → X∗, i∗υ = υ ◦ i
for all υ ∈ Y ∗, its adjoint.

Since the Caratheodory function f satisfies (CAR), the Nemytskii operator Nf

generated by f , (Nfu)(x) = f(x, u(x)), is well defined from Y into Y ∗, continuous, and
bounded ([3, Proposition 2.2]). In order to prove that problem (P) has a weak solution in
X it is sufficient to prove that the equation

−Δp(x)u =
(

i∗Nfi
)

u (1.16)

has a solution in X.
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Indeed, if u ∈ X satisfies (1.16) then, for all υ ∈ X, one has

〈−Δp(x)u, υ
〉

X,X∗ =
〈(

i∗Nfi
)

u, υ
〉

X,X∗ =
〈

Nf(iu), iυ
〉

Y,Y ∗ (1.17)

which rewrites as
∫

Ω
|∇u|p(x)∇u∇υdx =

∫

Ω
fυdx (1.18)

and tells us that u is a weak solution in X to problem (P).
Since −Δp(x) is a homeomorphism of X onto X∗, (1.16)may be equivalently written as

u =
(−Δp(x)

)−1(
i∗Nfi

)

u. (1.19)

Thus, proving that problem (P) has a weak solution in X reduces to proving that the
compact operator

K =
(−Δp(x)

)−1(
i∗Nfi

)

: X → X (1.20)

has a fixed point.

Theorem 1.6 (Alternative of Leray-Schauder, [7]). Let B[0, R] denote the closed ball in a Banach
space E, {u ∈ E : ‖u‖ ≤ R}, and let K : B[0, R] → E be a compact operator. Then either

(i) the equation λKu = u has a solution in B[0, R] for λ = 1 or

(ii) there exists an element u ∈ E with ‖u‖ = R satisfying λKu = u for some λ ∈ (0, 1).

2. Main Results

In this work, we present new existence and localization results forX-solutions to problem (P),
under (CAR) condition on f. Our approach is based on regularity results for the solutions of
Dirichlet problems and again on the nonlinear alternative of Leray-Schauder.

We start with an existence and localization principle for problem (P).

Theorem 2.1. Assume that there is a constant R > 0, independent of λ > 0, with ‖u‖X /=R for any
solution u ∈ X to

−Δp(x)u = λf(x, u) in Ω,

u = 0 on ∂Ω
(Pλ)

and for each λ ∈ (0, 1). Then the Dirichlet problem (P) has at least one solution u ∈ X with ‖u‖X ≤ R.

Proof. By [3, Theorem 3.1], −Δp(x) is a homeomorphism of X onto X∗. We will apply
Theorem 2.1 to E = X and to operator K : X → X,

Ku =
(−Δp(x)

)−1(
i∗Nfi

)

u, (2.1)
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where i∗Nfi : X → X∗ is given by (Nfu)(x) = f(x, u(x)). Notice that, according to a well-
known regularity result [4], the operator (−Δp(x))

−1 from X to X is well defined, continuous,
and order preserving. Consequently, K is a compact operator. On the other hand, it is clear
that the fixed points of K are the solutions of problem (P). Now the conclusion follows from
Theorem 1.6 since condition (ii) is excluded by hypothesis.

Theorem 2.2 immediately yields the following existence and localization result.

Theorem 2.2. Let Ω ⊂ R
N,N ≥ 2, be a smooth bounded domain and let p, q ∈ C+(Ω) be such that

q(x) < p(x) for all x ∈ Ω. Assume that f : Ω × R → R is a Caratheodory function which satisfies
the growth condition (CAR).

Suppose, in addition, that

C‖i∗‖Y ∗ →X∗ max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

}

< 1, (2.2)

where C is the constant appearing in condition (CAR). Let R ≥ 1 be a constant such that

R ≥

⎛

⎜
⎝

‖i∗‖Y ∗ →X∗‖a‖Y ∗

1 − C‖i∗‖Y ∗ →X∗ max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

}

⎞

⎟
⎠

1/(p1−1)

. (2.3)

Then the Dirichlet problem (P) has at least a solution in X with ‖u‖X ≤ R.

Proof. Let u ∈ X be a solution of problem (Pλ) with ‖u‖X = R ≥ 1, corresponding to some
λ ∈ (0, 1). Then by Propositions 1.2, 1.3, and Lemma 1.4, we obtain

‖u‖p1X ≤
∫

Ω
|∇u|p(x)dx = λ

〈(

i∗Nfi
)

u, u
〉

X,X∗ = λ
〈

Nf(iu), iu
〉

Y,Y ∗

≤ λ‖i∗‖Y ∗ →X∗
∥
∥Nf(iu)

∥
∥
Y ∗‖u‖X

≤ λ‖i∗‖Y ∗ →X∗‖u‖X
(

‖a‖Y ∗ + Cmax
{

‖iu‖q1−1Y , ‖iu‖q2−1Y

})

≤ λ‖i∗‖Y ∗ →X∗‖u‖X
(

‖a‖Y ∗ + C‖u‖q2−1X max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

})

≤ λ‖i∗‖Y ∗ →X∗‖u‖X
(

‖a‖Y ∗ + C‖u‖p1−1X max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

})

.

(2.4)

Therefore, we have

‖u‖p1−1X ≤ λ‖i∗‖Y ∗ →X∗‖a‖Y ∗

1 − λC‖i∗‖Y ∗ →X∗ max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

} . (2.5)
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Substituting ‖u‖X = R in the above inequality, we obtain

R ≤

⎛

⎜
⎝

λ‖i∗‖Y ∗ →X∗‖a‖Y ∗

1 − λC‖i∗‖Y ∗ →X∗ max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

}

⎞

⎟
⎠

1/(p1−1)

, (2.6)

which, taking into account (2.3) and λ ∈ (0, 1), gives

R ≤ λ(1/p1−1)

⎛

⎜
⎝

‖i∗‖Y ∗ →X∗‖a‖Y ∗

1 − Cλ‖i∗‖Y ∗ →X∗ max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

}

⎞

⎟
⎠

1/(p1−1)

≤ λ(1/p1−1)

⎛

⎜
⎝

‖i∗‖Y ∗ →X∗‖a‖Y ∗

1 − C‖i∗‖Y ∗ →X∗ max
{

‖i‖q1−1X→Y , ‖i‖
q2−1
X→Y

}

⎞

⎟
⎠

1/(p1−1)

≤ λ(1/p1−1)R < R,

(2.7)

a contradiction. Theorem 2.1 applies.
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[2] O. Kováčik and J. Rákosnı́k, “On spaces Lp(x) and Wk,p(x),” Czechoslovak Mathematical Journal, vol.
41(116), no. 4, pp. 592–618, 1991.

[3] X.-L. Fan and Q.-H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 52, no. 8, pp. 1843–1852, 2003.

[4] G. Dinca, “A fixed point method for the p(x)-Laplacian,” Comptes Rendus Mathématique, vol. 347, no.
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