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We introduce a new iterative scheme for finding a common element of the solutions sets of a
finite family of equilibrium problems and fixed points sets of an infinite family of nonexpansive
mappings in a Hilbert space. As an application, we solve a multiobjective optimization problem
using the result of this paper.

1. Introduction

Let H be a Hilbert space and C be a nonempty, closed, and convex subset of H. Let @ be a
bifunction of C x C into R, where R is the set of real numbers. The equilibrium problem for
the bifunction @ : C x C — Ris to find x € C such that

O(x,y) >0, VyeC. (1.1)

The set of solutions of the above inequality is denoted by EP(®). Many problems arising
from physics, optimization, and economics can reduce to finding a solution of an equilibrium
problem.

In 2007, S. Takahashi and W. Takahashi [1] first introduced an iterative scheme by
the viscosity approximation method for finding a common element of the solutions set of
equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space
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H and proved a strong convergence theorem which is based on Combettes and Hirstoaga’s
result [2] and Wittmann's result [3]. More precisely, they obtained the following theorem.

Theorem 1.1 (see [1]). Let C be a nonempty closed and convex subset of H. Let ® : C x C — R be
a bifunction which satisfies the following conditions:

(Al) O(x,x) =0forall x € C;
(A2) @ is monotone, that is, ®(x,y) + D(y,x) <0 forall x,y € C;

(A3) Forall x,y,z € C,

ltilrtx)l(D(tz +(1-t)x,y) <O(x,y); (1.2)

(A4) Foreach x € C, y — D(x,y) is convex and lower semicontinuous.

Let S : C — H be a nonexpansive mapping with Fix(S) N EP(®) # @, where Fix(S) denotes
the set of fixed points of the mapping S, and let f : H — H be a contraction, if there exists a constant
A € (0,1) such that || fx — fy|| < Mx —y|| forall x,y € H. Let {x,} and {u,} be the sequences
generated by x1 € H and

O(un, y) + l(y —Up, Uy —Xn) 20, YyeC,
n (1.3)

Xpi1 = A f (x0) + (1 —ay)Su,, VYn>1,

where {a,} C [0,1] and {r,} C (0, 00) satisfy the following conditions:

[ele] [ee]
lima, =0, Zan = oo, Z|an+1 —ay,| < oo,
1n— oo

n=1 n=1

(1.4)

n— oo

[ee]
liminfr, >0, Z|7‘n+1 — 7| < o0.
n=1

Then the sequences {x,} and {u,} converge strongly to a point z € Fix(S) N EP(®), where
z = Prix(s)ner(@) f (2) (1.5)

(P is the metric projection of H onto C and Prix(s)nep) f (z) denotes nearest point in Fix(S) NEP(®)
from f(z)).

Recently, many results on equilibrium problems and fixed points problems in the
context of the Hilbert space and Banach space are introduced (see, e.g., [4-8]).
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Let F : H — H be a nonlinear mapping. The variational inequality problem
corresponding to the mapping F is to find a point x* € C such that

(F(x"),x—x*)>0, VxeC. (1.6)

The variational inequality problem is denoted by VI(F,C) [9].
The mapping F is called x-Lipschitzian and #-strongly monotone if there exist
constants «, 77 > 0 such that

|Fx - Fyl|| <x||x-y|, VYx,yeH, (1.7)

(Fx-Fy,x-y)2n||lx-y|>, V¥xyeH, (1.8)

respectively. It is well known that if F is strongly monotone and Lipschitzian on C, then
VI(F,C) has a unique solution. An important problem is how to find a solution of VI(F, C).
Recently, there are many results to solve the VI(F, C) (see, e.g., [10-14]).

Let C be a nonempty closed and convex subset of a Hilbert space H, {T, },~, : H — H
be a countable family of nonexpansive mappings, and {®;};Z; : C x C — R be m bifunctions
satisfying conditions (A1)-(A4) such that Q = N2, Fix(T,) N EP(®1) N --- N EP(®D,,) #0. Let
ri,...,Tm € (0,00). Foreachi =1,...,m, define the mapping T, : H — C by

T, (x) = {z €eC:Di(z,y) + %(y—z,z—x} >0, Vy e C}, Vx € H. (1.9)

Lemma 2.5 (see below) shows that, for each 1 < i < m, T, is firmly nonexpansive and
hence nonexpansive and Fix(T},) = EP(®;). Suppose that F : H — H is a k-Lipschitzian and
7-strong monotone operator and let y € (0,27/%?). Assume that VI(®;(F, Q) #0.

In this paper, motivated and inspired by the above research results, we introduce the
following iterative process for finding an element in Q: for an arbitrary initial point x; € H,

Zp = YlTrl Xp + YZTrzxn R YmTrmxn/

n (1.10)
Xn+1 = ApXy + Z(“i—l —a;)0,Tixy + (1 —ay)(1 - O'n)T)tnznr Vn>1,
i=1

where Tz, = z, — AnpF(zn), ag = 1, {an} 5y is a strictly decreasing sequence in (0, &) with
O<a<l, {A} € (0,1), {yi}it € (0,1) with 33, i = 1, and {on}5eq C (a,b) with0 < a,b <
1. Then we prove that the iterative process {x,} defined by (1.10) strongly converge to an
element x* € Q, which is the unique solution of the variational inequality

(F(x*),x—x*)>0, VxeQ. (1.11)

As an application of our main result, we solve a multiobjective optimization problem.
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2. Preliminaries

Let H be a Hilbert space and T a nonexpansive mapping of H into itself such that Fix(T) # 0.
For all x € Fix(T) and x € H, we have

lx = %|* > |Tx - Tx|)* = |Tx - 2| = |[Tx - x + (x - X)|I*

(2.1)
= ||ITx - x||* + ||x = X||* + 2(Tx - x, x - X)
and hence
ITx —x|* <2(x-Tx,x-x), VxeFix(T), xe€H. (2.2)
It is well known that, for all x,y € H and ¢ € [0,1],
lex+ (1= By * < tlxl® + A=D1y, (2.3)
which implies that
n 2 n
;tixi < ;tillxillz (2.4)

forall {x;}j.; ¢ H and {t;};.; € [0,1] with X", t; = 1.
Let C be a nonempty closed and convex subset of H and, for any x € H, there exists
unique nearest point in C, denoted by Pcx, such that

|[Pex—x|| <||ly-x|, VYyeC (2.5)
Moreover, we have the following:
z=Pex = (x-z,z-y)>0, VyeC. (2.6)

Let I denote the identity operator of H and let {x,} be a sequence in a Hilbert space
H and x € H. Throughout this paper, x, — x denotes that {x,} strongly converges to x and
x, — x denotes that {x,} weakly converges to x.

We need the following lemmas for our main results.

Lemma 2.1 (see [15]). Let C be a nonempty closed and convex subset of a Hilbert space H and T a
nonexpansive mapping from C into itself. Then I — T is demiclosed at zero, that is,

Xp —x, x,—-Tx,— 0 implies x =Tx. (2.7)
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Lemma 2.2 (see [10, Lemma 3.1(b)]). Let H be a Hilbert spaceand T : H — H be a nonexpansive

mapping. Let F : H — H be a mapping which is k-Lipschitzian and n-strong monotone on T (H).
Assume that \ € (0,1) and p € (0,2n/x2). Define a mapping T* : H — H by

T'x = Tx - \uF(Tx), Vx € H. (2.8)

Then ||T*x — T*y|| < (1 - A7)||x — y|| for all x,y € H, where T = 1 —1/1 — u(2n — pux?2) € (0,1).
If T = I, Lemma 2.2 still holds.

Lemma 2.3 (see [16]). Let {s,}, {ca} be the sequences of nonnegative real numbers and {a,} C
(0,1). Suppose that {b,} is a real number sequence such that

Spi1 < (1—ay)sp+by,+c,, Yn>0. (2.9)

Assume that 357 ¢, < oo. Then the following results hold.
(1) If b, < Pay, for all n > 0, where p > 0, then {s,} is a bounded sequence.

(2) If
o ] bn
Zan =00, limsup— <0, (2.10)
n=0 n—oo dn

then lim,, _, .S, = 0.

Lemma 2.4 (see [17]). Let C be a nonempty closed and convex subset of a Hilbert space H and
@ : C x C — R be a bifunction which satisfies the conditions (A1)-(A4). Let v > 0 and x € H. Then
there exists z € C such that

D(z,v) +%<y—z,z—x) >0, VyeC (2.11)

Lemma 2.5 (see [2]). Let H be a Hilbert space and C be a nonempty closed and convex subset of H.
Assume that @ : C x C — R satisfies the conditions (A1)—(A4). For all v > 0 and x € H, define a
mapping T, : H — C as follows:

T, (x) = {z €eC:D(z,y) + %(y—z,z—x) >0, Vy € C}, Vx € H. (2.12)

Then the following holds:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,
ITox - Ty < (Tx - Ty, x - y); (2.13)

3) Fix(T;) = EP(D);
(4) EP(D) is closed and convex.
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The following lemma is an immediate consequence of an inner product.

Lemma 2.6. Let H be a real Hilbert space. Then the following identity holds:
||x+y||2 < ||x||2+2<y,x+y>, Vx,y € H. (2.14)

3. Main Results
First, we prove some lemmas as follows.
Lemma 3.1. The sequence {x,} generated by (1.10) is bounded.

Proof. Let u;, = T,x, for each i = 1,2,...,m. Lemma 2.5 shows that each T}, is firmly-
nonexpansive and hence nonexpansive. Hence, for each 1 <i <m and p € €, we have

[in = pll = 1 Trn = Trp|| < l2en = pl, Y21, (3.1)
2 —pll < Dyillwin —pll < llxn-pll, ¥n>1. (32)
i1
By Lemma 2.2, we have
||T*nx Tyl < (1-2 Vx,y € H, (3.3)

where 7 = 1 - 4/1 - u(2n — ux?) € (0,1). Therefore, by (3.2) and (3.3), we obtain (note that
{a,} is strictly decreasing and T"p — p = A, uF(p))

an (X — p)+Z(m 1= ai)0n (Tixy —p) + (1 = ) (1 - Gn) T*Z -p H

i=1

st~ pll =

n
< “n”xn _P” + Z(“i—l - ‘Xi)o'n”Tixn _P” +(1-ay)(1-0n) T
i1

=

n
< anlloen = pll + X (@i - ai)ou|xn - p|

i=1

+(1-a,)(1-04) [”T*"zn ~T*p

[+ [rp =]
< ay||x.-p| + i(ai—l — ;)0 || — p||
i-1

+ (1= an) (1= 0a) [(1= 4u7) |20 = | + Aape | F (P) ]
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n
< |2 = p|l + D (@1 — @) ou |20 - p|
i=1

+(1—an) (1= 00) [(1 = u7) || = p|| + Lupe||[F(p) ||]
= (1= (1= an)(1 = 0)AnT) || = p| + (1 = @) (1 = 00) | [F () ||-
(3.4)

By induction, we obtain ||x,.1|| < max{||x1 —pl|, (u/7)||F(p)||}. Hence {x,} is bounded and so
are {z,} and {u;,} foreachi=1,2,...,m. Since F is x-Lipschitzian, we have

IE Gl < [[F(za) = F(p) | + [|F(p) |

(3.5)
<xllza=pll + [F(@) || < ©lizall + x|[p]| + [|F ()|,
which shows that { F(z,)} is bounded. This completes the proof. O
Lemma 3.2. If the following conditions hold:
Z)Ln =, ZMn - )‘n+1| < oo, Z|Gn — On+1| < 0, (36)
n=1 n=1 n=1
then lim,, _, o ||xp+1 — Xl = 0.
Proof. Foreachi=1,2,...,m, since each T, is nonexpansive, we have
lin-1 = tinll = I Tr,xXn-1 = Tr, || < X1 = 2all, VR 21 (3.7)
By (3.7), we have
”Zn - Zn—l” = ”Yl (uln - uln—l) + YZ(”Zn - u2n—1) +eee Ym(umn - umn—l)”
m m
< ZYilluiﬂ = Uin-1]| < ZYi”xn = X1 (3.8)
i=1 i=1

= |loxp-1 — Xull, VYn>1.
By the definition of the iterative sequence (1.10), we have

n
Xn4l — Xn = O (Xp — Xp-1) + XpXp_1 + Z(“i—l = a;)0n(Tixy, — Tixy1)
i=1

n
+ (@i — a) 0 Tixy 1 + (1 - ) (1 - 0y) (T)L"Zn - TA"Zn—1>
i1

n-1

+ (1= ) (1= 0) TV 21 — A Xn1 — D (i1 — 2:) 01 TiXna
i1

- (1 - an—l)(l - O-n—l)T)m_1 Zn-1
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n

= (Xn = Xp-1) + (@ — A1) Xpo1 + Z(‘Xi—l = ;)0 (Tixy — Tixtn-1)
i=1

+(1=-a,)(1-0n) <T)L"Zn - T)L"Zn—l> + > (aic1 — a;)onTixn

n
i=1

n-1
- Z(“l‘—l =)o 1 Tixp 1 + (1 - a,)(1 - O'n)T)L" Zn-1
i=1
- (1 - “n—l)(l - O-n—l)T/\n_l Zn-1
n

=0ap (xn - Xn—l) + (‘xn - an—l)xn—l + Z(ai—l - ai)o'n (Tixn - Tixn—l)
i=1

n-1
+(1-an)(1-o0n) <T)‘"Zn - T)ann—1> + D (@1 = i) (00 = 051) iy
i=1

+ (an-1 = an)OnTnXn-1 + [(@n1 — an) (1 = On) + (On-1 = 0n) (1 = An-1)] 21
+{(1 = an-1)(1 = 0p-1) (A1 — A)
—[(an-1 = an)(1 = 0n) + (On-1 — 0n) (1 = @p-1) A} uF (z0-1),
(3.9)

and hence

n
%1 = Xnll < @nllotn = X1 || + (@no1 = @) 10 || + D (@1 = @) 0nln = X |
i=1

n-1

+(I-an)(1=0n) (1 = Aa7T)l|zn — zpa | + Z(ai—l = a;)|oyn = on-a|lITixn-1 ||
i=1
+ (an-1 = an) | Tuxpall + [(@n1 — an) + |0n-1 = Onl] || Za-1|
+ [[Ane1 = An| + (@n-1 — ay) + [0p1 — O'n”.u“F(Zn—l)”
n
= 120 = X || + D (@it — @) Oul|xn = x|
i=1
+(1-an)(1=0n)(1 = A7) ||Zn — znall
+ (ap-1 — ay) [”xn—ln + | Taxpall + | znall +#||F(Zn—1)||]
1

+ ) (a1 — ai)|oy = Ona || Tixp-1ll + |On-1 — O'n|(||z‘rl71|| + I’l”F(anl)”)
i

N

]
—_

+ A1 = -’\n|ﬂ”F(Zn—1)“'
(3.10)
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It follows from (3.8) and (3.10) that

n
||xn+1 - xn” < an”xn - x‘rﬁl” + Z(aifl - ai)on”xn - x‘rkl“

i=1
+ (1= an)(1 = 0p) (1 = Xu7) [l2p-1 — 2|
+ (an—l - an) [”xrrl” + ”Tnxnfln + ”zn—lll +l4”F(Zn71)“]

n-1
+ D (@i = a;) oy — owalITixn-a || + 01 = Oul (Izna |l + pllF (zn-1))
= 3.11)

+ [ Aot = Anlpl|F (zno)
< (1= (1 =an) (1= 0n)nT)llxn = Xp-all + (@1 — an) B+ p) M
+ 0w = On1| (2 + )M + |Xypo1 — Ap|uM
<(1-1-a)(d=-b)AuT) X0 = xna |l + (@n-1 — an) (3 + )M
+|op = 0ne1| (2 + )M + [Nypog — Ay |u M,

where M = max{sup,.,|lxull, sup . 1znll, sup;s; por1 ITixull, sup,1 [1F (zn)[|}. Since {ay} is
strictly decreasing, we have 3,72, (a,-1 — &) = a1 < oo. Further, from the assumptions, it
follows that

Z{(an_l —ay)(B+p)M + |0y — 0p1| (2 + )M + [N ypog — Ay |pM} < o0. (3.12)
n=2
Therefore, by Lemma 2.3, we have lim,, _. .|| xy41 — x,|| = 0. This completes the proof. O

Lemma 3.3. If the following conditions hold:

liml, =0, D>Ay=00, > Mp-Apal<oo,  Dlon—0nal<oo, (3.13)
n—e n=1 n=1 n=1

then lim ||x, — || =0 foreachi=1,2,...,m.
n—oo
Proof. Forany p € Qandi=1,2,...,m, it follows from Lemma 2.5(2) that
i = pII* = | Tr2n = Top || < (Tn = Typ, X0 = P) = (thin = P, X0 = p)

1 , . (3.14)
= (o= I + I = pIF i 0l
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and hence ||ui, — p||* < [|xn — plI* = ||ttin — x4 ||*. Further, we have

m 2 m
120 =plI* = || v =p)|| < Sovilluein = pII°
i=1 i=1
m ) 5
< D0l =PI = i = xal?) (3.15)
i=1

m
= [|lon - P”2 - ZYiHuin —xq|?, Vn>1.
i1

Therefore, from (2.4) and (3.3), we have

. 2
||xn+1 - PII2 = ||an(xn - P) + Z(ai—l - a;)0,(Tix, — P) +(1=ay)(1- O'n)(T)LnZn - P)
i=1
n 2
< ap|xn - p”2 + Z(zxi_l — ;)0 || Tixn — p||2 +(1-a,)(1-0,)|[T*z, - p”

i=1
2 2
Sa"”x"_p” +(1_an)o'n”xn_r7”
2
Angy
|+ [rp -]
<ty 2t = p||* + (1 = @n)on|xa - p|?

+ (1= ) (1= 0) [(1 = 17 |20 =l + ape [ F(P)IT°

+(1-a,)(1-0y,) [”TA"zn ~Tp

< an”xn _P"2 +(1- an)o'n”xn —P"z +(1-ay)(1-o04)
x [ =) |20 = p|I* + 200 (1 = Lurplza = PIIE ) || + ati? [ F (p) 1]

< aty||xn = p|* + (1 = @) oul|2en = p||* + (1 - @) (1 = 0,)
x [(1 - AuT) <||xn - p||2 = D illuin - xn||2>
i=1
20,0 =z -l +Any2||F<p>||2]
= (1= (1= a) (1= o)) |2 = pI* = (1 = ) (1 = 0) (1 = 17) Y il i — xal?

i=1

+ 2)‘11/4(1 —ay)(1=0,)(1 = Ay7) ”Zn - P” ||F(P) ” +(1—ay)(1- O'n))‘n,uZHF(p)”z
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< ”xn - P”Z ~(1-a,)(1-0,)(1~- )LnT)ZYi”uin - anZ

i1
+ (1= an) (1 - 0) A | F )|
+20,u(1 = ay) (1 = 0,) (1 = A7) ||zn - p” ||F(p) ||
(3.16)

It follows that
Yi(1 = an) (1= 0) (1 = A T) ||thin — 21>

3.1
< (llxn = pll + [lxne1 = pIDIon = xnaall + A [#2||F(P)||2 + 2|z - p|| || F (p) ||]

for eachi = 1,2,...,m. Note that 0 < y; < 1 fori = 1,2,...,m. From the assumptions,
Lemma 3.2, and the previous inequality, we conclude that |u;, — x4 — 0asn — oo for
eachi=1,2,...,m. Further, we have

m
1zn = xnll < ZYI’””in — x| — 0 (n— c0). (3.18)
i=1

This completes the proof. O

Lemma 3.4. If the following conditions hold:

liml, =0, DAy=o00, D p—Apal<oo,  D|0w—0nal <o, (3.19)
n=1 n=1

n—oo
n=1

then limy, _, oo||x, — Tixy|| = O for all i > 1.
Proof. By the definition of the iterative sequence (1.10), we have

n
Xne1 + D (@it = 27) 0 (2 = Tixn) = (1= @) OpXn = Xy + (1= an) (1= 0)T 2z, (3.20)
i=1

that is,

n
Z(ai_l — ) 0n (X = Tidn) = Xn = Xps1 = Xn + Cn Xy + (1 = @) 0p 2y + (1 = ) (1 = 0,) TV 2,,
i=1

=Xy — X1 + (1= ) (0p — Dxp + (1 — ) (1 — 0,) TV 2,

=x,— X1 + (1 —a,)(1 - G,,)(T’\"zn - xn>.
(3.21)
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Hence, for any p € Q, we get

Z(zxi_l - ai)on<xn —Tixy, Xy — p> =(1-a,1- O'n)(T)‘"zn — Xy, Xp —P) + (X — Xp41,Xn — P)-
i=1
(3.22)

Since each T; is nonexpansive, by (2.2), we have
I Tiotn = 20 ||* < 2(2, = Tixp, X — p). (3.23)

Hence, combining this inequality with (3.22), we get

1 n
5 22(i-1 = a5) ol Tixtw = xul* < (1= ) (1= ) (T2 = X, X0 = ) + {20 = Xns1, Xn = ),
i1

(3.24)

which implies that (note that {a,} is a strictly decreasing sequence)

2(1 - a,)(1 - 0oy)
(aii1 — a;)oy

(1 Tixxn — x4]|* < (Thz, — Xy, %0 —p) + (X = Xps1, Xn — P)

(ais1 — ai)oy

< 2(1 - a,)(1 - 0y)

T Zn — Xn
(aji-1 — ai)oy

llxn = xp41l] ”xn - P"

— + —_—
||xn P|| (aji-1 — ai)oy

(3.25)
From Lemma 3.3, lim,, _, . A, = 0, and the inequality
|74 20 = 0| < 20 =l + Luptl E )1 (3.26)
we obtain
Tim |T“zn — x| =0. (3.27)
Therefore, from Lemma 3.2, (3.25), and (3.27), it follows that
lim [|Tix, = xu[| =0, Vi1 (3.28)

This completes the proof. O
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Next we prove the main results of this paper.

Theorem 3.5. Assume that the following conditions hold:

iml, =0,  Shi=oo,  Shu—dual <oo,
n=1 n=1

n—oo
(3.29)
Sl —vnnl <o, Dllon = Onal < co.
n=1 n=1

Then the sequence {x, } generated by (1.10) converges strongly to an element in Q, which is the unique
solution of the variational inequality VI(F, Q).

Proof. Since VI(F, Q) #0, we can select an element x* € VI(F, Q), which implies that

(F(x*),x*—x)>0, VxeQ. (3.30)
First, we prove that
lim sup(—F(x*), xp+1 —x*) <0. (3.31)

Since {x,} is bounded, there exists a subsequence {x, } of {x,} such that

lim sup(-F(x"), x, — x*) = lim (-F(x"), xn; — x*). (3.32)
jooo

n— oo

Without loss of generality, we may further assume that x,, — x for some x € H. From
Lemmas 3.4 and 2.1, we get X € Fix(T,) for all n > 1. Hence we have X € (2 Fix(T,).
It follows from Lemma 2.5 that each T, is firmly nonexpansive and hence nonexpansive.
Lemma 3.3 shows that ||T,,x, — x,|| — 0asn — oo. Therefore, from Lemma 2.1, it follows
that x € Fix(T},) for each i = 1,...,m, which shows that x € N, Fix(T},). Lemma 2.5 shows
that Fix(T,,) = EP(®;) for each i = 1,...,m. Hence x € N, EP(®;). By using the above
argument, we conclude that

FeQ= ﬁ Fix(T,) NEP(®@1) N --- N EP(®,,). (3.33)

n=1
Noting that x* is a solution of the VI(F, 2), we obtain

lim sup(-F(x*), x, - x*) = (=F(x"), X — x*) <0. (3.34)

n— oo
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It follows from Lemma 2.6 that

1 = x|

[an(xn —-x*) + i(“f—l = an)0n(Tixy — x*) + (1 = ay) (1 - O'n)(T/\nZn - Tj\nx*>:|
i=1

+(1-a,)(1 - on)<T)‘"x* - x*) 2

2

n
ay(x, —x%) + Z(“i—l — )0 (Tixxy — x*) + (1 = ) (1 — ) (TY 2, — T*"x*)
i=1

<

+2(1—ay,)(1 - on)(T)‘"x* — X", X1 — X¥)
2 - 2 2
< ayllxy = |7 + D (@1 = )0l Tixy — x*|* + (1= @) (1 = 03) || TV 2, — Tx”
i=1 (3.35)
+2(1 —a,)(1 = o) bupt(—F(x¥), Xpe1 — X*)

n
< oy = x| + D (@it — ) oullxn — X7 + (1= ) (1 = 04) (1 = AyT)l|z — X7
i=1

+2(1 = an) (1 = o) Aup(=F (x*), Xp41 — x*)

= ay||xn = x" |7 + (1 = an)oul|xn = x*|* + (1 = @) (1 = 0) (1 = A7) |20 — x°|?
+2(1 —a,)(1 = o) bypt{(—F(x*), Xp41 — X™)

< ayllxn = x"[7 + (1 = ap)oullxn = x*|* + (1 = @) (1 = 03) (1 = A7) 120 = x°°
+2(1 = ) (1 = Op) At {~F (x*), X1 = X*)

=(1-(1-an)(1-0n)lnT)llxn — x| + 2(1 — ap) (1 = 00) L (—F (x*), X141 — X*).

Leta, = (1 - a,)(1 - 0,)A,7 and by, = 2(1 — a,) (1 — ) Aup(—F(x*), xps1 — x*) for all n > 1.
Then, from the assumptions and (3.31), we have

© bn
O0<a, <1, Zan = oo, limsup— =0. (3.36)
n=1

n—ow On

Therefore, by applying Lemma 2.3 to (3.35), we conclude that the sequence {x,} strongly
converges to a point x*.

In order to prove the uniqueness of solution of the VI(F,Q), we assume that u* is
another solution of VI(F, Q). Similarly, we can conclude that {x,} converges strongly to a
point u*. Hence x* = u*, that is, x* is the unique solution of VI(F,£). This completes the
proof. O
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As direct consequences of Theorem 3.5, we obtain the following corollaries.

Corollary 3.6. Let C be a nonempty closed and convex subset of a Hilbert space H. For each i =
1,2,...,mlet ®; : Cx C — R be m bifunctions which satisfy conditions (A1)—-(A4) such that
N EP(D;) #0. Let p € (0,2), and let {a,} 5oy C (0, a) be a strictly decreasing sequence with 0 < a <
1, {M}ey € (0,1), {yi}y € (0,1) with 3 yvi =1, 11,72,...,tm € (0,00), and {o,},_; C (a,b)
with 0 < a,b < 1. For an arbitrary initial x; € H, define the iterative sequence {x,} by

Zy = YlTrlxn + YZTrzxn +oeeet YmTrmxn/

(3.37)
Xpe1 = (@ + (1= an)on)xn + (1= ) (1 = 0,) (1 = Aypt)z, Vn 21
If the following conditions hold:
liml, =0, D>Ay=00, > Mu—dpal<oo,  Dllon—0ua|<oo, (3.38)
e n=1 n=1 n=1

then the sequence {x,} converges strongly to an element x* € (; EP(®;).

Proof. Put F = I and T; = I for each i > 1 in Theorem 3.5. Then we know that F is 1-

Lipschitzian and 1-strongly monotone, >, (ai-1—a;)Tix, = (1-a,)x, and TYz, = (1-\, H)Zn.
Therefore, by Theorem 3.5, we conclude the desired result. O

Corollary 3.7. Let C be a nonempty closed and convex subset of a Hilbert space H. Let {T;}7; be
a countable family of nonexpansive mappings of H such that C = N2 Fix(T;) and F : H — H
an operator which is k-Lipschitzian and n-strong monotone on H. Let u € (0,2n/x?). Assume that
VI(F,C) #0. Let {ay}5q C (0,a) with 0 < a < 1 be a strictly decreasing sequence, {A, )}y C (0,1)
and {0, },-, C (a,b) with 0 < a,b < 1. For an arbitrary initial x; € H, define the iterative sequence
{on} by

Xn+l = ApXpy + Z(ai—l —a;)onTixy + (1 —a,) (1 - O'n)(Pan - /\n,uF(Pan))/ vn>1, (3.39)
i1

where ay = 1. If the following conditions hold:

n— oo

liml, =0, DAy=o00, D p—Awal<oo,  D[0n— 0| < oo, (3.40)
n=1 n=1

n=1

then the sequence {x,} strongly converges to an element x* € C, which is the unique solution of the
variational inequality

(F(x*),x-x")>0, VxeC. (3.41)
Proof. Put ®i(x,y) = 0 foreachi = 1,2,...,mand x,y € C.Setr; =1n = - =1, =1
in Theorem 3.5. Then, by (2.6), we have T, x, = T,,x, = --- = T, x, = Pcx,. Therefore, by

Theorem 3.5, we conclude the desired result. O
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Remark 3.8. (1) Recently, many authors have studied the iteration sequences for infinite
family of nonexpansive mappings. But our iterative sequence (1.10) is very different from
others because we do not use W-mapping generated by the infinite family of nonexpansive
mappings and we have no any restriction with the infinite family of nonlinear mappings.

(2) We do not use Suzuki’s lemma [18] for obtaining the result that lim, ., o ||xp1 —
Xn|| = 0. However, many authors have used Suzuki’s lemma [18] for obtaining the result that
limy, —, || Xn41 — X4|| = O in the process of studying the similar algorithms. For example, see
[5, 19, 20] and so on.

4. Application

In this section, we study a kind of multiobjective optimization problem based on the result of
this paper. That is, we give an iterative sequence which solves the following multiobjective
optimization problem with nonempty set of solutions:

min hy(x),
min hp(x), (4.1)
x €C,

where hi(x) and hy(x) are both convex and lower semicontinuous functions defined on a
nonempty closed and convex subset of C of a Hilbert space H. We denote by A the set of
solutions of (4.1) and assume that A #@.
We denote the sets of solutions of the following two optimization problems by A; and
Ay, respectively,
min hy (x)
x€C,
. (4.2)
min h;(x)
xeC.

Obviously, if we find a solution x € A; N A,, then one must have x € A.

Now, let @; and @, be two bifunctions from C x C to R defined by ®;(x,y) =
hi(y) — hi(x) and @y(x,y) = ha(y) — ha(x), respectively. It is easy to see that EP(®D;) = A
and EP(®,) = A,, where EP(®;) denotes the set of solutions of the equilibrium problem:

@i(x,y) >0, YyeC i=12, (4.3)

respectively. In addition, it is easy to see that @; and @, satisfy the conditions (A1)—(A4).
Therefore, by setting m = 2 in Corollary 3.6, we know that, for any initial guess x; € H,

1
hi(y) — hy(uan) + E(y —Uin, Uin —Xn) 20, Yy eC,

1
ha(y) — ha(u2n) + aw —Up, Uy — X)) 20, VyeC, (4.4)

Zn = Yit1n + (1= 1) ti2n,

Xpe1 = (@ + (1= an)on)xp + (1= ) (1= 0,) (1 - Aypt)z, Yn 21
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By Corollary 3.6, we know that the sequence {x,} converges strongly to a solution x* €
EP(®;) N EP(®,) = A N A,, which is a solution of the multiobjective optimization problem
(4.1).
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