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For a monotone operator T , we shall show weak convergence of Rockafellar’s proximal point
algorithm to some zero of T and strong convergence of the perturbed version of Rockafellar’s
to PZu under some relaxed conditions, where PZ is the metric projection from H onto Z = T−10.
Moreover, our proof techniques are simpler than some existed results.

1. Introduction

Throughout this paper, let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
and let I be on identity operator inH. We shall denote by N the set of all positive integers, by
Z the set of all zeros of T , that is, Z = T−10 = {x ∈ D(T); 0 ∈ Tx} and by F(T) the set of all
fixed points of T , that is, F(T) = {x ∈ E; Tx = x}. When {xn} is a sequence in E, then xn → x

(resp., xn ⇀ x, xn
∗
⇀ x) will denote strong (resp., weak, weak∗) convergence of the sequence

{xn} to x.
Let T be an operator with domain D(T) and range R(T) in H. Recall that T is said to

be monotone if

〈
x − y, x′ − y′〉 ≥ 0, ∀x, y ∈ D(T), x′ ∈ Tx, y′ ∈ Ty. (1.1)

A monotone operator T is said to be maximal monotone if T is monotone and R(I + rT) = H
for all r > 0.
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In fact, theory of monotone operator is very important in nonlinear analysis and
is connected with theory of differential equations. It is well known (see [1]) that many
physically significant problems can be modeled by the initial-value problems of the form

x′(t) + Tx(t) = 0,

x(0) = x0,
(1.2)

where T is a monotone operator in an appropriate space. Typical examples where such
evolution equations occur can be found in the heat and wave equations or Schrodinger
equations. On the other hand, a variety of problems, including convex programming and
variational inequalities, can be formulated as finding a zero of monotone operators. Then the
problem of finding a solution x ∈ H with 0 ∈ Tx has been investigated by many researchers;
see, for example, Bruck [2], Rockafellar [3], Brézis and Lions [4], Reich [5, 6], Nevanlinna
and Reich [7], Bruck and Reich [8], Jung and Takahashi [9], Khang [10], Minty [11], Xu [12],
and others. Some of them dealt with the weak convergence of (1.4) and others proved strong
convergence theorems by imposing strong assumptions on T .

One popular method of solving 0 ∈ Tx is the proximal point algorithm of Rockafellar
[3]which is recognized as a powerful and successful algorithm in finding a zero of monotone
operators. Starting from any initial guess x0 ∈ H, this proximal point algorithm generates a
sequence {xk} given by

xk+1 = JTck(xk + ek), (1.3)

where JTr = (I + rT)−1 for all r > 0 is the resolvent of T on the space H. Rockafellar’s
[3] proved the weak convergence of his algorithm (1.3) provided that the regularization
sequence {ck} remains bounded away from zero and the error sequence {ek} satisfies
the condition

∑+∞
k=0 ‖ek‖ < ∞. Güler’s example [13] however shows that in an infinite-

dimensional Hilbert space, Rochafellar’s algorithm (1.3) has only weak convergence.
Recently several authors proposed modifications of Rochafellar’s proximal point algorithm
(1.3) to have strong convergence. For examples, Solodov and Svaiter [14] and Kamimura and
Takahashi [15] studied a modified proximal point algorithm by an additional projection at
each step of iteration. Lehdili and Moudafi [16] obtained the convergence of the sequence
{xk} generated by the algorithm

xk+1 = JTk
λk
xk, k ≥ 0, (1.4)

where Tk = μkI + T, μk > 0, is viewed as a Tikhonov regularization of T . Using the technique
of variational distance, Lehdili and Moudafi [16] were able to prove convergence theorems
for the algorithm (1.4) and its perturbed version, under certain conditions imposed upon the
sequences {λk} and {μk}. For a maximal monotone operator T , Xu [12] and Song and Yang
[17] used the technique of nonexpansive mappings to get convergence theorems for {xk}
defined by the perturbed version of the algorithm (1.4):

xk+1 = JTrk(tku + (1 − tk)xk). (1.5)
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In this paper, under more relaxed conditions on the sequences {rk} and {tk}, we shall
show that the sequence {xk} generated by (1.5) converges strongly to PZu ∈ T−10 (where PZ

is the metric projection from H onto Z) and the sequence {xk} generated by (1.3) weakly
converges to some x∗ ∈ T−10. Moreover, our proof techniques are simpler than those of
Lehdili and Moudafi [16], Xu [12], and Song and Yang [17].

2. Preliminaries and Basic Results

Let T be a monotone operator with Z/= ∅. We use JTr and Ar to denote the resolvent and
Yosida’s approximation of T , respectively. Namely,

JTr = (I + rT)−1, Ar =
I − JTr

r
, r > 0. (2.1)

For JTr and Ar , the following is well known. For more details, see [18, Pages 369–400]
or [3, 19].

(i) Arx ∈ TJTr x for all x ∈ R(I + rT);

(ii) ‖Arx‖ ≤ |Tx| = inf{‖y‖;y ∈ Tx} for all x ∈ D(T) ∩ R(I + rT);

(iii) JTr : R(I + rT) → D(I + rT) = D(T) is a single-valued nonexpansive mapping for
each r > 0 (i.e., ‖JTr x − JTr y‖ ≤ ‖x − y‖ for all x, y ∈ R(I + rT));

(iv) Z = T−10 = F(JTr ) = {x ∈ D(Jr); JTr x = x} is closed and convex;

(v) (The Resolvent Identity) For r > 0 and t > 0 and x ∈ E,

JTr x = JTt

(
t

r
x +

(
1 − t

r

)
JTr x

)
. (2.2)

In the rest of this paper, it is always assumed that Z is nonempty so that the metric
projection PZ from H onto Z is well defined. It is known that PZ is nonexpansive and
characterized by the inequality: given x ∈ H and v ∈ Z; then v = PZx if and only if

〈x − v, y − v〉 ≤ 0, ∀y ∈ Z. (2.3)

In order to facilitate our investigation in the next section we list a useful lemma.

Lemma 2.1 (see Xu [20, Lemma 2.5]). Let {ak} be a sequence of nonnegative real numbers
satisfying the property:

ak+1 ≤ (1 − λk)ak + λkβk + σk, ∀k ≥ 0, (2.4)

where {λk}, {βk}, and {σk} satisfy the conditions (i)
∑∞

k=0 λk = ∞; (ii) either lim supk→∞βk ≤ 0 or∑∞
k=0 |λkβk| < ∞; (iii) σk ≥ 0 for all k and

∑∞
k=0 σk < ∞. Then {ak} converges to zero as k → ∞.
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3. Strongly Convergence Theorems

Let T be a monotone operator on a Hilbert spaceH. Then JTr is a single-valued nonexpansive
mapping from R(I + rT) to D(I + rT) = D(T) ∩D(I) = D(T). When K is a nonempty closed
convex subset of H such that D(T) ⊂ K ⊂ R(I + rT) for all r > 0 (here D(T) is closure of
D(T)), then we have tku + (1 − tk)xk ∈ K ⊂ R(I + rkT) for u, xk ∈ K and all k ∈ N, and hence
the following iteration is well defined

xk+1 = JTrk(tku + (1 − tk)xk). (3.1)

Next we will show strong convergence of {xk} defined by (3.1) to find a zero of T . For
reaching this objective, we always assume Z = T−10/= ∅ in the sequel.

Theorem 3.1. Let T be a monotone operator on a Hilbert space H with Z = T−10/= ∅. Assume that
K is a nonempty closed convex subset of H such that D(T) ⊂ K ⊂ R(I + rT) for all r > 0 and for an
anchor point u ∈ K and an initial value x0 ∈ K, {xk} is iteratively defined by (3.1). If {tk} ⊂ (0, 1)
and {rk} ⊂ (0,+∞) satisfy

(i) limk→∞ tk = 0;

(ii)
∑+∞

k=0 tk = ∞;

(iii) limk→∞ rk = ∞,

then the sequence {xk} converges strongly to PZu, where PZ is the metric projection from H onto Z.

Proof. The proof consists of the following steps:

Step 1. The sequence {xk} is bounded. Let yk = tku+(1− tk)xk, then xk+1 = JTrkyk and for some
z ∈ T−10 = F(JTr ), we have

‖xk+1 − z‖ =
∥∥∥JTrkyk − z

∥∥∥ ≤ ∥∥yk − z
∥∥ = ‖tku + (1 − tk)xk − z‖

≤ tk‖u − z‖ + (1 − tk)‖xk − z‖
≤ max{‖xk − z‖, ‖u − z‖}
...

≤ max{‖x0 − z‖, ‖u − z‖}.

(3.2)

So, the sequences {xk}, {yk}, and {JTrkyk} are bounded.

Step 2. limk→∞‖xk − JTr xk‖ = 0 for each r > 0. Since

∥∥∥xk+1 − JTr xk+1

∥∥∥ =
∥∥∥JTrkyk − JTr J

T
rkyk

∥∥∥ =
∥∥∥
(
I − JTr

)
JTrkyk

∥∥∥

= r
∥∥∥ArJ

T
rkyk

∥∥∥ ≤ r
∣∣∣TJTrkyk

∣∣∣ ≤ r
∥∥Arkyk

∥∥

= r

∥∥yk − JTrkyk

∥∥

rk
−→ 0 (k −→ ∞),

(3.3)
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we have

lim
k→∞

∥
∥
∥xk − JTr xk

∥
∥
∥ = 0. (3.4)

Step 3. lim supk→∞〈u − PZu, xk − PZu〉 ≤ 0. Indeed, we can take a subsequence {xki} of {xk}
such that

lim sup
k→∞

〈u − PSu, xk − PSu〉 = lim
i→∞

〈u − PSu, xki − PSu〉. (3.5)

We may assume that xki ⇀ x∗ by the reflexivity of H and the boundedness of {xk}. Then
x∗ ∈ Z = T−10 = F(JTr ). In fact, since

∥∥∥xki − JTr x
∗
∥∥∥
2
=
∥∥∥xki − x∗ + x∗ − JTr x

∗
∥∥∥
2

= ‖xki − x∗‖2 + 2
〈
xki − x∗, x∗ − JTr x

∗
〉
+
∥∥∥x∗ − JTr x

∗
∥∥∥
2
,

∥∥∥xki − JTr x
∗
∥∥∥ =

∥∥∥xki − JTr xki + JTr xki − JTr x
∗
∥∥∥

≤
∥∥∥xki − JTr xki

∥∥∥ +
∥∥∥JTr xki − JTr x

∗
∥∥∥

≤
∥∥∥xki − JTr xki

∥∥∥ + ‖xki − x∗‖,

(3.6)

then, for some constant L > 0, we have

‖xki − x∗‖2 + 2
〈
xki − x∗, x∗ − JTr x

∗
〉
+
∥∥∥x∗ − JTr x

∗
∥∥∥
2

=
∥∥∥xki − JTr x

∗
∥∥∥
2 ≤

(∥∥∥xki − JTr xki

∥∥∥ + ‖xki − x∗‖
)2

=
(∥∥∥xki − JTr xki

∥∥∥ + 2‖xki − x∗‖
)∥∥∥xki − JTr xki

∥∥∥ + ‖xki − x∗‖2 ≤ L
∥∥∥xki − JTr xki

∥∥∥ + ‖xki − x∗‖2.
(3.7)

Thus,

2〈xki − x∗, x∗ − JTr x
∗〉 +

∥∥∥x∗ − JTr x
∗
∥∥∥
2 ≤ L

∥∥∥xki − JTr xki

∥∥∥. (3.8)

Take i → ∞ on two sides of the above equation by means of (3.4), we must have
‖x∗ − JTr x

∗‖2 = 0. So, x∗ ∈ Z. Hence, noting the projection inequality (2.3), we obtain

lim sup
k→∞

〈u − PZu, xk − PZu〉 = lim
i→∞

〈u − PZu, xki − PZu〉 = 〈u − PZu, x
∗ − PZu〉 ≤ 0. (3.9)
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Step 4. xk → PZu. Indeed,

‖xk+1 − PZu‖2 =
∥
∥
∥JTrk(tku + (1 − tk)xk) − PZu

∥
∥
∥
2

=
∥
∥
∥JTrkyk − PZu

∥
∥
∥
2 ≤ ∥

∥yk − PZu
∥
∥2

≤ ‖tk(u − PZu) + (1 − tk)(xk − PZu)‖2

≤ (1 − tk)2‖xk − PZu‖2 + t2k‖u − PZu‖2 + 2tk(1 − tk)〈u − PZu, xk − PZu〉.

(3.10)

Therefore,

‖xk+1 − PZu‖2 ≤ (1 − tk)‖xk − PZu‖2 + tkβk, (3.11)

where βk = tk‖u − PZu‖2 + 2(1 − tk)〈u − PZu, xk − PZu〉. So, an application of Lemma 2.1 onto
(3.11) yields the desired result.

Theorem 3.2. Let T,H,Z,K, {xk}, {tk} be as Theorem 3.1, the condition (iii) limk→∞rk = ∞ is
replaced by the following condition:

+∞∑

k=0

|tk+1 − tk| < ∞; 0 < lim inf
k→∞

rk,
∞∑

k=0

∣∣∣∣1 −
rk
rk+1

∣∣∣∣ < +∞. (3.12)

Then the sequence {xk} converges strongly to PZu, where PZ is the metric projection from H onto Z.

Proof. From the proof of Theorem 3.1, we can observe that Steps 1, 3 and 4 still hold. So we
only need show to Step 2: limk→∞‖xk − JTr xk‖ = 0 for each r > 0.

We first estimate ‖xk+1 − xk‖. From the resolvent identity (2.2), we have

JTrkyk = JTrk−1

(
rk−1
rk

yk +
(
1 − rk−1

rk

)
JTrkyk

)
. (3.13)

Therefore, for a constant M > 0 with M ≥ max{‖u‖, ‖xk‖, ‖JTrkyk‖, ‖yk‖},

‖xk+1 − xk‖ =
∥∥∥JTrkyk − JTrk−1yk−1

∥∥∥ ≤
∥∥∥∥
rk−1
rk

yk +
(
1 − rk−1

rk

)
JTrkyk − yk−1

∥∥∥∥

≤
∥∥∥∥
rk−1
rk

(
yk − yk−1

)
+
(
1 − rk−1

rk

)(
JTrkyk − yk−1

)∥∥∥∥
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≤ ∥
∥yk − yk−1

∥
∥ +

∣
∣
∣
∣1 −

rk−1
rk

∣
∣
∣
∣

∥
∥
∥JTrkyk − yk

∥
∥
∥

≤ |tk − tk−1|(‖u‖ + ‖xk−1‖) + (1 − tk)‖xk − xk−1‖ + 2M
∣
∣
∣
∣1 −

rk−1
rk

∣
∣
∣
∣

≤ (1 − tk)‖xk − xk−1‖ + 2M
(
|tk − tk−1| +

∣
∣
∣
∣1 −

rk−1
rk

∣
∣
∣
∣

)
.

(3.14)

It follows from Lemma 2.1 that

lim
k→∞

‖xk+1 − xk‖ = 0. (3.15)

As ‖yk − JTrkyk‖ = ‖yk − xk+1‖ ≤ tk‖u − xk+1‖ + (1 − tk)‖xk − xk+1‖, then

lim
k→∞

∥∥∥yk − JTrkyk

∥∥∥ = 0. (3.16)

Since 0 < lim infk→∞rk, then there exists ε > 0 and a positive integer N > 0 such that for all
k > N, rk ≥ ε. Thus for each r > 0, we also have

∥∥∥xk+1 − JTr xk+1

∥∥∥ =
∥∥∥JTrkyk − JTr J

T
rkyk

∥∥∥ =
∥∥∥
(
I − JTr

)
JTrkyk

∥∥∥

= r
∥∥∥ArJ

T
rkyk

∥∥∥ ≤ r
∣∣∣TJTrkyk

∣∣∣ ≤ r
∥∥Arkyk

∥∥

= r

∥∥yk − JTrkyk

∥∥

rk
≤ r

ε

∥∥∥yk − JTrkyk

∥∥∥ −→ 0 (k −→ ∞);

(3.17)

we have limk→∞‖xk − JTr xk‖ = 0.

Corollary 3.3. Let H, {tk}, {rk}, Z be as Theorem 3.1 or 3.2. Suppose that T is a maximal monotone
operator onH and for x0, u ∈ H, {xk} is defined by (3.1). Then the sequence {xk} converges strongly
to PZu, where PZ is the metric projection from H onto Z.

Proof. Since T is a maximal monotone, then T is monotone and satisfies the condition D(T) ⊂
H = R(I + rT) for all r > 0. Putting K = H, the desired result is reached.

Corollary 3.4. Let H, {tk}, {rk}, Z be as Theorem 3.1 or 3.2. Suppose that T is a monotone operator
on H satisfying the condition D(T) ⊂ R(I + rT) for all r > 0 and for x0, u ∈ D(T), {xk} is defined
by (3.1). IfD(T) is convex, then the sequence {xk} converges strongly to PZu, where PZ is the metric
projection from H onto Z.

Proof. TakingK = D(T), following Theorem 3.1 or 3.2, we easily obtain the desired result.
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4. Weakly Convergence Theorems

For a monotone operator T , if D(T) ⊂ R(I + rT) for all r > 0 and x0 ∈ D(T), then the iteration
xk+1 = JTrkxk (k ∈ N) is well defined. Next we will show weak convergence of {xk} under
some assumptions.

Theorem 4.1. Let T be a monotone operator on a Hilbert space H with Z = T−10/= ∅. Assume that
D(T) ⊂ R(I + rT) for all r > 0 and for an initial value x0 ∈ D(T), iteratively define

xk+1 = JTrkxk. (4.1)

If {rk} ⊂ (0,+∞) satisfies

lim
k→∞

rk = ∞, (4.2)

then the sequence {xk} converges weakly to some x∗ ∈ Z.

Proof. Take z ∈ Z = T−10 = F(JTr ), we have

‖xk+1 − z‖ =
∥∥∥JTrkxk − z

∥∥∥ ≤ ‖xk − z‖. (4.3)

Therefore, {‖xk−z‖} is nonincreasing and bounded below, and hence the limit limk→∞ ‖xk−z‖
exists for each z ∈ Z. Further, {xk} is bounded. So we have

∥∥∥xk+1 − JTr xk+1

∥∥∥ =
∥∥∥JTrkxk − JTr J

T
rkxk

∥∥∥ =
∥∥∥
(
I − JTr

)
JTrkxk

∥∥∥

= r
∥∥∥ArJ

T
rkxk

∥∥∥ ≤ r
∣∣∣TJTrkxk

∣∣∣ ≤ r‖Arkxk‖

= r

∥∥xk − JTrkxk

∥∥

rk
=

r‖xk − xk+1‖
rk

−→ 0 (k −→ ∞).

(4.4)

Hence,

lim
k→∞

∥∥∥xk − JTr xk

∥∥∥ = 0. (4.5)

As {xk} is weakly sequentially compact by the reflexivity of H, and hence we may assume
that there exists a subsequence {xki} of {xk} such that xki ⇀ x∗. Using the proof technique of
Step 3 in Theorem 3.1, we must have that x∗ ∈ Z = T−10.

Now we prove that {xn} converges weakly to x∗. Supposed that there exists another
subsequence {xkj} of {xk} which weakly converges to some y ∈ K. We also have y ∈ Z =
T−10. Because limk→∞‖xk − z‖ exists for each z ∈ Z = T−10 and

∥∥∥xkj − y
∥∥∥
2
=
∥∥∥xkj − x∗

∥∥∥
2
+ 2

〈
xkj − x∗, x∗ − y

〉
+
∥∥x∗ − y

∥∥2
,

‖xki − x∗‖2 = ∥∥xki − y
∥∥2 + 2

〈
xki − y, y − x∗〉 +

∥∥y − x∗∥∥2
,

(4.6)
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thus,

lim
k→∞

∥
∥xk − y

∥
∥2 = lim sup

j→∞

∥
∥
∥xkj − y

∥
∥
∥
2

= lim sup
j→∞

(∥
∥
∥xkj − x∗

∥
∥
∥
2
+ 2

〈
xkj − x∗, x∗ − y

〉
+
∥
∥x∗ − y

∥
∥2

)

≤ lim
k→∞

‖xk − x∗‖2 − ∥
∥x∗ − y

∥
∥2

.

(4.7)

Similarly, we also have

lim
k→∞

‖xk − x∗‖2 ≤ lim
k→∞

∥
∥xk − y

∥
∥2 − ∥

∥x∗ − y
∥
∥2

. (4.8)

Adding up the above two equations, we must have −‖x∗ − y‖2 ≥ 0. So, x∗ = y.
In a summary, we have proved that the set {xk} is weakly sequentially compact and

each cluster point in the weak topology equals to x∗ ∈ Z. Hence, {xk} converges weakly to
x∗ ∈ T−10. The proof is complete.

Theorem 4.2. Let T be a maximal monotone operator on a Hilbert space H with Z = T−10/= ∅. For
an initial value x0 ∈ H, iteratively define

xk+1 = JTrk(xk + ek). (4.9)

If {rk} ⊂ (0,+∞) and ek ∈ H satisfy

lim
k→∞

rk = ∞,
+∞∑

k=0

‖ek‖ < +∞, (4.10)

then the sequence {xk} converges weakly to some x∗ ∈ Z.

Proof. Take z ∈ Z = T−10 = F(JTr ) and yk = xk + ek, we have

‖xk+1 − z‖ =
∥∥∥JTrkyk − z

∥∥∥ ≤ ‖xk − z‖ + ‖ek‖. (4.11)

It follows from Liu [21, Lemma 2] that the limit limk→∞‖xk − z‖ exists for each z ∈ Z and
hence both {xk} and {yk} are bounded. So we have

∥∥∥xk+1 − JTr xk+1

∥∥∥ =
∥∥∥JTrkyk − JTr J

T
rkyk

∥∥∥ =
∥∥∥
(
I − JTr

)
JTrkyk

∥∥∥

= r
∥∥∥ArJ

T
rkyk

∥∥∥ ≤ r
∣∣∣TJTrkyk

∣∣∣ ≤ r
∥∥Arkyk

∥∥

= r

∥∥yk − JTrkyk

∥∥

rk
=

r
∥∥yk − xk+1

∥∥

rk
−→ 0 (k −→ ∞).

(4.12)
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Hence,

lim
k→∞

∥
∥
∥xk − JTr xk

∥
∥
∥ = 0. (4.13)

The remainder of the proof is the same as Theorem 4.1; we omit it.
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