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We introduce a new general iterative method by using the K-mapping for finding a common fixed
point of a finite family of nonexpansive mappings in the framework of Hilbert spaces. A strong
convergence theorem of the purposed iterative method is established under some certain control
conditions. Our results improve and extend the results announced by many others.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. A mapping
T of C into itself is called nonexpansive if |Tx - Ty|| < ||x — y|| for all x, y € C. A point x € C is
called a fixed point of T provided that Tx = x. We denote by F(T) the set of fixed points of T
(i.e, F(T) = {x € H : Tx = x}). Recall that a self-mapping f : C — C is a contraction on C, if
there exists a constant a € (0,1) such that ||fx — fy|| < a||x — y|| for all x,y € C. A bounded
linear operator A on H is called strongly positive with coefficient ¥ if there is a constant y > 0
with the property

(Ax,x) >Y||lx|>, VYxeH. (1.1)

In 1953, Mann [1] introduced a well-known classical iteration to approximate a fixed point of
a nonexpansive mapping. This iteration is defined as

Xpi1 = ApXy + (1 —a,)T(x,), n>0, (1.2)
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where the initial guess x is taken in C arbitrarily, and the sequence {a,},- is in the interval

[0,1]. But Mann’s iteration process has only weak convergence, even in a Hilbert space

setting. In general for example, Reich [2] showed that if E is a uniformly convex Banach space

and has a Frehet differentiable norm and if the sequence {a,} is such that =% | &, (1-a,) = oo,

then the sequence {x,} generated by process (1.2) converges weakly to a point in F(T).

Therefore, many authors try to modify Mann'’s iteration process to have strong convergence.
In 2005, Kim and Xu [3] introduced the following iteration process:

xo = x € C arbitrarily chosen,

Yn = Pnxn+ (1= Pn)Txy, (1.3)
Xn+1 = Ot + (1 — o) Y.

They proved in a uniformly smooth Banach space that the sequence {x,} defined by (1.3)
converges strongly to a fixed point of T under some appropriate conditions on {a, } and {S,}.

In 2008, Yao et al. [4] alsomodified Mann's iterative scheme 1.2 to get a strong
convergence theorem.

Let {T;} Y, be a finite family of nonexpansive mappings with F := (\\_, F(T;) # . There
are many authors introduced iterative method for finding an element of F which is an optimal
point for the minimization problem. For n > N, T, is understood as T(smod n) With the mod
function taking valuesin {1,2,..., N}. Let u be a fixed element of H.

In 2003, Xu [5] proved that the sequence {x,} generated by

Xpi1 = (1 — €4 A)Tpa1 Xy + €psatt (1.4)
converges strongly to the solution of the quadratic minimization problem
1
min=(Ax, x) — (x,u), (1.5)
xeF 2
under suitable hypotheses on €, and under the additional hypothesis
F=F(TT---Tn) = F(ONTy---Tn-1) =--- = F(ToT3 - - - TNTh). (1.6)

In 1999, Atsushiba and Takahashi [6] defined the mapping W, as follows:

Uno =1,

Ui =YuiTr + (1= yau1)1,

Unp = Yn2Tolya + (1= yup)1,

Uns = Yn3TsUnz + (1 - yus3)1, 1.7)

Uy N-1=YuN-1TN = WUy N2+ (1= yun-1)],
Wy =UuN = YuNTNUnn-1 + (1= yun) T,
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where {yy }fv € [0,1]. This mapping is called the W-mapping generated by T3, T>, ..., Ty and
Yni,Yn2,+--,YnN-

In 2000, Takahashi and Shimoji [7] proved that if X is strictly convex Banach space,
then F(W,,) = NN, F(T;), where 0 < \,; <1,i=1,2,...,N.

In 2007,Shang et al. [8] introduced a composite iteration scheme as follows:

xo = x € C arbitrarily chosen,
Yn = PuXn + (1= ) Wy, (1.8)

Xpi1 = Ay f (%) + (I = 2, A) Yy,

where f € []¢ is a contraction, and A is a linear bounded operator.

Note that the iterative scheme (1.8) is not well-defined, because x,(n > 1) may not lie
in C, so W,x,, is not defined. However, if C = H, the iterative scheme (1.8) is well-defined
and Theorem 2.1 [8] is obtained. In the case C # H, we have to modify the iterative scheme
(1.8) in order to make it well-defined.

In 2009, Kangtunyakarn and Suantai [9] introduced a new mapping, called K-
mapping, for finding a common fixed point of a finite family of nonexpansive mappings. For
a finite family of nonexpansive mappings {T;} Y, and sequence {y,,;}" in [0,1], the mapping
K, : C — Cis defined as follows:

Ui =YuiT1+ (1= yu1)1,

Upo = YupToluy + (1= Yu2)Unp,

Uz = YnsTsUnp + (1= yu3)Unp,
(1.9)

UpN-1 = YuN-1TN = WUy N2 + (1 = yu,n-1)UnN-2,
Ky =UpN = Y NTNUpN-1+ (1 = yun ) Up N1

The mapping K, is called the K-mapping generated by Ty, ..., Tn and yu1,Yn2,-- -, YuN-
In this paper, motivated by Kim and Xu [3], Marino and Xu [10], Xu [5], Yao et al. [4],
andShang et al. [8], we introduce a composite iterative scheme as follows:

xo = x € C arbitrarily chosen,

Yn = ﬂnxn + (1 - ﬂn)Knxnr (110)
Xni1 = Pc (‘anf(xn) +(I - “nA)yn)/

where f € ] is a contraction, and A is a bounded linear operator. We prove, under certain
appropriate conditions on the sequences {a,} and {f,} that {x, } defined by (1.10) converges
strongly to a common fixed point of the finite family of nonexpansive mappings {T;}2;, which
solves a variational inequaility problem.
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In order to prove our main results, we need the following lemmas.

Lemma 1.1. For all x,y € H, there holds the inequality
e+ yIl” <<l +2(y, x +y), xyeH. (1.11)

Lemma 1.2 (see [11]). Let {x,} and {z,} be bounded sequences in a Banach space X, and let {f,}
be a sequence in [0,1] with 0 < liminf, B, <limsup, B, < 1. Suppose that

Xn+l = ﬂnxn + (1 - ﬂn)zn (1.12)
for all integer n > 0, and

limsup(||zns1 = zull = [[Xns1 = xull) <O. (1.13)

n—oo

Then limy, _, || xn — 24| = 0.

Lemma 1.3 (see [5]). Assume that {a,} is a sequence of nonnegative real numbers such that a,.1 <
(1 =vyw)an + 6, n >0, where {y,} C (0,1) and {6,} is a sequence in R such that

(1) X0t ¥n = o,

(i) limsup,,_,  6,/yn <007 3721 64| < oo.

Then lim,, _, ,a, = 0.

Lemma 1.4 (see [10]). Let A be a strongly positive linear bounded operator on a Hilbert space H
with coefficient y and 0 < p < ||A||™Y. Then ||I - pA| <1 - py.

Lemma 1.5 (see [10]). Let H be a Hilbert space. Let A be a strongly positive linear bounded operator
with coefficient ¥ > 0. Assume that 0 <y <y/a. Let T : C — C be a nonexpansive mapping with a
fixed point x; € C of the contraction C 3 x — tyf(x) + (1 — tA)Tx. Then x; converges strongly as
t — 0 to a fixed point x of T, which solves the variational inequality

((A-yf)X,z-%)>0, ze€F(T). (1.14)

Lemma 1.6 (see [1]). Demiclosedness principle. Assume that T is nonexpansive self~mapping of
closed convex subset C of a Hilbert space H. If T has a fixed point, then I — T is demiclosed. That is,
whenever {x,} is a sequence in C weakly converging to some x € C and the sequence {(I — T)x,}
strongly converges to some y, it follows that (I — T)x = y. Here, I is identity mapping of H.

Lemma 1.7 (see [9]). Let C be a nonempty closed convex subset of a strictly convex Banach space.
Let (T;}N, be a finite family of nonexpansive mappings of C into itself with (\~, F(T;) # @, and let
M, ..., AN be real numbers such that 0 < A; <1 foreveryi=1,...,N —1and 0 < An < 1. Let K be
the K-mapping of C into itself generated by Ty, ..., Tn and Ay, ..., A\n. Then F(K) = NN, F(T).
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By using the same argument as in [9, Lemma 2.10], we obtain the following lemma.

Lemma 1.8. Let C be a nonempty closed convex subset of Banach space. Let {T; )}, be a finite family of
nonexpanxive mappings of C into itself and {\,;)~, sequences in [0,1] such that \,; — A;,as n —
o, (i =1,2,...,N). Moreover, for every n € N, let K and K,, be the K -mappings generated by
T, Ty, ..., Tn and M, Ay, ..., AN, and Ty, T, ..., Tn and Ay1, Ao, ..., Ay N, respectively. Then, for
every bounded sequence x, € C, one has lim,, _, || Kpx, — Kx,|| = 0.

Let H be real Hilbert space with inner product (-,-), C a nonempty closed convex
subset of H. Recall that the metric (nearest point) projection Pc from a real Hilbert space H
to a closed convex subset C of H is defined as follows. Given that x € H, Pcx is the only
point in C with the property ||x — Pcx|| = inf{||[x - y|| : y € C}. Below Lemma 1.9 can be found
in any standard functional analysis book.

Lemma 1.9. Let C be a closed convex subset of a real Hilbert space H. Given that x € H and y € C
then

(i) y = Pex if and only if the inequality (x —y,y —z) > 0forall z € C,
(ii) Pc is nonexpansive,
(iii) (x -y, Pcx — Pcy) > ||Pcx — Pey|| forall x,y € H,
(iv) (x = Pcx,Pcx—y) >0 forall x € Hand y € C.

2. Main Result

In this section, we prove strong convergence of the sequences {x,} defined by the iteration
scheme (1.10).

Theorem 2.1. Let H be a Hilbert space, C a closed convex nonempty subset of H. Let A be a strongly
positive linear bounded operator with coefficient ¥ > 0, and let f € T[], Let (T;}~, be a finite family of
nonexpansive mappings of C into itself, and let K,, be defined by (1.9). Assume that 0 <y <y/a and
F =Y, F(T:) #0. Let xo € C, given that {a,}% and |, )2, are sequences in (0,1), and suppose
that the following conditions are satisfied:

(C1) ap — 0;

(C2) 3oy tn = 0;
(C3) 0 < liminf, , p, < limsup, , fBn <1;

(C4) 3% [Yni = Yuoril < oo, foralli=1,2,...,N and {y,;}~, C [a,b], where0 <a<b<1;
(C5) X5 lanan — an| < oo;

(C6) 251 1Prr = Pul < oo

If {x } 5y is the composite process defined by (1.10), then {x, },-, converges strongly to q € F, which
also solves the following variational inequality:

(rf(9) -Aq,p-q)<0, peF. (2.1)
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Proof. First, we observe that {x,},., is bounded. Indeed, take a point u € F, and notice that
”yn - u” < ﬂn”xn - u” + (1 - ﬂn)”Knxn - u” < ”xn - u” (2-2)

Since a, — 0, we may assume that a,, < ||A™!| for all n. By Lemma 1.4, we have ||I — a, A|| <
1-a,y forall n.
It follows that

w1 = ull = || Pe(any f(xn) + (I = . A)yn) — Pe(u)|
< Nl (v f (xn) = Aut) + (I = an A) (yn — ) |
< anly f(xn) = Aul| + (1 - auy) [|yn - u|
< a|lyf(en) =y F@| + anlly f () = Au| + (1 = au¥) ||y — ul
< ayalxn = ull + |y f () = Aul| + (1= @) 0~ ul (23)
= (1= (7 — ya) ) 120 = ull + ||y f () — Au|
_ _ u) - Au
= (1= (F -ya)an)llxn —ul + (¥ - Ya)an%

< max{ [ —

lyf () - Aul|
ull, :
y-va

By simple inductions, we have

n>0. (2.4)

u) - Au
[, —u]| < max{||x0 —u, M—”},
y-—ya

Therefore {x,} is bounded, so are {y,} and {f(x,)}. Since K, is nonexpansive and y, =
Pnxn + (1 = Bn)Kyux,, we also have
lVne1 = Yull < || (Brsrxner + (1= Prat) K1 Xna1) = (Buxn + (1 = ) Kuxn) ||
= || Bre1xnit = BrrXn + Bre1Xn — Puxn + (1 = Bpi1) (K1 Xna1 — K1)
+(1 = Pr1) (K 2n = Kinxtn) + (1= Pt ) Knxtn = (1= B) Kot |
< Brotllxnsr = Xull + | Brsr = Balllxnll + (1 = Brst ) 1 Kns1Xne1 = K1 Xl
+ (1= 1) 1 Kns1Xn = KXl + | B = Bt | |1 KX |
< Brstllxner = Xull + | Bt = Bu| l1xnll + (1 = Brst) [|Xns1 — Xl
+ (1= Bust) IKns1n = Kn2nll + | B = Bt || K|

= ||xn+1 - xn“ + |ﬂn+1 - ﬂnl”xn” + (1 - ,Bn+1)”Kn+1xn - Knxn” |ﬁn - ﬁn+1|||Knxn||-
(2.5)
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By using the inequalities (2.6) and (2.11) of [9, Lemma 2.11], we can conclude that

N
“Knxn—l - Kn—lxn—ln < MZ|Yn,] - Yn—l,j
j=1

, (2.6)

where M = SUP{Zﬁz(HTjun,j—lan + ”un,j—lxn”) + ”Tlxn” + ”xn”}
By (2.5) and (2.6), we have
261 = xull = || (Pe (any f (xn) + (I = €3 A)yn)) = (P (1) f (n1) + (I = @n1A) Y1) |
< ”(I -, A) (Yn — Yn-1) — (@ — A1) AYna
Tyan (f(xn) - f(xn—l)) +y(an — an-1) f(xXn-1) ”

< (T=an)l|yn =yl + lan - ana ||| Ayna |

+ yaau||xn = Xn-1ll + ylen = ||| f (ea-1) |
< (1= ay) [llen = xn-1ll + [ Br = Bru-a | 121

+|1 = u|IKnxn-1 = Kpoaxn-all + | Buo1 = Pu| 1 Kn-1xn-1ll]

+ oy = an-1l|| Ay || + vaanllxn = xp-1ll + ylan = anal|| f (cn-1) |
< (1= any) 12w = Xnall + [Br = P |01 |

+ |1 = Bu| IKuxp-1 = Kncaxpa |l + | Bu1 = | 1K -1 |

+lan = an[[|Aynaa || + yaan||xn = xpall + ylan — an-alll f Ocn)

= (1- (¥ = ya)atu) 10 = Xuoa | + L|Buos — Pu| + M'Jety — s

N
+1 _ﬂn|MZ|Yn,j = Yn-1,
i=1

7

(2.7)

where L = sup {||xn1[|+[Kn-12p-1| : 7 € N}, M" = max{[| Ayn-1+y|l f (xn-1)[|}. Since 3372, |ern—
ap1]| <00, 202y |Pu-1—Pul < o0, and 377 |ynj—Yn-1,jl < oo, forallj=1,2,...,N,by Lemma 1.3,
we obtain ||x,11 — x,|| — 0. It follows that

1 =yl = 1P (any f (x0) + (T = €n A)yn) = P (yn) |
< lany f(xn) + (I = 0 A) Y = Y| (2.8)
= ||y f (xn) + Aya.
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Since a, — Oand {f(x,)}, {Ay.} are bounded, we have ||x,+1 — yu|| — Oasn — oo. Since
”x" - yn” < loen = X || + ||xn+1 - ]/n”, (2.9)

it implies that [|x, — y,|| — Oasn — oo.
On the other hand, we have

1 Knxn = ]l < |20 = || + ||yn = Knxa|| = ||20 = Y| + Bulln — Knxall, (2.10)

which implies that (1 — )| KnxXn — x4l < 120 = Yaull.
From condition (C3) and ||x, — y,|| — 0asn — oo, we obtain

| Knxn = xn|| — 0. (2.11)

By (C4), we have lim, . oyni = yi € [a,b] foralli = 1,2,... ,N. Let K be the K-mapping
generated by T1,..., Ty and yy,... ,yn. Next, we show that

limsup(yf(q) - Aq,xx —q) <0, (2.12)

n—oo

where g = lim;_,ox; with x; being the fixed point of the contraction x — tyf(x) + (I - tA)Kx.
Thus, x; solves the fixed point equation x; = tyf(x¢) + (I — tA)Kx;. By Lemma 1.5 and
Lemma 1.7, we have g € F and (yf(q) - Ag, p—q) > 0 for all p € F. It follows by (2.11)
and Lemma 1.8 that ||Kx, — x,|| — 0. Thus, we have ||x; — x,,|| = [|(I — tA)(Kx; — x;) +
t(y f (xi) — Axy)||. It follows from Lemma 1.1 that for 0 < ¢ < ||A[|™},
1% = xall? = || (I = LAY (Koxt = 2a) + E(y f (x1) = Ax) ||
<(1- ?t)2||th — 2 ||* + 26y f (x¢) — A, Xt — X))
< (1= 78 (1K = Kol + 20Kt = Ko || K = 2l + | K = )
(2.13)
+ 28((y f (1) = Axy, xp — xp) + (Axp — AXp, X1 — X))
< (1 — Oyt + (?t)2> 2t = 2l + fult) + 26y £ (1) = Axp, X1 — %)

+ 2t{Axt — Axy, Xt — Xy),

where

fn(t) = Qllxe = xul + [l = Kxtu|]) |2 = Kxu|| — 0, asn — 0. (2.14)
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It follows that

IN

(Axy =y ), - xn><< -2 () >||xt—xn||2+%fn<t>+<Axt—Axn,xt—xn>

1
)ynxt 5all + o Ful8) + (A%~ A% 3, 1)

< ( 1+ )(Axt Axn,xt—xn)+ltfn(t)+(Axt—Axn,xt—xn)
L
< 5 (Axt = Axy, x; - fn(t)
(2.15)
Letting n — oo in (2.15) and (2.14), we get
t
lim sup(Ax; — yf (xi), x¢ — X5 ) < EMO' (2.16)

where My > 0 is a constant such that My > y(Ax; — Ax,, xt — x,) forall t € (0,1) and n > 1.
Taking t — 01in (2.16), we have

lim sup lim sup(Ax; — y f (x;), x; — x,) < 0. (2.17)
t—0 n—oo

On the other hand, one has

(rf(a) - Aq,xn—q) = (yf(q) = Aq,xn — q) = (Y (q) — Aq, X, — xt)

+(yf(q) = Aq, xn = x1) = (v f(9) = Axt, X5 — x1)
+(rf(q) — Axe, 200 = xe) = (v f (1) = Axt, X = xt)
+{yf(xe) = Axp, X — x1).

=(rf(a) — Agq,xt - q) + (Ax; — Aq, xn — xt)
+(rf (@) =y f (), 20 =) + (Y f(x0) = Axe, X0 = ;)

<|lyf(q) - Aqllllx: = qll + AN = qll +yellxe = ] llxn = x|
+(yf (xe) = Axy, xp — X¢)

= |lvf(a) - Aqll||x: = gl + (LAl + yer) | = q]|1]20 = xl
+{yf(xr) = Axy, X — x1).

(2.18)

It follows that

limsup(yf(q) - Aq,xx = q) < |[yf(q) = Aq||||x: = q| + (Al + ya) || x: - g][lim suplx, — x|

n—oo n— oo

+limsup(y f(x;) — Axy, x5 — x¢).

n—oo

(2.19)
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Therefore, from (2.17) and lim;_,¢||x¢ — g|| = 0, we have

limsup(yf(q) - Aq,x» - q) <lim sup <lim sup(yf(q) - Aq, Xn - q>>
n— oo t— n—oo

(2.20)
<limsup limsup(y f (x;) — Axy, x5, — x;) < 0.

t—0 n— oo

Hence (2.12) holds. Finally, we prove that x, — g. By using (2.2) and together with the
Schwarz inequality, we have
%1 = qll” = | Pe(@ny f (en) + (= @nA)ya) = Pe ()|

< [l (v f (xa) = Aq) + (I = @n A) (ya - @) ||’

= (I = @A) (v = ) |I* + @t lly f (x) - Aq”
+ 20, (I = anA) (Y = q), v f (xn) = Aq)

< (1= ) yn = all” + 2|l f (xa) = Aq|”
+ 200 (Yn = 4, Y f (Xn) = Aq) = 20,(A(yn = q), Y (xn) = Aq)

< (1= anp)?[lxn = ql* + @[l (xa) - Aq]|?
+ 200 (Yn = 4,V f (%) =Y (q)) + 220 (yn — 4, 7f (q) — Aq)
=20, (A(yn = q), Yf (xn) = Aq)

< (1= and) [0 = qll” + @ |y £ () = Aq®
+ 20 ||yn = allllyf Gen) = Y f (@) || + 200 (yn — 0,7 () - Aq)
=203 (A(yn — ), vf (xn) - Aq)

< (1= )’ |lxn - qll” + ally f (xa) - Aql®
+ 2yacn||yn = ql| | xn - ql| + 2an(yn —q,vf (q) - Aq)
=20, (A(yn = q), vf (xn) - Aq)

< (1= an¥)’l2n = q)* + a2 |ly f (xa) - Aq?
+ 2yaay||xn - q||* + 204 (yn - 4,vf () - Aq)
=203 (A(yn — ), vf (xn) - Aq)

< (1= @)+ 2yaay ) [0 - qll” + 200y — 4, 7F (x0) - Aq)
+ ||y f () = Aq|” + 203 | Ay = @) | I () = Aq|

= (1-2(y - ya)a,)||xn - 4|’
+an(2yn—a,7f(q) - Ag)

san (£ (xa) - Aql + 20| Ay - D17 f () - Agl] + Pl - 4lI*))-
(2.21)
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Since {x,}, { f(x)}, and {1} are bounded, we can take a constant 77 > 0 such that
12 ||y f () = Ag|® + 2| Ay = @) ||y £ (xa) = Agl] + 7|20 - 4] (2.22)

for all 7 > 0. It then follows that
et all < (1207 — ya)a) xn gl + anfi 22)

where B, = 2(y, — q,yf(q) — Aq) + na,. By limsup, |, _((yf — A)q,y» —q) < 0, we get
limsup, , B, < 0. By applying Lemma 1.3 to (2.23), we can conclude that x, — 4. This
completes the proof. O

If A=1and y =1in Theorem 2.1, we obtain the following result.

Corollary 2.2. Let H be a Hilbert space, C a closed convex nonempty subset of H, and let f € []..
Let {T;} X, be a finite family of nonexpansive mappings of C into itself, and let K, be defined by (1.9).
Assume that F = ﬂf.\:ll F(T;) #0. Let xo € C, given that {ay ;e and {Pn} g are sequences in (0,1),
and suppose that the following conditions are satisfied:

(C1) a,, — 0;

(C2) X2 an = o;

(C3) 0 < liminf, , f, < limsup, B <1;

(C4) 3% [Yni = Y1l < o0, foralli =1,2,...,N and {y;}~, C [a,b], where 0 < a <

b <1,
(C5) 3t lani — an| < oo;
(C6) 301 IPns1 = Pul < co.

If {xn ;21 is the composite process defined by

Yn = ,ann + (1 - ﬁn)Knxn/

Xpi1 = Anf (xn) + (1= ) Yn,

(2.24)

then {x,},., converges strongly to q € F, which also solves the following variational inequality:
((f-Dap-49)<0, peF. (225)

IfN=1,A=1y=1,and f =u € Cisa constant in Theorem 2.1, we get the results of
Kim and Xu [3].

Corollary 2.3. Let H be a Hilbert space, C a closed convex nonempty subset of H, and let f € []..
Let T be a nonexpansive mapping of C into itself. F(T)#0. Let xo € C, given that {ay,},., and
{Bn} g are sequences in (0, 1), and suppose that the following conditions are satisfied:

C1) a, — 0;
(C2) 3520 an = oo;
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(C3) 0 < liminf, ., p, < limsup, , fBn <1;
(C4) 3521 [ — ay| < oo;
(C5) 321 Bns1 = Pul < oo

If {xn};21 is the composite process defined by

Yn = ﬁnxn + (]— - ﬁn)Txn/

Xpi1 = g+ (I —an)yy,

(2.26)

then {x,},., converges strongly to q € F, which also solves the following variational inequality:

(u-q,p-q)<0, peF. (227)
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