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Using fixed point methods, we prove the Hyers-Ulam-Rassias stability of a mixed type functional
equation on multi-Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’s theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering
an unbounded Cauchy difference. The paper of Rassias has provided a lot of influence in
the development of what we call generalized Hyers-Ulam-Rassias stability of functional
equations. In 1990, Rassias [5] asked whether such a theorem can also be proved for p ≥ 1. In
1991, Gajda [6] gave an affirmative solution to this question when p > 1, but it was proved by
Gajda [6] and Rassias and Šemrl [7] that one cannot prove an analogous theoremwhen p = 1.
In 1994, a generalization was obtained by Gavruta [8], who replaced the bound ε(‖x‖p+‖y‖p)
by a general control function φ(x, y). Beginning around 1980, the stability problems of several
functional equations and approximate homomorphisms have been extensively investigated
by a number of authors, and there aremany interesting results concerning this problem. Some
of the open problems in this field were solved in the papers mentioned [9–15].

The notion of multi-normed space was introduced by Dales and Polyakov (see in [16–
19]). This concept is somewhat similar to operator sequence space and has some connections
with operator spaces and Banach lattices. Motivations for the study of multi-normed spaces
and many examples were given in [16]. Let (E, ‖ · ‖) be a complex linear space, and let
K ∈ N, we denote by Ek the linear space E ⊕ · · · ⊕ E consisting of k-tuples (x1, . . . , xk),
where x1, . . . , xk ∈ E. The linear operations on Ek are defined coordinate-wise. Whenwewrite



2 Fixed Point Theory and Applications

(0, . . . , 0, xi, 0, . . . , 0) for an element in Ek, we understand that xi appears in the ith coordinate.
The zero elements of either E or Ek are both denoted by 0 when there is no confusion. We
denote by Nk the set {1, 2, . . . , k} and by Bk the group of permutations on Nk.

Definition 1.1. A multi-norm on {En, n ∈ N} is a sequence

(‖·‖n) = (‖·‖n : n ∈ N) (1.1)

such that ‖ · ‖n is a norm on En for each n ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and such
that for each n ∈ N (n ≥ 2), the following axioms are satisfied:

(A1) ‖(xσ(1), . . . , xσ(n)‖n = ‖(x1, . . . , xn)‖n(∀σ ∈ Bn, x1, . . . , xn ∈ E);

(A2) ‖(α1x1, . . . , αnxn)‖n ≤ (maxi∈Nn |αi|)‖(x1, . . . , xn)‖n(xi ∈ E, αi ∈ C, i = 1, . . . , n);

(A3) ‖(x1, . . . , xn−1, 0)‖n = ‖(x1, . . . , xn−1)‖n−1 (x1, . . . , xn−1 ∈ E);

(A4) ‖(x1, . . . , xn−1, xn−1)‖n = ‖(x1, . . . , xn−1)‖n−1(x1, . . . , xn−1 ∈ E).

In this case, we say that ((En, ‖ · ‖n) : n ∈ N) is a multi-normed space.

Suppose that ((En, ‖ · ‖n) : n ∈ N) is a multi-normed space and k ∈ N. It is easy to show
that

(a) ‖(x, . . . , x)‖k = ‖x‖(x ∈ E);

(b) maxi∈Nk‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤ ∑k
i=1 ‖xi‖ ≤ kmaxi∈Nk‖xi‖(x1, . . . , xk ∈ E).

It follows from (b) that if (E, ‖ · ‖) is a Banach space, then (Ek, ‖ · ‖k) is a Banach space
for each k ∈ N; in this case ((Ek, ‖ · ‖k) : k ∈ N) is said to be a multi-Banach space.

In the following, we first recall some fundamental result in fixed-point theory.
Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall the following theorem of Diaz and Margolis [20].

Theorem 1.2 (see [20]). let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.2)

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1/(1 − L)d(y, Jy) for all y ∈ Y .
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Baker [21] was the first author who applied the fixed-point method in the study of
Hyers-Ulam stability (see also [22]). In 2003, Cadariu and Radu applied the fixed-point
method to the investigation of the Jensen functional equation (see [23, 24]). By using fixed
point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors (see [25–27]).

In this paper, we will show the Hyers-Ulam-Rassias stability of a mixed type
functional equation on multi-Banach spaces using fixed-point methods.

2. A Mixed Type Functional Equation

In this section, we investigate the stability of the following functional equation in multi-
Banach spaces:

f
(
x + 2y

)
+ f

(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

) − 6f(x) + f
(
4y

) − 4f
(
3y

)

+ 6f
(
2y

) − 4f
(
y
)
.

(2.1)

Let

Df
(
x, y

)
= f

(
x + 2y

)
+ f

(
x − 2y

) − 4f
(
x + y

) − 4f
(
x − y

)
+ 6f(x) − f

(
4y

)

+ 4f
(
3y

) − 6f
(
2y

)
+ 4f

(
y
)
.

(2.2)

First we give some lemma needed later.

Lemma 2.1 (see [28] Lemma6.1). If an even functionf : X → Y satisfies(2.1), then f is quartic-
quadratic function.

Lemma 2.2 (see [28] Lemma6.2). If an odd functionf : X → Y satisfies (2.1), then f is cubic-
additive function.

Theorem 2.3. Let E be a linear space and let ((Fn, ‖ ·‖n) : n ∈ N) be a multi-Banach space. Let k ∈ N

and let f : E → F be an even mapping with f(0) = 0 for which there exists a positive real number ε
such that

sup
k∈N

∥
∥
(
Df

(
x1, y1

)
, . . . , Df

(
xk, yk

))∥
∥
k ≤ ε (2.3)

for all x1, . . . , xk, y1, . . . , yk ∈ E(k ∈ N). Then there exists a unique quadratic mapping Q1 : E → F
satisfying (2.1) and

sup
k∈N

∥
∥
(
f(2x1) − 16f(x1) −Q(x1), . . . , f(2xk) − 16f(xk) −Q(xk)

)∥
∥
k ≤ 3ε (2.4)

for all x1, . . . , xk ∈ E.
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Proof. Putting x1 = · · · = xk = 0 in (2.3), we have

sup
k∈N

∥
∥
(
f
(
4y1

) − 4f
(
3y1

)
+ 4f

(
2y1

)
+ 4f

(
y1
)
, . . . , f

(
4yk

) − 4f
(
3yk

)

+4f
(
2yk

)
+ 4f

(
yk

))∥
∥
k ≤ ε.

(2.5)

Replacing xi with yi in (2.3), we get

sup
k∈N

∥
∥
(−f(4y1

)
+ 5f

(
3y1

) − 10f
(
2y1

)
+ 11f

(
y1
)
, . . . ,−f(4yk

)
+ 5f

(
3yk

)

−10f(2yk

)
+ 11f

(
yk

))∥
∥
k ≤ ε.

(2.6)

By (2.5) and (2.6), we have

sup
k∈N

∥
∥
(
f(4x1) − 20f(2x1) + 64f(x1), . . . , f(4xk) − 20f(2xk) + 64f(xk)

)∥
∥
k ≤ 9ε. (2.7)

Let J(x) = f(2x) − 16f(x) for all x ∈ X. Then we have

sup
k∈N

‖(J(2x1) − 4J(x1), . . . , J(2xk) − 4J(xk))‖k ≤ 9ε. (2.8)

Set X = {g : E → F : g(0) = 0} and define a metric d on X by

d
(
g, h

)
= inf

{

c > 0 : sup
k∈N

∥
∥g(x1) − h(x1), . . . , g(xk) − h(xk)

∥
∥
k ≤ c :

x1, . . . , xk ∈ N, k ∈ N

}

.

(2.9)

Define a map Λ : X → X by Λ(g)(x) = (g(2x))/4. Let g, h ∈ X and let c ∈ [0,∞] be an
arbitrary constant with d(g, h) ≤ c. From the definition of d, we have

sup
k∈N

∥
∥g(x1) − h(x1), . . . , g(xk) − h(xk)

∥
∥
k ≤ c (2.10)

for x1, . . . , xk ∈ N, k ∈ N. Then

sup
k∈N

∥
∥
(
Λg

)
(x1) − (Λh)(x1), . . . ,

(
Λg

)
(xk) − (Λh)(xk)

∥
∥
k

≤ 1
4
sup
k∈N

∥
∥g(2x1) − h(2x1), . . . , g(2xk) − h(2xk)

∥
∥
k ≤ c

4

(2.11)
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for x1, . . . , xk ∈ N, k ∈ N. So

d
(
Λg,Λh

) ≤ 1
4
d
(
g, h

)
. (2.12)

Then Λ is a strictly contractive mapping. It follows from (2.8) that

sup
k∈N

‖(ΛJ)(x1) − J(x1), . . . , (ΛJ)(xk) − J(xk)‖k

≤ 1
4
sup
k∈N

‖J(2x1) − 4J(2x1), . . . , J(2xk) − 4J(2xk)‖k ≤ 9ε
4

(2.13)

for x1, . . . , xk ∈ N, k ∈ N. Then d(ΛJ, J) ≤ 9ε/4. According to Theorem 1.2, the sequence
{ΛnJ} converges to a unique fixed point Q1 of Λ in X, that is,

Q1(x) = lim
n→∞

(ΛnJ)(x) = lim
n→∞

1
4n

J(2nx),

d(J,Q1) ≤ 4
3
d(ΛJ, J) = 3ε.

(2.14)

Also we have (Q(2x))/4 = Q(x) for all x ∈ X, that is, Q(2x) = 4Q(x) for all x ∈ X. Also we
have

DQ1
(
x, y

)
= lim

n→∞
1
4n

∥
∥DJ

(
2nx, 2ny

)∥
∥ = lim

n→∞
1
4n

∥
∥
∥Df

(
2n+1x, 2n+1y

)
− 16Df

(
2nx, 2ny

)∥∥
∥

≤ lim
n→∞

17ε
4n

= 0,

(2.15)

and Q1 satisfies (2.1). Since Q1 is also even and Q1(0) = 0, we have that Q(2x) − 16Q(x) =
−12Q(x) is quadratic by Lemma 2.1. Then Q is quadratic.

Theorem 2.4. Let E be a linear space and let ((Fn, ‖ ·‖n) : n ∈ N) be a multi-Banach space. Let k ∈ N

and let f : E → F be an even mapping with f(0) = 0 for which there exists a positive real number
ε such that (2.3) holds for all x1, . . . , xk, y1, . . . , yk ∈ E (k ∈ N). Then there exists a unique quartic
mapping Q2 : E → F satisfying (2.1) and

sup
k∈N

∥
∥(f(2x1) − 4f(x1) −Q2(x1), . . . , f(2xk) − 4f(xk) −Q2(xk))

∥
∥
k ≤ 3

5
ε (2.16)

for all x1, . . . , xk ∈ E.

Proof. The proof is similar to that of Theorem 2.3.

Theorem 2.5. Let E be a linear space and let ((Fn, ‖ ·‖n) : n ∈ N) be a multi-Banach space. Let k ∈ N

and let f : E → F be an even mapping with f(0) = 0 for which there exists a positive real number ε
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such that (2.3) holds for all x1, . . . , xk, y1, . . . , yk ∈ E (k ∈ N). Then there exist a unique quadratic
mapping Q1 : E → F and a unique quadratic mapping Q2 : E → F such that

sup
k∈N

∥
∥
(
f(x1) −Q1(x1) −Q2(x1), . . . , f(xk) −Q1(xk) −Q2(xk)

)∥
∥
k ≤ 3ε

10 (2.17)

for all x1, . . . , xk ∈ E.

Proof. By Theorems 2.3 and 2.4, there exist a quadratic mapping Q0
1 : E → F and a unique

quartic mapping Q0
2 : E → f such that

sup
k∈N

∥
∥
∥
(
f(2x1) − 16f(x1) −Q0

1(x1), . . . , f(2xk) − 16f(xk) −Q0
1(xk)

)∥
∥
∥
k
≤ 3ε

sup
k∈N

∥
∥
∥
(
f(2x1) − 4f(x1) −Q0

2(x1), . . . , f(2xk) − 4f(xk) −Q0
2(xk)

)∥
∥
∥
k
≤ 3

5
ε

(2.18)

for all x1, . . . , xk ∈ E. By (2.18), we have

sup
k∈N

∥
∥
∥
(
12f(x1) +Q0

1(x1) −Q0
2(x1), . . . , 12f(xk) +Q0

1(xk) −Q0
2(xk)

)∥
∥
∥
k
≤ 18

5
ε. (2.19)

Let Q1(x) = −(1/12)Q0
1(x) and Q2(x) = (1/12)Q0

2(x) for all x ∈ E. Then we have (2.17). The
uniqueness of Q1 and Q2 is easy to show.

Theorem 2.6. Let E be a linear space and let ((Fn, ‖ · ‖n) : n ∈ N) be a multi-Banach space. Let
k ∈ N and let f : E → F be an odd mapping for which there exists a positive real number ε such that
(2.3) holds for all x1, . . . , xk, y1, . . . , yk ∈ E (k ∈ N). Then there exists a unique additive mapping
A : E → F and a unique cubic mapping C : E → F satisfying (2.1) and

sup
k∈N

∥
∥
(
f(2x1) − 8f(x1) −A(x1), . . . , f(2xk) − 8f(xk) −A(xk)

)∥
∥
k ≤ 9ε,

sup
k∈N

∥
∥
(
f(2x1) − 2f(x1) − C(x1), . . . , f(2xk) − f(xk) − C(xk)

)∥
∥
k ≤ 9

7
ε

(2.20)

for all x1, . . . , xk ∈ E.

Proof. The proof is similar to that of Theorems 2.3 and 2.4.

Theorem 2.7. Let E be a linear space and let ((Fn, ‖ · ‖n) : n ∈ N) be a multi-Banach space. Let
k ∈ N and let f : E → F be an odd mapping for which there exists a positive real number ε such that
(2.3) holds for all x1, . . . , xk, y1, . . . , yk ∈ E (k ∈ N). Then there exists a unique additive mapping
A : E → F and a unique cubic mapping C : E → F satisfying (2.1) and

sup
k∈N

∥
∥(f(x1) −A(x1) − C(x1), . . . , f(xk) −A(xk) − C(xk))

∥
∥
k ≤ 12

7
ε (2.21)

for all x1, . . . , xk ∈ E.
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Proof. By Theorem 2.6, there is an additive mapping A0 : E → F and a cubic mapping C0 :
E → F such that

sup
k∈N

∥
∥(f(2x1) − 8f(x1) −A0(x1), . . . , f(2xk) − 8f(xk) −A0(xk))

∥
∥
k ≤ 9ε,

sup
k∈N

∥
∥(f(2x1) − 2f(x1) − C0(x1), . . . , f(2xk) − 2f(xk) − C0(xk))

∥
∥
k ≤ 9

7
ε.

(2.22)

Thus

sup
k∈N

∥
∥(6f(x1) +A0(x1) − C0(x1), . . . , 6f(xk) +A0(xk) − C0(xk))

∥
∥
k ≤ 72

7
ε (2.23)

for all x1, . . . , xk ∈ E. Let A = −A0/6 and C = C0/6. The rest is similar to that of the proof of
Theorem 2.5.

Theorem 2.8. Let E be a linear space and let ((Fn, ‖ ·‖n) : n ∈ N) be a multi-Banach space. Let k ∈ N

and let f : E → F be an odd mapping satisfying f(0) = 0 and there exists a positive real number
ε such that (2.3) holds for all x1, . . . , xk, y1, . . . , yk ∈ E (k ∈ N). Then there exist a unique additive
mappingA : E → F, a unique cubic mapping C : E → F, a unique quadratic mappingQ1 : E → F,
and a unique quadratic mapping Q2 : E → F such that

sup
k∈N

∥
∥
(
f(x1) −A(x1) −Q(x1) − C(x1) −Q2(x1), . . . , f(xk) −A(xk) −Q1(xk)

−C(xk −Q2(xk)))
∥
∥
k ≤ 141

70
ε

(2.24)

for all x1, . . . , xk ∈ E.

Proof. Let fe(x) = 1/2(f(x) + f(−x)) for all x ∈ E. Then fe(0) = 0 and fe(−x) = fe(x) and

sup
k

∥
∥Dfe(x1, y1), . . . , Dfe(xk, yk)

∥
∥
k ≤ ε (2.25)

for all x1, . . . , xk, y1, . . . , yk ∈ E. By Theorem 2.5, there are a unique quadratic mapping Q1 :
E → F and a unique quartic mapping Q2 : E → F satisfying

sup
k∈N

∥
∥
(
fe(x1) −Q1(x1) −Q2(x1), . . . , fe(xk) −Q1(xk) −Q2(xk)

)∥
∥
k ≤ 3ε

10
. (2.26)

Let fo(x) = 1/2(f(x) − f(−x)) for all x ∈ E. Then fo is an odd mapping satisfying

sup
k

∥
∥Dfo(x1, y1), . . . , Dfo(xk, yk)

∥
∥
k ≤ ε (2.27)
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for all x1, . . . , xk, y1, . . . , yk ∈ E. By Theorem 2.7, there are a unique additive mappingA : E →
F and a unique quartic mapping C : E → F satisfying

sup
k∈N

∥
∥
(
fo(x1) −A(x1) − C(x1), . . . , f(xk) −A(xk) − C(xk)

)∥
∥
k ≤ 12

7
ε. (2.28)

By (2.26) and (2.28), we have (2.24).This completes the proof.
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[7] Th. M. Rassias and P. Šemrl, “On the behavior of mappings which do not satisfy Hyers-Ulam
stability,” Proceedings of the American Mathematical Society, vol. 114, no. 4, pp. 989–993, 1992.

[8] P. Gavruta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994.

[9] P. Gavruta, “An answer to a question of Th. M. Rassias and J. Tabor on mixed stability of mappings,”
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