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We consider two nonlinear scalar delay differential equations with variable delays and give some
new conditions for the boundedness and stability by means of the contraction mapping principle.
We obtain the differences of the two equations about the stability of the zero solution. Previous
results are improved and generalized. An example is given to illustrate our theory.

1. Introduction

Fixed point theory has been used to deal with stability problems for several years. It

has conquered many difficulties which Liapunov method cannot. While Liapunov’s direct

method usually requires pointwise conditions, fixed point theory needs average conditions.
In this paper, we consider the nonlinear delay differential equations

x'(t) = —a(t)x(t - ni(t)) + b(t)g(x(t - (1)), (1.1)
xX'(t) = —a(t) f(x(t - (1)) + b()g(x(t - (1)), (1.2)

where r(f), r2(t) : [0,00) — [0,00), ¥ = max{r1(0),72(0)}, a,b : [0,00) — R, f,g : R = R
are continuous functions. We assume the following;:

(A1) rq(¢) is differentiable,

(A2) the functions t — i (t),t — r2(t) : [0,00) — [-r, o0) is strictly increasing,

(A3) t—r(t),t—12(t) — cvast — co.
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Many authors have investigated the special cases of (1.1) and (1.2). Since Burton
[1] used fixed point theory to investigate the stability of the zero solution of the equation
x'(t) = —a(t)x(t — r), many scholars continued his idea. For example, Zhang [2] has studied
the equation

X'(t) = —a(t)x(t - r(t)), (1.3)
Becker and Burton [3] have studied the equation
xX'(t) = —a(t) f(x(t - (1)), (14)
Jin and Luo [4] have studied the equation
X' (t) = —a(t)x(t - r1(t)) + b(t)x"3(t - ra(t)). (1.5)

Burton [5] and Zhang [6] have also studied similar problems. Their main results are the
following.

Theorem 1.1 (Burton [1]). Suppose that r(t) = r, a constant, and there exists a constant a < 1 such
that

t t s
j |a(s+r)|ds+f |a(s+r)|e‘fs“(””)d”’[ la(u+r)|duds <a, (1.6)
0

t-r s—r

forall t > 0and [ a(s)ds = oo. Then, for every continuous initial function ¢ : [-r,0] — R, the
solution x(t) = x(t,0,¢) of (1.3) is bounded and tends to zero as t — oo.

Theorem 1.2 (Zhang [2]). Suppose that r is differentiable, the inverse function h(t) of t—r(t) exists,
and there exists a constant a € (0,1) such that for t > 0

@)
t
limtinf J‘ a(h(s)) > —oo, (1.7)
— 00 0
(ii)
t t ; s
f |a(h(s))|ds+f e-fsa<h<">>d"|a(h(s))|f la(h(v))|dvds + 0(s), (1.8)
t-r(t) 0 s-r(s)
where O(t) = fée‘fi“(h(”))dula(s)||r’(s)|ds. Then, the zero solution of (1.3) is
asymptotically stable if and only if
(i)

It a(h(s))ds — o0, ast— oo. (1.9)
0
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Theorem 1.3 (Burton [7]). Suppose that r(t ) = r, a constant. Let f be odd, increasing on [0, L],
and satisfies a Lipschitz condition, and let x — f(x) be nondecreasing on [0, L]. Suppose also that for
each Ly € [0, L], one has

t ¢
|L1 — f(Ly)|sup e’fs“(””)d”|a(s+r)|ds+f(L1)sup la(u+7)|du
£20

0 t>0 Jt-r
t (1.10)
+ f(Ly)sup eﬂﬁwmﬂm@+rnf la(u+r)|duds < Ly,
>0 JO s—r
and there exists | > 0 such that
t
—f a(s+r)ds< ] fort>0. (1.11)
0

Then, the zero solution of (1.4) is stable.

Theorem 1.4 (Becker and Burton [3]). Suppose f is odd, strictly increasing, and satisfies a
Lipschitz condition on an interval [-1,1] and that x — f(x) is nondecreasing on [0,1]. If

t
1

sup a(u)du < =, (1.12)

t2t Jt-r() 2

where ti is the unique solution of t — r(t) = 0, and if a continuous function a : [0,00) — R exists
such that

a(t) =a(t)(1-r'(t)), (1.13)

on [0, o), then the zero solution of (1.5) is stable at t = 0. Furthermore, if f is continuously
differentiable on [-1,1] with f'(0) #0 and

t
’[ a(u)du — o ast— oo, (1.14)
0

then the zero solution of (1.4) is asymptotically stable.

In the present paper, we adopt the contraction mapping principle to study the
boundedness and stability of (1.1) and (1.2). That means we investigate how the stability
property will be when (1.3) and (1.4) are added to the perturbed term b(t) g(x(t — r2(t))).
We obtain their differences about the stability of the zero solution, and we also improve and
generalize the special case r1(f) = r;. Finally, we give an example to illustrate our theory.

2. Main Results

From existence theory, we can conclude that for each continuous initial function ¢ : [-r,0] —
R there is a continuous solution x(f,0,¢) on an interval [0,T) for some T > 0 and
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x(t,0,¢) = ¢(t) on [-7,0]. Let C(S1, S2) denote the set of all continuous functions ¢ : S; — S
and ||¢|| = max{|g(t)| : t € [-r,0]}. Stability definitions can be found in [8].

Theorem 2.1. Suppose that the following conditions are satisfied:

(i) g(0) = 0, and there exists a constant L > 0 so that if |x|, |y| < L, then

lg(x)-gW)| < |x -yl (2.1)

(ii) there exists a constant a € (0,1) and a continuous function h : [-r,00) — R such that

t t s
f |h(s)|ds + f e~ [ du b g)| |h(u)|du ds
0

t-ry () s-r1(s) (2.2)
t t
+ f e MW | h(s - r1(5)) (1 - 71(s)) — a(s)| + [b(s)|]ds < a,
0
(iii)
t
limtinf f h(s)ds > —co. (2.3)
— 00 0
Then, the zero solution of (1.1) is asymptotically stable if and only if
(iv)
t
J‘ h(s)ds — oo, ast— co. (2.4)
0
Proof. First, suppose that (iv) holds. We set
t
J= sup{—j h(s)ds}. (2.5)
£0 0
Let S={¢| P € C([-1,0),R), [Pl = sup,._, [Pp(t)| < oo}, then S is a Banach space.
Multiply both sides of (1.1) by eh ()45 and then integrate from 0 to ¢ to obtain
t t t
x(t) = xpe” fohts)ds o j e‘fsh(”)d”h(s)x(s)ds
° (2.6)

- ft el hadu g (s)x(s — r1(s))ds + J.t el hwdup(s)g(x(s - r2(s)))ds.
0

0
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By performing an integration by parts, we have

t s !
ﬂo:%aMM*+jawwm<j mmmmeds
s-11(s)

0

+ Jd e~ [ hwdu [h(s —71(s)) (1 —7{(s)) —a(s)]|x(s — ri(s))ds (2.7)
0

+Igjnwwm@gu@-mw»Ma
0

or
t t 0 !
) = xoe k0 o000 [ e+ [ misyetsyas
—O) t-r1(t)
t . s
_ J' ¢~ [ hwdupy ) h(u)x(u)du ds
0 s=r1(s) (2.8)
t t
4 f e~ s hwadu [A(s = r1(s)) (1 = 7{(5)) — a(s)]x(s - ri(s))ds
0
t t
+fe%wwww@guw—m@»Ms
0
Let

M= {¢ | ¢ € S,;sup|p(t)| <L, ¢p(t) = ¢(t) for t € [-1,0], p(t) — 0 ast — oo}. (2.9)
t>-r

Then, M is a complete metric space with metric sup,|¢(t) —7(t)| for ¢, € M. Forall ¢ € M,
define the mapping P

(Pd)) (t) = (F(t)/ te [—7‘, 0]/

h(s)y(s)ds + j h(s)g(s)ds

t-r1(t)

t ; 0
U@ﬂﬂ=¢®kﬂﬁ@“—5bmwi
At (0)

t . s
_Lauwdm@Lh®mmwmmmS (2.10)

+ It o~ Je hwdu [A(s —71(s)) (1 =11(s)) — a(s)]p(s — r1(s))ds

0

+ f el hWdnp 5y o (d(s - ry(s)))ds, t3> 0.
0
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By (i) and g(0) =0,

0 t
[(P$)®)] < |l [1 + I_r (0)|h(s)|d5] o Joh(s)ds

t-ri(t) s—r1(s)

+LUt |h(s)|ds + ﬂe—ﬁh(“’d"lms)l " hGwlduds
(2.11)

o [ et s - nen (1 -ri©) - a@)] + ko] ds]
0

0
= ] T
-r1(0)

Thus, when ||¢|| < 6= (1 -a)L/[1+ j?ﬁ ©) |h(s)|ds]e’, |(Pg)(t)| < L.

We now show that (P¢)(t) — 0Oast — oo. Since ¢(t) — O and t —ri(t) — oo as
t — oo, for each € > 0, there exists a T1 > 0 such that t > T; implies |¢p(t — r1(t))| < €. Thus, for
t>Ti,

t
|| = < sf |[h(s)|ds < ae. (2.12)

t-r1 (t)

It h(s)¢(s)ds

t-r (t)

Hence, I; — 0ast — oo. And

t s
|| = J‘ e_ﬁh(”)d”h(s) h(u)¢(u)duds

0 s—ri(s)

T] " S
< f e~ 1m0 (g))| \h(w)||p(u)|duds
)

0 s-ri(s

t . s
+f e hdn gy |h(u)||(u)|duds
T

s—r1(s)

T; ; s t . s
< Lf el hdn gy |h(u)|duds+5f e hdn gy |h(u)|duds,

0 s-r1(s) Ty s-r1(s)
(2.13)
By (ii) and (iv), there exists T> > T; such that t > T, implies
T1 " S
Lf e hdn gy |h(u)|duds < e. (2.14)
0 s-11(8)

Apply (ii) to obtain || < € +2¢ < 2¢. Thus, I, — 0ast — oo. Similarly, we can show that the
rest term in (2.10) approaches zero as t — oo. This yields (P¢)(t) — 0ast — oo, and hence
P$ e M.
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Also, by (ii), P is a contraction mapping with contraction constant a. By the contraction
mapping principle, P has a unique fixed point x in M which is a solution of (1.1) with x(s) =
¢(s) on [-r,0] and x(t) — Oast — oo.

In order to prove stability at t = 0, let ¢ > 0 be given. Then, choose m > 0 so that
m < min{g, L}. Replacing L with m in M, we see there is a 6 > 0 such that [|¢|| < 6 implies
that the unique continuous solution x agreeing with ¢ on [-r, 0] satisfies |x(t)| < m < ¢ for all
t > —r. This shows that the zero solution of (1.1) is asymptotically stable if (iv) holds.

Conversely, suppose (iv) fails. Then, by (iii), there exists a sequence {t,}, t, — oo as
n — oo such that lim,,_, o, fé” h(s)ds = I for some I € R. We may choose a positive constant N
satisfying

ty
-N <| h(s)ds<N, (2.15)
0

for all n > 1. To simplify the expression, we define

w(s) = |h(s —ri(s)) (1 -71(s)) —a(s)| +|b(s)| + h(s) |h(u)|du, (2.16)

s-ri(s)

for all s > 0. By (ii), we have
b
’[ e Js h(”)d”w(s)ds <a. (2.17)
0
This yields

e .
f ek h(u)duw(s)ds < aeld’ hadu < aeN. (2.18)
0

The sequence {fé” el hwduey(s)ds} is bounded, so there exists a convergent subsequence. For
brevity of notation, we may assume that

b
lim el hdu g, (s)ds = Y, (2.19)

n—oo 0

for some y € R* and choose a positive integer k so large that

ty s 6
fy h(w)du 0
L el w(s)ds < N (2.20)

3

for all n > k, where &, > 0 satisfies 26, JeN +a < 1.
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By (iii), J in (2.5) is well defined. We now consider the solution x(t) = x(t,t, ¢) of
(1.1) with ¢ (tr) = 60 and |g(s)| < Og for s < tz. We may choose ¢ so that [x(t)| < L for t > t;
and

t—

gt - |

tE— 141 tf

h(s)y(s)ds > %60. (2.21)

It follows from (2.10) with x(t) = (Px)(t) that for n > t,

tn tn
> %606% e —f e I 1w iy () dg
t

x(t,) — J‘tn h(s)x(s)ds

ty=r1(tn)

k

[y[ tYl g
= %606_1? MO0 _ = fi hd f eI e)ds

te
tn t— tn
_ e h(u)du <%60 _ oo hwdu f el h(u)duw(s)ds> (2.22)
tr

o
eh h(”>d”w(s)ds>

> ek h(u)du <160 N
2 t

k

t
- [ h(u)du
3

1
> —Ope > ZGOe‘ZN > 0.

1
4

On the other hand, if the solution of (1.1) x(t) = x(t,t;,¢) — Oast — oo, since t, —r(t,) —
oo asn — oo and (ii) holds, we have

x(t) - f " he)x(s)ds — 0 asn—s (2.23)

ta=11(tn)

which contradicts (2.22). Hence, condition (iv) is necessary for the asymptotically stability of
the zero solution of (1.1). The proof is complete. O

When r(t) = 1, a constant, h(t) = a(t + r1), we can get the following.

Corollary 2.2. Suppose that the following conditions are satisfied:

(i) g(0) = 0, and there exists a constant L > 0 so that if |x|, |y| < L, then

lg(x) - g(y)| < |x -yl (2.24)
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(ii) there exists a constant a € (0,1) such that for all t > 0, one has

t t ; s
f |a(s+r1)|ds+f e’js“(””l)d”|a(s+r1)|J. la(u +r1)|duds
0 s—11

o (2.25)
t t
+I e~ atmdn|p(s)|ds < a,
0
(iii)
t
limtinf I a(s+r1)ds > —oo. (2.26)
Then, the zero solution of (1.1) is asymptotically stable if and only if
(iv)
t
f a(s+ry)ds — o, ast— oo. (2.27)
0

Remark 2.3. We can also obtain the result that x(t) is bounded by L on [-r, o). Our results
generalize Theorems 1.1 and 1.2.

Theorem 2.4. Suppose that a continuous function a : [0,00) — R exists such that a(t) = a(t)(1 -
r1(t)) and that the inverse function h(t) of t — ry(t) exists. Suppose also that the following conditions
are satisfied:

(i) there exists a constant J > 0 such that sup,,{- fé a(h(s))ds} <],

(ii) there exists a constant L > O such that f(x),x — f(x), g(x) satisfy a Lipschitz condition
with constant K > 0 on an interval [-L, L],

(iii) f and g are odd, increasing on [0, L]. x — f(x) is nondecreasing on [0, L],

(iv) for each Ly € (0, L], one has

t . ¢
|y~ f(Ly)|sup | e Jsa@Dd |G (n(s))|ds + f(L;)sup |a(h(s))|ds
>0 J0 >0 Jt-r(t)
(2.28)

t t ~
+g(L)sup | e LEEDMp(s)|ds < Ly.
>0 JO

Then, the zero solution of (1.2) is stable.
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Proof. By (iv), there exists a € (0, 1) such that

t

t t ~
|L— f(L)|sup | e L:@rdu G (n(s))|ds + f(L)sup |a(h(s))|ds
>0 JO >0 Jt-r(t)
t (2.29)
+g(Lysup | e Aty (s)|ds < L.
>0 JO
Let S be the space of all continuous functions ¢ : [-r,0) — R such that
1P|, = sup{e*dK*Z) JlarENIbEDds | d(£)| : ¢ € [—r, oo)} < oo, (2.30)

where d > 3 is a constant. Then, (S,|:|g) is a Banach space, which can be verified with
Cauchy’s criterion for uniform convergence.
The equation (1.2) can be transformed as

t

(1) = ~a(h(0) f(x(1) + o f A(h(s)) f (x(s))ds + b(D)g(x(t — ra(1))

t-r1 (t)

= —a(h(t))x(t)+ a(h(t)) [x(t) - f(x(1))] (2.31)
t
+% a(h(s))f(x(s))ds +b(t)g(x(t - r2(t))).
t=ri(t)

By the variation of parameters formula, we have

0
x(t) = xoe_yg a(h(s))ds _ e—jga(h(s))dsj‘
-r1(0)

a(h(s))f (x(s))ds + f e LAt [ (5) - f(x(s))]ds

0

’ f | a(h(s))f(x(s))ds + f e Ay (5) o(x(s - 12(s)))ds.
t—Tl(t) 0
(2.32)

Let

M= {¢ ¢ €S, ?ip|¢(t)| SL gt)=¢(t), te [—T/O]}, (2.33)
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then M is a complete metric space with metric | — 7|, for ¢,71 € M. For all ¢ € M, define
the mapping P

(PP)(t) = ¢(t), te[-1,0],

0
(P)(t) = gr(0)e hah)ds _ o= foalh(s)ds f

=r1(

) a(h(s))f (¢(s))ds

. (2.34)
+J‘ e~ L ahdu g5y _ £(¢(s))]ds
0

+ f a(h(s)) f($(s))ds + f e~ [ athw)duy g g(P(s —12(s)))ds.
t—11 (t) 0
By (i), (iii), and (2.29), we have

0 t ¢ _
[(P)(B)] < |lglle’ +e || f (o) I_ (0)|ﬁ(h(s))|ds+|L—f(L)|st1>1£> 0e’js_rl(ga(h(u))dua(h(s))ds

t t t o~
+ f(L)sup |la(h(s))|ds + g(L)sup | els@Ddu|p(s)|ds
t>0 JO

>0 t—r1 (1)

0
<lglle' <l @)l | @nos vat.
(2.35)

Thus, there exists 6 € (0, L) such that e/ [1+ K6 _[?rl o 1a(h(s))lds] < (1-a)L and |(P¢)(t)| < L.
Hence, P$ € M.
We now show that P is a contraction mapping in M. Forall ¢, € M,

t t o~
|(Pp) (1) - (Pn)(B)] < JO e AR G (h(s)) g (s) — £ ($(s)) = n(s) + f(n(s)) |ds
t
o[ TOIFGE) - Fate)lds 036)

t ‘o
+L@L”WW%@mg@@—m@»—gmw-w®»W&
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Since

e BN ([ 303 ) [5) £ (9(6)) ~ ) + £ (D s
0

t
< f e‘fﬁﬁ(h(”””’”m(h(s))|I<|¢(s) —1(s) |e—(d1<+2) Jo (a@(h(w))|+|b(u)|)du
0

x g~ (dK+2) ¥ (la(h@))+bG))du g o

t
< J‘ e~ [ ah)du 5y (5)) | Ke(@K+2) J;<|a<h<u>>\+|b<u)|>dud5|¢ — 1)
0

1
< Eld’“’lh«

t
e~ (dK+2) [o((@(h(s))|+[b(s))ds f

t—T’l

(t)lﬁ(h(S))llf(di(S)) - f(n(s))ds

t S 1~ £~
< J‘ 1(h(s)) K |(5) — 1(s) e~ @K T @hullbtihdu p-(dk2) [ (@h)l+ lbahdu g
t—rl(t)

t
< J‘ |a(h(s))|Ke (@K+2) {i(lﬁ(h(u))lﬂb(u)l)duds|¢ _ ,1|K
t=ry(t)

1
<—|p-n

K’

t o~ t t o~
e RO [ ¢ A0 b(6)]|g (s = ra(5)) = (s = ra( o) lds

s5-17(s)

t
< J‘ e‘ﬁa(h(”))d“|b(s)|K|<])(s —12(s)) = 51(s = 12(5)) |e—(dK+2) Jo 7 (@(h ()l +|bGo)]) du
0

e @K+ [ (Iﬁ(h(u>)|+|b(u)I)due—(dK+2) j;(|a(h(u))\+|b(u)|)duds

t
< J‘ e~ [ ath)du gy 5| K g=(@K+2) fﬁ(\a<h<u>)|+|b<u>\>duds| P
0

1
SH|¢—71

KI
(2.37)

we have e~ (@K+2) fé(la(h(s))“lb(s)l)dsl(Pq3) (t) = (P)(t)| £ (3/d)|$p — 7li- That means |P¢p — Py| <
(3/d)|¢ — 1. Hence, P is a contraction mapping in M with constant 3/d. By the contraction
mapping principle, P has a unique fixed point x in M, which is a solution of (1.2) with
x(s) = ¢(s) on [-r,0] and sup,._,|x(t)| < L.

In order to prove stability at t = 0, let & > 0 be given. Then, choose m > 0 so that
m < min{e, L}. Replacing L with m in M, we see there is a 6 > 0 such that ||¢|| < 6 implies
that the unique continuous solution x agreeing with ¢ on [-r, 0] satisfies [x(f)| < m < ¢ for all
t > —r. This shows that the zero solution of (1.2) is stable. That completes the proof. O
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When r4(t) = r1, a constant, we have the following.

Corollary 2.5. Suppose that the following conditions are satisfied:

(i) there exists a constant J > 0 such that sup,,{- fé a(s+mr)ds} <],

(ii) there exists a constant L > 0 such that f(x),x — f(x), g(x) satisfy a Lipschitz condition
with constant K > 0 on an interval [-L, L],

(iii) f and g are odd, increasing on [0, L]. x — f(x) is nondecreasing on [0, L],
(iv) for each Ly € (0, L], one has

t . t
|Li — f(Ly)|sup | e J-a@ | q(s 1 1) |ds + f(L;)sup la(u +r)|du
>0 JO

>0 t-r1

t (2.38)
+g(Ly)sup | e J-atmdnp(s)|ds < L.
20 Jo
Then, the zero solution of the equation
x'(t) = —a(t) f(x(t =) + b(t)g(x(t —2(t))) (2.39)

is stable.

Corollary 2.6. Suppose that the following conditions are satisfied:

(i) there exists a constant J > 0 such that sup,{- fé a(s)ds} <],

(ii) there exists a constant L > 0 such that f(x), x — f(x), g(x) satisfy a Lipschitz condition
with constant K > 0 on an interval [-L, L],

(iii) f and g are odd, increasing on [0, L]. x — f(x) is nondecreasing on [0, L],
(iv) for each Ly € (0, L], one has

t t t t
|Li — f(L1)|sup | e )-a@|a(s)|ds + g(Li)sup | e 29 b(s)|ds < L. (2.40)
t>0 JO t>0 JO

Then, the zero solution of
x'(t) = —a(t) f(x(t)) + b(t)g(x(t - (1)) (2.41)

is stable.

Remark 2.7. The zero solution of (1.2) is not as asymptotically stable as that of (1.1). The key
is that M is not complete under the weighted metric when added the condition to M that
¢(t) — Oast — oo.

Remark 2.8. Theorem 2.4 makes use of the techniques of Theorems 1.3 and 1.4.
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3. An Example
We use an example to illustrate our theory. Consider the following differential equation:

X (t) = —at)x(t -1 (t)) + b(t) g (x(t - r2(1))- 3.1)
where () = 0.281t, » € C(R*,R), g(x) = x®, a(t) =1/(0.719t + 1), and b(t) = usint/(t+1),

u > 0. This equation comes from [4].
Choosing h(t) =1.2/(t + 1), we have

' W) fi1
f |h(s)|ds = f ds=121In——— <0.39,
t-ri(t) o719t S+1 0.719t + 1

t t
L e~ 1w (s — 1 (5)) (1 - 7,(5)) - a(s)|ds
[l e p(s)| [° - |h(u)|duds < 0.39,

s-11(s)

(3.2)
— J't e Isi(l.z/(qul))du 1 - 12 X 0719
0 0.719s + 1

1-12% 0719 1 " ¢y 12
0719551 b€ " —ds <0.1592,

t . /’l
fo el hwdu|p(5)|ds < 15"

Let a := 0.396 + 0.396 + 0.1592 + /1.2, when p is sufficiently small, « < 1. Then, the condition
(ii) of Theorem 2.1 is satisfied.

Let L = +/3/3, then the condition (i) of Theorem 2.1 is satisfied.

And [ h(s)ds = [;(1.2/(s + 1))ds = 1.2 In(t + 1), then the condition (iii) and (iv) of
Theorem 2.1 are satisfied.

According to Theorem 2.1, the zero solution of (3.1) is asymptotically stable.
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