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We introduce a new system of general variational inequalities in Banach spaces. The equivalence
between this system of variational inequalities and fixed point problems concerning the
nonexpansive mapping is established. By using this equivalent formulation, we introduce an
iterative scheme for finding a solution of the system of variational inequalities in Banach spaces.
Our main result extends a recent result acheived by Yao, Noor, Noor, Liou, and Yaqoob.

1. Introduction

Let X be a real Banach space, and X∗ be its dual space. Let U = {x ∈ X : ‖x‖ = 1} denote the
unit sphere of X. X is said to be uniformly convex if for each ε ∈ (0, 2] there exists a constant
δ > 0 such that for any x, y ∈ U,

∥
∥x − y

∥
∥ ≥ ε implies

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
≤ 1 − δ. (1.1)

The norm on X is said to be Gâteaux differentiable if the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(1.2)
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exists for each x, y ∈ U and in this case X is said to have a uniformly Frechet differentiable norm
if the limit (1.2) is attained uniformly for x, y ∈ U and in this case X is said to be uniformly
smooth. We define a function ρ : [0,∞) → [0,∞), called the modulus of smoothness of X, as
follows:

ρ(τ) = sup

{

1
2
(∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥
) − 1 : x, y ∈ X, ‖x‖ = 1,

∥
∥y

∥
∥ = τ

}

. (1.3)

It is known that X is uniformly smooth if and only if limτ → 0ρ(τ)/τ = 0. Let q be a fixed real
number with 1 < q ≤ 2. Then a Banach space X is said to be q-uniformly smooth if there exists
a constant c > 0 such that ρ(τ) ≤ cτq for all τ > 0. For q > 1, the generalized duality mapping
Jq : X → 2X

∗
is defined by

Jq(x) =
{

f ∈ X∗ :
〈

x, f
〉

= ‖x‖q, ∥∥f∥∥ = ‖x‖q−1
}

, ∀x ∈ X. (1.4)

In particular, if q = 2, the mapping J2 is called the normalized duality mapping and usually, we
write J2 = J . If X is a Hilbert space, then J = I. Further, we have the following properties of
the generalized duality mapping Jq:

(1) Jq(x) = ‖x‖q−2J2(x) for all x ∈ X with x /= 0,

(2) Jq(tx) = tq−1Jq(x) for all x ∈ X and t ∈ [0,∞),

(3) Jq(−x) = −Jq(x) for all x ∈ X.

It is known that if X is smooth, then J is single-valued, which is denoted by j. Recall
that the duality mapping j is said to be weakly sequentially continuous if for each {xn} ⊂ X
with xn → x weakly, we have j(xn) → j(x) weakly-∗. We know that if X admits a weakly
sequentially continuous duality mapping, then X is smooth. For the details, see the work of
Gossez and Lami Dozo in [1].

Let C be a nonempty closed convex subset of a smooth Banach space X. Recall that a
mapping A : C → X is said to be accretive if

〈

Ax −Ay, j
(

x − y
)〉 ≥ 0 (1.5)

for all x, y ∈ C. A mapping A : C → X is said to be α-strongly accretive if there exists a
constant α > 0 such that

〈

Ax −Ay, j
(

x − y
)〉 ≥ α

∥
∥x − y

∥
∥
2 (1.6)

for all x, y ∈ C. A mapping A : C → X is said to be α-inverse strongly accretive if there exists a
constant α > 0 such that

〈

Ax −Ay, j
(

x − y
)〉 ≥ α

∥
∥Ax −Ay

∥
∥
2 (1.7)

for all x, y ∈ C. A mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ C. The fixed point set of T is denoted by F(T) := {x ∈ C : Tx = x}.
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LetD be a nonempty subset of C. A mapping Q : C → D is said to be sunny if

Q(Qx + t(x −Qx)) = Qx, (1.8)

whenever Qx+ t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A mappingQ : C → D is called a retraction
if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from C onto D if Q
is a retraction from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny
nonexpansive retraction from C onto D. It is well known that if X is a Hilbert space, then a
sunny nonexpansive retractionQC is coincident with the metric projection from X onto C.

Conveying an idea of the classical variational inequality, denoted by VI(C,A), is to find
an x∗ ∈ C such that

〈

Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C, (1.9)

whereX = H is a Hilbert space andA is a mapping fromC intoH . The variational inequality
has been widely studied in the literature; see, for example, the work of Chang et al. in [2],
Zhao and He [3], Plubtieng and Punpaeng [4], Yao et al. [5] and the references therein.

Let A,B : C → H be two mappings. In 2008, Ceng et al. [6] considered the following
problem of finding (x∗, y∗) ∈ C ×C such that

〈

λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈

μBx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C,
(1.10)

which is called a general system of variational inequalities, where λ > 0 and μ > 0 are two
constants. In particular, if A = B, then problem (1.10) reduces to finding (x∗, y∗) ∈ C ×C such
that

〈

λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈

μAx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C,
(1.11)

which is defined by Verma [7] and is called the new system of variational inequalities. Further,
if we add up the requirement that x∗ = y∗, then problem (1.11) reduces to the classical
variational inequality VI(C,A).

In 2006, Aoyama et al. [8] first considered the following generalized variational
inequality problem in Banach spaces. Let A : C → X be an accretive operator. Find a point
x∗ ∈ C such that

〈

Ax∗, j(x − x∗)
〉 ≥ 0, ∀x ∈ C. (1.12)

The problem (1.12) is very interesting as it is connected with the fixed point problem for
nonlinear mapping and the problem of finding a zero point of an accretive operator in Banach
spaces, see [9–11] and the references therein.
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Aoyama et al. [8] introduced the following iterative algorithm in Banach spaces:

x0 = x ∈ C,

yn = QC(xn − λnA)xn,

xn+1 = anxn + (1 − an)yn, n ≥ 0,

(1.13)

where QC is a sunny nonexpansive retraction from X onto C. Then they proved a
weak convergence theorem which is generalized simultaneously theorems of Browder and
Petryshyn [12] and Gol’shteı̆n and Tret’yakov [13]. In 2008, Hao [14] obtained a strong
convergence theorem by using the following iterative algorithm:

x0 ∈ C,

yn = bnxn + (1 − bn)QC(I − λnAxn),

xn+1 = anu + (1 − an)yn, n ≥ 0,

(1.14)

where {an}, {bn} are two sequences in (0, 1) and u ∈ C.
Very recently, in 2009, Yao et al. [5] introduced the following system of general

variational inequalities in Banach spaces. For given two operators A,B : C → X, they
considered the problem of finding (x∗, y∗) ∈ C × C such that

〈

Ay∗ + x∗ − y∗, j(x − x∗)
〉 ≥ 0, ∀x ∈ C,

〈

Bx∗ + y∗ − x∗, j
(

x − y∗)〉 ≥ 0, ∀x ∈ C,
(1.15)

which is called the system of general variational inequalities in a real Banach space. They proved a
strong convergence theorem by using the following iterative algorithm:

x0 ∈ C,

yn = QC(xn − Bxn),

xn+1 = anu + bnxn + cnQC

(

yn −Ayn

)

, n ≥ 0,

(1.16)

where {an}, {bn}, and {cn} are three sequences in (0, 1) and u ∈ C.
In this paper, motivated and inspired by the idea of Yao et al. [5] and Cheng et al. [6].

First, we introduce the following system of variational inequalities in Banach spaces.
Let C be a nonempty closed convex subset of a real Banach space X. Let Ai : C → X

for all i = 1, 2, 3 be threemappings. We consider the following problem of finding (x∗, y∗, z∗) ∈
C ×C × C such that

〈

λ1A1y
∗ + x∗ − y∗, j(x − x∗)

〉 ≥ 0, ∀x ∈ C,

〈

λ2A2z
∗ + y∗ − z∗, j

(

x − y∗)〉 ≥ 0, ∀x ∈ C,

〈

λ3A3x
∗ + z∗ − x∗, j(x − z∗)

〉 ≥ 0, ∀x ∈ C,

(1.17)



Fixed Point Theory and Applications 5

which is called a new general system of variational inequalities in Banach spaces, where λi > 0 for
all i = 1, 2, 3. In particular, if A3 = 0, z∗ = x∗, and λi = 1 for i = 1, 2, 3, then problem (1.17)
reduces to problem (1.15). Further, if A3 = 0, z∗ = x∗, then problem (1.17) reduces to the
problem (1.10) in a real Hilbert space. Second, we introduce iteration process for finding a
solution of a new general system of variational inequalities in a real Banach space. Starting
with arbitrary points v, x1 ∈ C and let {xn}, {yn}, and {zn} be the sequences generated by

zn = QC(xn − λ3A3xn),

yn = QC(zn − λ2A2zn),

xn+1 = anv + bnxn + (1 − an − bn)QC

(

yn − λ1A1yn

)

, n ≥ 1,

(1.18)

where λi > 0 for all i = 1, 2, 3 and {an}, {bn} are two sequences in (0, 1). Using the
demiclosedness principle for nonexpansive mapping, we will show that the sequence {xn}
converges strongly to a solution of a new general system of variational inequalities in Banach
spaces under some control conditions.

2. Preliminaries

In this section, we recall the well known results and give some useful lemmas that will be
used in the next section.

Lemma 2.1 (see [15]). Let X be a q-uniformly smooth Banach space with 1 ≤ q ≤ 2. Then

∥
∥x + y

∥
∥
q ≤ ‖x‖q + q

〈

y, Jq(x)
〉

+ 2
∥
∥Ky

∥
∥
q (2.1)

for all x, y ∈ X, where K is the q-uniformly smooth constant of X.

The following lemma concerns the sunny nonexpansive retraction.

Lemma 2.2 (see [16, 17]). Let C be a closed convex subset of a smooth Banach space X. Let D be a
nonempty subset of C andQ : C → D be a retraction. ThenQ is sunny and nonexpansive if and only
if

〈

u −Qu, j
(

y −Qu
)〉 ≤ 0, (2.2)

for all u ∈ C and y ∈ D.

The first result regarding the existence of sunny nonexpansive retractions on the fixed
point set of a nonexpansive mapping is due to Bruck [18].

Remark 2.3. If X is strictly convex and uniformly smooth and if T : C → C is a nonexpansive
mapping having a nonempty fixed point set F(T), then there exists a sunny nonexpansive
retraction of C onto F(T).
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Lemma 2.4 (see [19]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + δn, n ≥ 1, (2.3)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

Lemma 2.5 (see [20]). Let {xn} and {yn} be bounded sequences in a Banach spaceX and let {bn} be
a sequence in [0, 1]with 0 < lim infn→∞bn ≤ lim supn→∞bn < 1. Suppose xn+1 = (1−bn)yn+bnxn

for all integers n ≥ 1 and lim supn→∞(‖yn+1 −yn‖−‖xn+1 −xn‖) ≤ 0. Then, limn→∞‖yn −xn‖ = 0.

Lemma 2.6 (see [21]). Let X be a uniformly convex Banach space, C a nonempty closed convex
subset of X, and T : C → C be an nonexpansive mapping. Then I − T is demiclosed at 0, that is, if
xn → x weakly and xn − Txn → 0 strongly, then x ∈ F(T).

3. Main Results

In this section, we establish the equivalence between the new general system of variational
inequalities (1.17) and some fixed point problem involving a nonexpansive mapping. Using
the demiclosedness principle for nonexpansive mapping, we prove that the iterative scheme
(1.18) converges strongly to a solution of a new general system of variational inequalities
(1.17) in a Banach space under some control conditions. In order to prove our main result,
the following lemmas are needed.

The next lemmas are crucial for proving the main theorem.

Lemma 3.1. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach spaceX.
Let the mappingA : C → X be α-inverse strongly accretive. Then, we have

∥
∥(I − λA)x − (I − λA)y

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + 2λ

(

λK2 − α
)∥
∥Ax −Ay

∥
∥
2
, (3.1)

where K is the 2-uniformly smooth constant of X. In particular, if α ≥ λK2, then I − λA is a
nonexpansive mapping.

Proof. Indeed, for all x, y ∈ C, from Lemma 2.1, we have

∥
∥(I − λA)x − (I − λA)y

∥
∥
2 =

∥
∥(x − y) − λ(Ax −Ay)

∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2λ

〈(

Ax −Ay
)

, j
(

x − y
)〉

+ 2K2λ2∥∥Ax −Ay
∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2λα

∥
∥Ax −Ay

∥
∥
2 + 2K2λ2∥∥Ax −Ay

∥
∥
2

=
∥
∥x − y

∥
∥
2 + 2λ

(

λK2 − α
)∥
∥Ax −Ay

∥
∥
2
.

(3.2)

It is clear that, if α ≥ λK2, then I − λA is a nonexpansive mapping.



Fixed Point Theory and Applications 7

Lemma 3.2. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space
X. Let QC be the sunny nonexpansive retraction from X onto C. Let Ai : C → X be an αi-inverse
strongly accretive mapping for i = 1, 2, 3. Let G : C → C be a mapping defined by

G(x) = QC[QC(QC(x − λ3A3x) − λ2A2QC(x − λ3A3x))

−λ1A1QC(QC(x − λ3A3x) − λ2A2QC(x − λ3A3x))], ∀x ∈ C.
(3.3)

If αi ≥ λiK
2 for all i = 1, 2, 3, then G : C → C is nonexpansive.

Proof. For all x, y ∈ C, we have

∥
∥G(x) −G

(

y
)∥
∥ = ‖QC[QC(QC(I − λ3A3)x − λ2A2QC(I − λ3A3)x)

−λ1A1QC(QC(I − λ3A3)x − λ2A2QC(I − λ3A3)x)]

−QC

[

QC

(

QC(I − λ3A3)y − λ2A2QC(I − λ3A3)y
)

− λ1A1QC

(

QC(I − λ3A3)y − λ2A2QC(I − λ3A3)y
)]∥
∥

≤ ‖QC(QC(I − λ3A3)x − λ2A2QC(I − λ3A3)x)

− λ1A1QC(QC(I − λ3A3)x − λ2A2QC(I − λ3A3)x)

− [

QC

(

QC(I − λ3A3)y − λ2A2QC(I − λ3A3)y
)

− λ1A1QC

(

QC(I − λ3A3)y − λ2A2QC(I − λ3A3)y
)]∥
∥

= ‖(I − λ1A1)QC(I − λ2A2)QC(I − λ3A3)x

−(I − λ1A1)QC(I − λ2A2)QC(I − λ3A3)y
∥
∥.

(3.4)

From Lemma 3.1, we have (I−λ1A1)QC(I−λ2A2)QC(I−λ3A3) is nonexpansive which implies
by (3.4) that G is nonexpansive.

Lemma 3.3. Let C be a nonempty closed convex subset of a real smooth Banach space X. Let QC be
the sunny nonexpansive retraction from X onto C. Let Ai : C → X be three nonlinear mappings. For
given (x∗, y∗, z∗) ∈ C × C × C, (x∗, y∗, z∗) is a solution of problem (1.17) if and only if x∗ ∈ F(G),
y∗ = QC(z∗ −λ2A2z∗) and z∗ = QC(x∗ −λ3A3x∗), where G is the mapping defined as in Lemma 3.2.

Proof. Note that we can rewrite (1.17) as

〈

x∗ − (

y∗ − λ1A1y
∗), j(t − x∗)

〉 ≥ 0, ∀t ∈ C,

〈

y∗ − (z∗ − λ2A2z
∗), j

(

t − y∗)〉 ≥ 0, ∀t ∈ C,

〈

z∗ − (x∗ − λ3A3x
∗), j(t − z∗)

〉 ≥ 0, ∀t ∈ C.

(3.5)
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From Lemma 2.2, we can deduce that (3.5) is equivalent to

x∗ = QC

(

y∗ − λ1A1y
∗),

y∗ = QC(z∗ − λ2A2z
∗),

z∗ = QC(x∗ − λ3A3x
∗).

(3.6)

It is easy to see that (3.6) is equivalent to x∗ = Gx∗, y∗ = QC(z∗ − λ2A2z∗) and z∗ = QC(x∗ −
λ3A3x∗).

From now on we denote by Ω∗ the set of all fixed points of the mapping G. Now we
prove the strong convergence theorem of algorithm (1.18) for solving problem (1.17).

Theorem 3.4. Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space X which admits a weakly sequentially continuous duality mapping. Let QC be
the sunny nonexpansive retraction from X onto C. Let the mappings Ai : C → X be αi-inverse
strongly accretive with αi ≥ λiK2, for all i = 1, 2, 3 and Ω∗ /= ∅. For given x1, v ∈ C, let the sequence
{xn} be generated iteratively by (1.18). Suppose the sequences {an} and {bn} are two sequences in
(0, 1) such that

(C1) limn→∞an = 0 and
∑∞

n=1 an = ∞;

(C2) 0 < lim infn→∞bn ≤ lim supn→∞bn < 1.

Then {xn} converges strongly toQ′v whereQ′ is the sunny nonexpansive retraction of C ontoΩ∗.

Proof. Let x∗ ∈ Ω∗ and tn = QC(yn − λ1A1yn), it follows from Lemma 3.3 that

x∗ = QC[QC(QC(x∗ − λ3A3x
∗) − λ2A2QC(x∗ − λ3A3x

∗))

−λ1A1QC(QC(x∗ − λ3A3x
∗) − λ2A2QC(x∗ − λ3A3x

∗))].
(3.7)

Put y∗ = QC(z∗ − λ2A2z∗) and z∗ = QC(x∗ − λ3A3x∗). Then x∗ = QC(y∗ − λ1A1y∗) and

xn+1 = anv + bnxn + (1 − an − bn)tn. (3.8)

From Lemma 3.1, we have I − λiAi (i = 1, 2, 3) is nonexpansive. Therefore

‖tn − x∗‖ = ∥
∥QC

(

yn − λ1A1yn

) −QC

(

y∗ − λ1A1y
∗)∥∥

≤ ∥
∥yn − y∗∥∥

= ‖QC(zn − λ2A2zn) −QC(z∗ − λ2A2z
∗)‖

≤ ‖zn − z∗‖
= ‖QC(xn − λ3A3xn) −QC(x∗ − λ3A3x

∗)‖
≤ ‖xn − x∗‖.

(3.9)
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It follows that

‖xn+1 − x∗‖ = ‖anv + bnxn + (1 − an − bn)tn − x∗‖
≤ an‖v − x∗‖ + bn‖xn − x∗‖ + (1 − an − bn)‖tn − x∗‖
≤ an‖v − x∗‖ + bn‖xn − x∗‖ + (1 − an − bn)‖xn − x∗‖
= an‖v − x∗‖ + (1 − an)‖xn − x∗‖.

(3.10)

By induction, we have

‖xn+1 − x∗‖ ≤ max{‖v − x∗‖, ‖x1 − x∗‖}. (3.11)

Therefore, {xn} is bounded. Hence {yn}, {zn}, {tn}, {A1yn}, {A2zn}, and {A3xn} are also
bounded. By nonexpansiveness of QC and I − λiAi (i = 1, 2, 3), we have

‖tn+1 − tn‖ =
∥
∥QC

(

yn+1 − λ1A1yn+1
) −QC

(

yn − λ1A1yn

)∥
∥

≤ ∥
∥yn+1 − yn

∥
∥

= ‖QC(zn+1 − λ2A2zn+1) −QC(zn − λ2A2zn)‖
≤ ‖zn+1 − zn‖
= ‖QC(xn+1 − λ3A3xn+1) −QC(xn − λ3A3xn)‖
≤ ‖xn+1 − xn‖.

(3.12)

Let wn = (xn+1 − bnxn)/(1 − bn), n ∈ �. Then xn+1 = bnxn + (1 − bn)wn for all n ∈ � and

wn+1 −wn =
xn+2 − bn+1xn+1

1 − bn+1
− xn+1 − bnxn

1 − bn

=
an+1v + (1 − an+1 − bn+1)tn+1

1 − bn+1
− anv + (1 − an − bn)tn

1 − bn

=
an+1

1 − bn+1
(v − tn+1) +

an

1 − bn
(tn − v) + tn+1 − tn.

(3.13)

By (3.12) and (3.13), we have

‖wn+1 −wn‖ − ‖xn+1 − xn‖ ≤ an+1

1 − bn+1
‖v − tn+1‖ + an

1 − bn
‖tn − v‖

+ ‖tn+1 − tn‖ − ‖xn+1 − xn‖

≤ an+1

1 − bn+1
‖v − tn+1‖ + an

1 − bn
‖tn − v‖.

(3.14)
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This together with (C1) and (C2), we obtain that

lim sup
n→∞

‖wn+1 −wn‖ − ‖xn+1 − xn‖ ≤ 0. (3.15)

Hence, by Lemma 2.5, we get ‖xn −wn‖ → 0 as n → ∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1 − bn)‖wn − xn‖ = 0. (3.16)

Since

xn+1 − xn = an(v − xn) + (1 − an − bn)(tn − xn), (3.17)

therefore

‖tn − xn‖ −→ 0 as n −→ ∞. (3.18)

Furthermore, by Lemma 3.2, we have G : C → C is nonexpansive. Thus, we have

‖tn −G(tn)‖ =
∥
∥QC

(

yn − λ1A1yn

) −G(tn)
∥
∥

= ‖QC[QC(zn − λ2A2zn) − λ1A1QC(zn − λ2A2zn)] −G(tn)‖
= ‖QC[QC(QC(xn − λ3A3xn) − λ2A2QC(xn − λ3A3xn))

− λ1A1QC(QC(xn − λ3A3xn) − λ2A2QC(xn − λ3A3xn))] −G(tn)‖
= ‖G(xn) −G(tn)‖ ≤ ‖xn − tn‖,

(3.19)

which implies ‖tn −G(tn)‖ → 0 as n → ∞.
Since

‖xn −G(xn)‖ ≤ ‖xn − tn‖ + ‖tn −G(tn)‖ + ‖G(tn) −G(xn)‖
≤ ‖xn − tn‖ + ‖tn −G(tn)‖ + ‖tn − xn‖,

(3.20)

therefore

lim
n→∞

‖xn −G(xn)‖ = 0. (3.21)

Let Q′ be the sunny nonexpansive retraction of C onto Ω∗. Now we show that

lim sup
n→∞

〈

v −Q′v, j
(

xn −Q′v
)〉 ≤ 0. (3.22)
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To prove (3.22), since {xn} is bounded, we can choose a subsequence {xni} of {xn} which
converges weakly to x and

lim sup
n→∞

〈

v −Q′v, j
(

xn −Q′v
)〉

= lim
i→∞

〈

v −Q′v, j
(

xni −Q′v
)〉

. (3.23)

From Lemma 2.6 and (3.21), we obtain x ∈ Ω∗. Now, from Lemma 2.2, (3.23), and the weakly
sequential continuity of the duality mapping j, we have

lim sup
n→∞

〈v −Q′v, j
(

xn −Q′v
)〉 = lim

i→∞
〈

v −Q′v, j
(

xni −Q′v
)〉

=
〈

v −Q′v, j
(

x −Q′v
)〉 ≤ 0.

(3.24)

From (3.9), we have

∥
∥xn+1 −Q′v

∥
∥
2 =

〈

anv + bnxn + (1 − an − bn)tn −Q′v, j
(

xn+1 −Q′v
)〉

= an〈v −Q′v, j
(

xn+1 −Q′v
)〉 + bn

〈

xn −Q′v, j
(

xn+1 −Q′v
)〉

+ (1 − an − bn)
〈

tn −Q′v, j
(

xn+1 −Q′v
)〉

≤ an〈v −Q′v, j
(

xn+1 −Q′v
)〉 + bn

(∥
∥xn −Q′v

∥
∥
∥
∥j

(

xn+1 −Q′v
)∥
∥
)

+ (1 − an − bn)
(∥
∥tn −Q′v

∥
∥
∥
∥j

(

xn+1 −Q′v
)∥
∥
)

= an〈v −Q′v, j
(

xn+1 −Q′v
)〉 + bn

(∥
∥xn −Q′v

∥
∥
∥
∥xn+1 −Q′v

∥
∥
)

+ (1 − an − bn)
(∥
∥tn −Q′v

∥
∥
∥
∥xn+1 −Q′v

∥
∥
)

≤ an〈v −Q′v, j
(

xn+1 −Q′v
)〉 + 1

2
bn
(∥
∥xn −Q′v

∥
∥
2 +

∥
∥xn+1 −Q′v

∥
∥
2
)

+
1
2
(1 − an − bn)

(∥
∥tn −Q′v

∥
∥
2 +

∥
∥xn+1 −Q′v

∥
∥
2
)

≤ an〈v −Q′v, j
(

xn+1 −Q′v
)〉 + 1

2
bn
(∥
∥xn −Q′v

∥
∥2 +

∥
∥xn+1 −Q′v

∥
∥2
)

+
1
2
(1 − an − bn)

(∥
∥xn −Q′v

∥
∥
2 +

∥
∥xn+1 −Q′v

∥
∥
2
)

= an

〈

v −Q′v, j
(

xn+1 −Q′v
)〉

+
1
2
(1 − an)

(∥
∥xn −Q′v

∥
∥
2 +

∥
∥xn+1 −Q′v

∥
∥
2
)

,

(3.25)

which implies that

∥
∥xn+1 −Q′v

∥
∥
2 ≤ (1 − an)

∥
∥xn −Q′v

∥
∥
2 + 2an

〈

v −Q′v, j
(

xn+1 −Q′v
)〉

. (3.26)

It follows from Lemma 2.4, (3.24), and (3.26) that {xn} converges strongly to Q′v. This
completes the proof.
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Letting A3 = 0 and λi = 1 for i = 1, 2, 3 in Theorem 3.4, we obtain the following result.

Corollary 3.5 (see [5, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly
convex and 2-uniformly smooth Banach space X which admits a weakly sequentially continuous
duality mapping. Let QC be the sunny nonexpansive retraction from X onto C. Let the mappings
Ai : C → X be αi-inverse strongly accretive with αi ≥ K2, for all i = 1, 2 and Ω∗ /= ∅. For given
x1, v ∈ C, and let {xn}, {yn} be the sequences generated by

yn = QC(xn −A2xn),

xn+1 = anv + bnxn + (1 − an − bn)QC

(

yn −A1yn
)

, n ≥ 1,
(3.27)

where {an}, {bn} are two sequences in (0, 1) such that

(C1) limn→∞an = 0 and
∑∞

n=1 an = ∞;

(C2) 0 < lim infn→∞bn ≤ lim supn→∞bn < 1.

Then {xn} converges strongly toQ′v whereQ′ is the sunny nonexpansive retraction of C ontoΩ∗.
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